
Citation: Jaleel UC, J.R.; R, M.; Devi

K R, S.; Pinheiro, D.; Mohan, M.K.

Structural, Morphological and

Optical Properties of MoS2-Based

Materials for Photocatalytic

Degradation of Organic Dye.

Photochem 2022, 2, 628–650.

https://doi.org/10.3390/

photochem2030042

Academic Editors: Chuanyi Wang,

Wanhong Ma, Myong Yong Choi,

Jayaraman Theerthagiri and Seung

Jun Lee

Received: 4 July 2022

Accepted: 4 August 2022

Published: 8 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Structural, Morphological and Optical Properties of
MoS2-Based Materials for Photocatalytic Degradation of
Organic Dye
Jadan Resnik Jaleel UC 1 , Madhushree R 1, Sunaja Devi K R 1,* , Dephan Pinheiro 1 and Mothi Krishna Mohan 2

1 Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
2 Department of Sciences and Humanities, School of Engineering and Technology,

CHRIST (Deemed to be University), Kumbalagodu, Mysore Road, Bangalore 560074, India
* Correspondence: sunajadevi.kr@christuniversity.in

Abstract: Molybdenum disulfide (MoS2) is a transition metal dichalcogenide (TMDCs) having
versatile properties and plays a great role in the photodegradation of organic dyes. MoS2 also finds
applications in diverse fields such as catalysis, electronics, and nanomedicine transportation. MoS2

can be prepared by using chemical and physical methods such as hydrothermal, solvothermal, and
chemical vapour deposition methods. The preparation method employed can produce subtle but
significant changes in the morphology. To increase the efficiency of MoS2, it can be combined with
different materials to produce composites that improve the photodegradation efficiency of MoS2.
The various methods of preparation, the morphology of MoS2, and photodegradation activity of the
MoS2-based nanocomposites are briefly discussed in this review.
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1. Introduction

The discovery of Buckminster fullerene (C60) and carbon nanotubes (CNTs) in the late
twentieth century marked a pivotal moment in nanomaterial research. These materials have
since become a substitute for carbon-based bulk materials such as graphite and diamond.
These materials have already made their presence felt and proved their utility in diverse
fields [1]. A significant amount of studies have been done on the carbon nanotube as
a versatile material in electronics and numerous other fields [2]. However, the inherent
drawbacks in carbon nanotubes led to the discovery of materials like graphene [3], two-
dimensional transition metal dichalcogenides (TMDCs), etc. The TMDCs are composed
of a transition metal element (M) and chalcogen element (X) like S, Se, Te, etc. [4]. The
layers are held together by the weak van der Waals forces. MoS2 is a TMDCs having
single-layer/monolayer or nanolayers formed from bulk material via exfoliation. [5]. There
are about 40 different types of TMDCs [6], such as WSe2, MoS2, WS2, etc. They are prepared
by sandwiching a layer of transition metal (e.g., molybdenum, tungsten, niobium) atoms
between two layers of chalcogen (e.g., sulphur, selenium, tellurium) atoms. MoS2 is
three atoms thick with a structure comprising of (X-M-X) S-Mo-S [7,8]. There are four
different polytypes of MoS2, namely, 1T, 1H, 2H, and 3R. These are classified based on
the coordination of Mo atom and stacking orientation of the single layers [6]. MoS2
has found extensive applications in photocatalysis and electrocatalysis [9,10]. MoS2 and
MoS2-based nanomaterials have attracted a lot of attention for their high charge carrier
potency and superb optical absorption property [11,12]. For commercial photocatalysis
applications, a stable, efficient, and low-cost photocatalyst with a light-harvesting spectrum
spanning the entire solar spectrum is highly desirable [13]. Photocatalytic materials can
transform sunlight into chemical energy and use this to degrade organic pollutants into non-
toxic carbon dioxide and tiny inorganic molecules like water without causing secondary
pollution [14].

Photochem 2022, 2, 628–650. https://doi.org/10.3390/photochem2030042 https://www.mdpi.com/journal/photochem

https://doi.org/10.3390/photochem2030042
https://doi.org/10.3390/photochem2030042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photochem
https://www.mdpi.com
https://orcid.org/0000-0001-6456-6933
https://orcid.org/0000-0001-7826-1620
https://doi.org/10.3390/photochem2030042
https://www.mdpi.com/journal/photochem
https://www.mdpi.com/article/10.3390/photochem2030042?type=check_update&version=1


Photochem 2022, 2 629

The poor interactions between the layers enable the formation of bulk equivalents
of multi-layered materials, which support the stability of the structure. The interesting
properties of TMDCs such as tuneable band gap ranging between 0–3 eV, high surface-
to-volume ratio, semiconductor property, and the high availability of active sites on the
surface have led to a wide range of applications such as gas sensing, optoelectronics,
catalysis, energy storage, etc. [15]. The physical properties of these materials are amenable
to alteration by inter-lamellar space intercalating or doping [5]. MoS2 has a role in many
fields such as catalysis, electronics [16–18], and nanomedicine transportation [19]. g-C3N4
is another material frequently utilized to alter the characteristics of MoS2 in order to boost
its catalytic efficiency [20].

The characteristics of single-layered MoS2 differ significantly from those of their bulk
counterparts. The large surface energy in MoS2 makes it prone to aggregation, which can
adversely impact its stability and efficiency as a catalyst [21,22]. This can be a serious
drawback when MoS2-based catalysts are used in the aqueous phase. This can be overcome
by embedding MoS2 within layered materials to achieve benefits to both materials, and
improved performances can be realized [23,24]. MoS2 is a photocatalyst for hydrogen
evolution because it has a strong conductivity, wide basic surface region, sufficient band
edge, solid lattice fit, and relatively high mobility. Layered MoS2 is thought to be a good
candidate for pairing with g-C3N4 because of its p-type conductivity. g-C3N4 is also an
important photocatalytic substance for fuel generation from sunlight via water splitting
and environmental remediation via organic pollutant degradation. ZnO, and CdS, which
are also effective photocatalysts, have been used to alter the MoS2 catalyst to improve
its photocatalytic efficiency. In recent studies, MoS2 has been widely explored in fields
other than photocatalytic degradation. One major application that was studied is towards
H2 production [25]. MoS2/Ni3S2/reduced graphene oxide electrocatalyst was studied for
alcohol fuel cells [26], and on bacterial wound treatment [27]. The bacterial capturing and
deactivating using MoS2-based nanocomposites have also been studied.

Access to clean freshwater is a necessity for all human beings and, to a large extent, de-
termines the quality of our lives. Pollution of the water bodies, particularly with industrial
wastewater containing a variety of organic and inorganic pollutants, is an environmental
issue worldwide [28]. According to the 2017 United Nations World Water Development
report, 80% of wastewater is dumped into the environment without proper treatment [29].
The availability of various pollutants in water has serious health consequences for human
health as well [30]. Further, the exploding population has placed an additional pressure on
our diminishing freshwater resources [31]. Rapid industrialization and increasing agricul-
tural activities have led to the generation of a large amount of wastewater [32]. Pollution of
water also has adverse effects on the aquatic ecosystem. There is an urgent need to address
this sorry state of affairs. Remediating wastewater through economic and eco-friendly
protocols needs to be devised. One such technology for wastewater remediation is photo-
catalysis, which makes use of freely accessible sunlight to fuel the breakdown of organic
contaminants present in wastewater [33]. Photocatalysis has risen in popularity in recent
years because of its huge potential for resolving the growing energy crisis and environmen-
tal pollution. At moderate temperatures, solvothermal techniques can produce acceptable
yields with varied controllability in the size of nanomaterials, which are successfully used
in a variety of semiconductor applications [34].

This article briefly discusses the structure, geometry, methods of preparation, char-
acterization, and application of MoS2-based nanomaterials. The research achievements
made in improving the degradation performance of MoS2-based photocatalysts have been
explored. The schematic illustration of the MoS2-based catalysts’ preparation, morphology,
and applications are given in Figure 1.
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ductor of the MX2 type, where M stands for transition metals and X is for chalcogen [29]. 
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Figure 1. Representation of the preparation, morphology, and applications of MoS2-based catalysts.

2. Structure and Geometries of MoS2

MoS2 is a black-coloured substance, insoluble in water, and like graphene, has a
layered structure. It is mostly found in nature in the form of molybdenite MoS2 has excellent
thermal and chemical stability, which is a feature of layered transition metal compounds
in general. As a result, it is employed in nanochemistry, catalysis, electrode materials,
pharmaceuticals, nanomedical transportation, etc. MoS2 is a typical n-type semiconductor
with a layered structure that is quite similar to graphene. The band gap of MoS2 grows as the
number of the atomic layers decreases, resulting in desirable photoelectric characteristics.
MoS2 is a stable 2D transition metal dichalcogenide, which means it is a semiconductor of
the MX2 type, where M stands for transition metals and X is for chalcogen [29]. A single
sheet is similar to a “sandwich” structure, where the Mo atom is sandwiched between two
S atoms [35,36]. MoS2 layers, separated by 0.65 nm, are held together by van der Waals
forces, and the layers are bound together by strong covalent bonds [37]. Figure 2a,b show
the crystal structure of MoS2 [16,38,39].
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MoS2 is polytypic [4], with three distinct configurations: 1T [40], 2H [41], and 3R [42],
all of which belong to symmetric point groups D6h, D6d, and C3V, respectively [13]. The
polymorphic structures are given in Figure 2c. The first digit in these polytypes denotes
the number of layers in the make-up, while the alphabet denotes the crystallographic
configuration. In these polytypes, the letters T, H, and R stand for trigonal, hexagonal, and
rhombohedral arrangements. Various allotropes and morphologies, such as 3D (flowers,
snowflakes, and dandelion patterns), 2D (nanosheets, nanostrips, and nanoribbons struc-
ture), 1D (nanowires and nanorods arrangement), and 0D (nanowires and nanorods) can
be visualized, designed, and achieved by suitably altering the synthesis process. MoS2 is a
naturally occurring 2H molecule with 3% 3R that is thermodynamically stable.

MoS2 monolayers show less activity in catalysis due to the limited charge mobility
and a lack of metal edge sites. Increasing the number of exposed edge sites and using
monolayered MoS2 sheets having greater electrical conductivity have both improved the
catalytic performances of MoS2. However, the bulk of the metal on the basal plane of the
monolayers still shows a lower catalytic activity [43]. From the studies conducted, it is
evident that while the basal planes of 2H-MoS2 are catalytically inert, the sulphur edge
sites, and vacancy defects are the active sites for dye degradation. The photocatalytic
dye degradation shows an enhancement when the size of the 2H-MoS2 particles has been
decreased to produce a higher density of edge sites. Another method for improving the
catalytic activity of MoS2 is to alter the 2H crystal phase to produce a polymorph with
improved electrical conductivity, which will facilitate the transport of electrons to the active
sites [44,45]. As stated below, MoS2 comes in a variety of crystalline forms. The images
given below are from the Materials projects database [46].

Hexagonal: The hexagonal structure of the MoS2 is given in Figure 3. The structure of
P63/mmc space group is given the Figure 3a. It shows a band gap of 1.465 eV and a density
of 4.05 g/cm3. Lattice parameters of the structure are a = b = 3.190 Å, and c = 14.879 Å.
α = β = 90◦ γ = 120◦ and volume is 131.151 Å3. The structure of P6m2 is given in Figure 3b.
It has a band gap of 1.661 eV and a density of 2.80 g/cm3. Lattice parameters of the structure
are a = b = 3.190 Å and c = 17.440 Å. α = β = 90◦ γ = 120◦ and volume is 153.721 Å3 [46].
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Trigonal: The trigonal structure of the MoS2 is given in Figure 4. The structure of the
R3m space group is given in Figure 4a. It shows a band gap of 1.578 eV and a density of
4.24 g/cm3. Lattice parameters of the structure are a = b = c = 7.341 Å. α = β = γ = 25.103◦,
and volume is 62.649 Å3. The structure of MoS2 with the P3m1 space group is given in
Figure 4b. It shows a band gap of 1.554 eV and a density of 2.42 g/cm3. Lattice parameters
of the structure are a = b = 3.190 c = 24.879 Å. A = β = 90◦ γ = 120◦. Volume is 131.151 Å3.
The structure of the P6m2 space group is given in Figure 4c, having a band gap of 1.509 eV
and a density of 2.8 g/cm3. Lattice parameters of the structure are a = b = 3.190 c = 32.319 Å.
α = β = 90◦ γ = 120◦ and volume is 284.872 Å3.
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Figure 4. The geometrical representation of trigonal MoS2 with their band structure and density of
states of space group (a) R3m, (b) P3m1, (c) P6m2. Reprinted with Creative Commons Attribution 4.0
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Other geometries: The orthorhombic structure of the MoS2 is given in Figure 5a. It
has a band gap of 1.578 eV and a density of 2.67 g/cm3. The structure belongs to the
Pmmn space group. Lattice parameters of the structure are a = 3.163 b = 13.021 c = 43.774
Å. α = β = γ = 90◦, volume = 1790.583 Å3. Figure 5b represents the cubic geometry of
MoS2. This structure has a band gap of 1.562 eV and a density of 4.81 g/cm3. The structure
belongs to the F43m space group. Lattice parameters of the structure are a = b = c = 6.778 Å.
α = β = γ = 60◦, and volume = 221.129 Å3. Figure 5c represents the tetragonal structure of
MoS2, and it has a band gap of 1.785 eV and a density of 3.27 g/cm3. The structure belongs
to the I42d space group. Lattice parameters of the above structure are a = b = c = 6.505 Å.
α = β = 128.852◦, γ = 75.248◦, and volume = 162.514Å3 [46].
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3. Different Methods of Preparation of MoS2

For the preparation of MoS2, a variety of physical and chemical approaches have been
used. The generally used physical methods are (a) mechanical exfoliation, (b) sputtering,
(c) epitaxy, (d) plasma, etc. The lattice structure of the material will not change or be
destroyed in this method, provided the precursor materials are pure [38]. However, in
recent studies, physical methods are not commonly used since they are not cost effective.
The chemical methods include (a) chemical vapor deposition method, (b) hydrothermal
method, and (c) solvothermal method. The most common methods of preparation are listed
in Figure 6.
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3.1. Physical Methods

Mechanical exfoliation: Mechanical exfoliation is an approach used in the preparation
of 2D materials, similar to the method used in monolayer graphene. Yu et al., developed a
simple, environmentally friendly, and scalable exfoliation approach for water-dispersible
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MoS2 [47]. In the pre-treatment of MoS2 powder, no intercalation agents have been used.
Then, dispersion took place in ultrasound-assisted water—a typical exfoliation process
for nanosheets—in combination with viscoelastic stinging for the preparation of MoS2.
Funke et al. used an micromechanical exfoliation method where they did not find any
evident grid defects in elliptic-polarization spectra imaging [48]. This method is useful to
manage the materials’ surface and mechanical exfoliation. One drawback here is that the
thickness and transverse dimensions are difficult to regulate and, therefore, the procedure
is unsatisfactory and unsuitable for commercial manufacturing [49].

3.2. Chemical Methods

The chemical vapor deposition (CVD) method: This method can be used to prepare
MoS2 and transition metal dichalcogenides of high quality on a large scale, mainly to make
MoS2 films [50,51]. It is a bottom-up approach that preserves the defects, crystallinity,
and morphology of the material [52]. CVD is a large-scale chemical reaction that involves
vapors reacting with the substrate to produce thin films. Direct evaporation is used in the
CVD process, commonly known as the vapour solid development technique. It creates a
high-quality monolayer with fewer tiny flakes on the substrate. Precursors are charged
and sublimated into a gaseous state which helps to undergo chemical reactions at high
temperatures. Strong sediments grow on the matrix surface during condensation; hence it
is commonly used to prepare monolayer nanocomposite systems and multilayer transition
metal MoS2 with good control on the number of layers.

MoO3 powder is used as a molybdenum source and S powder as a sulfur source in
the preparation of large-area monolayer MoS2 films. Monolayer films grow consistently
with a uniform nature, but defects created during the growth process cause a reduction
in the material consistency [53]. In the preparation, improvements were made by Zhang
et al., who produced triangular monolayers of MoS2 with grain sizes up to 150 µm [54].
Alharbi et al. used a chemical vapor deposition process to create a large-area MoS2 film
with the highest island density in the field [55]. Balendhran et al. developed a two-step
bulk fabrication technique using an MoO3 precursor [56]. In a quartz channel, MoO3 is
evaporated on every substrate, followed by sulfidation. A schematic representation of
synthesizing MoS2 using the chemical vapour method and CVD growth of the MoS2 when
Mo foil is used as a precursor is depicted in Figure 7a,b, respectively [57,58].
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Hydrothermal method: The hydrothermal method is a promising wet chemical
method that is performed using a hydrothermal bomb. The temperature used for this
method is usually 180 ◦C [59]. Typically, the precursors used are sodium molybdate
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(Na2MoO4·2H2O) and ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) for
molybdenum and thiourea (CS(NH2)2) for sulfur. Nanosheets [60], nanospheres [61],
nanoflowers [62], and nanotubes [63] can be prepared using hydrothermal methods. It is
the most frequently used method for synthesis of flower-like MoS2 [64]. Figure 8 represents
the preparation steps of MoS2 nanosheets. The molybdenum source was Na2MoO4·2H2O,
and the sulfur source was thiourea in the synthesis proposed by Zou et al. [65]. The
MoS2-RGO-3 was generated using a hydrothermal process and had a structure that re-
sembles a cabbage, with distinct lattice fringes and a diameter range of 500 nm−1. 3D
MoS2 ultrastructure was prepared by Anwer et al. [66], who used a controllable hydrother-
mal approach to achieve their results. These micro-sized marigold flower-like patterns
were made up of 2D ultrathin MoS2 nanosheets that were randomly spaced but closely
connected. Controlling the input concentrations of thiourea and the precursor of MoS2
resulted in the MoS2-microflower composition. Tong et al. [67] have used a previously
published hydrothermal method for MoS2 preparation. The flower-like MoS2 had a hier-
archical structure with a diameter of 500 nm and was subjected to an 18 h hydrothermal
reaction at 220 ◦C. The MoS2 nanoflowers made by the hydrothermal process were com-
posed of uniform crystallinity and size with minimum agglomeration. Zhou et al. [68]
have replaced the sulfur source with thioacetamide in their studies. Xia et al., in their
recent study, synthesized the CdS@MoS2 nanocomposite using the hydrothermal method,
and evaluated the photocatalytic degradation of Rhodamine 6G (Rh 6G), and found that
adsorption in the nanocomposite increases when the MoS2 amount is increased, showing a
great efficacy in processing Rh 6G [69]. Jian et al. used a two-step hydrothermal method to
prepare the nanocomposite MoS2/BiOBr, which is very efficient in Rhodamine B (RhB) dye
degradation [70].
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Additionally, the regulating parameters under hydrothermal parameters are: (a) the
percentage of components, (b) the reaction temperature, (c) the solution, (d) the pH value,
and (e) the solution concentration. These variables might be effectively controlled to moni-
tor the chemical reaction and the shape of the substance prepared. MoS2 shows enhanced
photothermal properties when synthesized using other processes such as hydrothermal
process, a photo-deposition technique, and an in situ solid-state chemical reduction ap-
proach. Moreover, at low temperatures, the Ag/MoS2/TiO2-x composite had outstanding
degradation properties. Its hydrogen production rate was considerably higher than that of
pristine TiO2 [71].

Solvothermal method: The solvothermal and hydrothermal methods of syntheses
are similar techniques [72]. An organic solvent is used in the latter technique instead of
water. Thus, where hydrothermal method cannot be applied for compounds that are very
easily hydrolyzed, the solvothermal method can be used. In the solvothermal process,
non-aqueous solvents are utilized as pressure carriers, intermediates, and mineralizers.
Simultaneously, several non-aqueous solvents with a variety of characteristics can be uti-
lized, resulting in nanomaterials with a diverse set of properties. Solvothermal processes



Photochem 2022, 2 636

can be used to make core-shell composites. Bai and collaborators generated a Co9S8@MoS2
core-shell heterojunction via a solvothermal method, which enhanced the catalytically
active sites [73]. Zhang et al. used a basic solvent thermal approach to make MoS2/carbon
nanotubes with a core-shell structure having improved optical properties [74]. To build
Fe3O4@SiO2@MoS2/g-C3N4 (FSMG), Lu et al. employed a unique and efficient method
where the Fe3O4 spheres formed the inner core of the SiO2 shell—placed using the sol-gel
process—and were made using the solvothermal method. FSMG demonstrated good degra-
dation behaviour against RhB when exposed to visible light. Importantly, by adjusting the
proportion of water in the solvent, the size of the gel can be easily managed. Gao et al. have
reported a solvothermal preparation by mixing MoS2 from ammonium tetrathiomolybdate
with dimethylformamide (DMF) and hydrazine [75]. The mixture was then autoclaved for
10 h with 200 ◦C. The preparation of MoS2 aggregate is given in Figure 9.
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Other methods: The methods discussed below are some of the most novel ones,
namely, (a) thermal-based sulfurization process, (b) ultrasonic-assisted homogenous mag-
netic stirring method, (c) ultrasound-assisted cracking system, (d) thermal evaporation
technique-based systems, (e) in situ growth method, (f) hydrolysis method, and (g) dual-
template approach. Hollow structures may be developed using the dual-template ap-
proach, where the method increases the active sites and characteristics of produced MoS2
nanosheets [76]. Thermal sulfurization has been used to create homogeneous MoS2
films [77]. This approach does not require any pre-processing, unlike chemical vapour depo-
sition (CVD). Acid treatment and ultrasonic irradiation are required before the ultrasound-
assisted cracking procedure in order to obtain ideal materials [78]. Hydrolysis is a process
for preparing nanoparticles in which precursor molecules are appropriately hydrolyzed
in an aqueous solution environment under specific conditions. Zhu et al. reported the
synthesis of MoS2 nanosheets of uniform thickness using a quick and fast LiBH4 hydrolysis
reaction [79].

4. Characterization of MoS2-Based Materials
4.1. Morphological Properties

The shape of MoS2-based photocatalysts affects their efficiency. Depending on the
technique of preparation, MoS2 can have a variety of morphologies. Jaleel et al. created
MoS2 with a nanoflower shape utilizing a hydrothermal procedure using ammonium
molybdate as the Mo source and thiourea as the S source [59]. This nanocomposite was
used for degrading the malachite green dye with great efficiency. The SEM image of the
nanoflower MoS2 is given in Figure 10a [59]. Sun et al. used the CVD process to create
nanosheets of MoS2 and the hydrothermal intercalation method to construct nanospheres
and used them for the adsorption studies. Figure 10b represents the nanosphere structure of
MoS2 [80]. Visic et al. and co-workers prepared MoS2 coaxial nanotubes by the sulfurization
transition of M6S2I8 nanowires in an argon environment with a gas flow of H2/H2S mixture.
They proposed this MoS2 as an analogous material to graphene. Figure 10c represents the
nano-wired MoS2 [81]. Mahyavanshi et al. used a chemical vapour deposition technique to
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illustrate the directional growth of MoS2 monolayer ribbons (Figure 10e) in a sulfur-rich
environment. An array of molybdenum and sulphur edge terminations with 60◦ and 120◦

angle formations are present in this nanocomposite, as evidenced from the SEM and TEM
images. There may be new opportunities for electrical and electrochemical applications due
to the directed development of MoS2 ribbons with specified edge structures under specific
CVD conditions [82]. The MoS2 nanoflakes were synthesized by Wu et al., (Figure 10f)
via effective grinding-assisted sonication exfoliation for photoluminescence studies of
MoS2 [83]. SEM images of nanoflower, nanosheet, nanosphere, nanotube, nanoribbon,
and nanoflake morphologies are depicted in Figure 10a–f, respectively [83]. The HRTEM
images in Figure 11a,b shows a close interface between the three components, which could
assist with electron transfer to the composite surface [84,85].
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4.2. Structural Properties

The various characterization techniques used to determine the structure of MoS2 are
discussed here [59,81,86–88].

X-ray diffraction (XRD) has a significant role in identifying the crystalline nature of
the material in nanocomposite studies. MoS2 shows different peaks in the XRD as shown in
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Figure 12a. The major plane obtained is (002) at 14.38◦ [89]. This corresponds to about eight
layers of MoS2. Besides this major peak, MoS2 also displays peaks that correspond to (100),
(101) at 32◦, (103) at 40◦, (105) at 49◦, (110) at 58.5◦, (008), and (200) planes [81]. There is no
peak corresponding to (001) plane as there is no MoO3 [90]. Infrared spectral analysis (FTIR)
is the other major characterization tool used to identify the functional groups present in the
nanomaterial. As shown in Figure 12b, the FTIR plot of MoS2 shows various peaks. The
peak at 3182 cm−1 is due to the O−H group, while 639 cm−1, 893.39 cm−1, 1402.99 cm−1,
and 1622.8 cm−1, are the broad absorption bands attributed to MoS2. And the band at
483.23 cm−1 and 931.39 cm−1 are due to S−S bond [88].
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Thermogravimetric analysis (TGA) on the MoS2 shows the thermal stability of the
material. The TGA plot of MoS2 is given in Figure 12. In Figure 12c,d, we can see a similar
pattern of thermal decomposition of the MoS2. Bahuguna et al. [87] synthesized MoS2 using
a hydrothermal process and then carried out TGA analysis. MoS2 shows an initial loss of
mass at about 100 ◦C, which is caused by the evaporation of adsorbed water molecules, as
seen in Figure 12c. Further, MoS2 loses mass at around 300 ◦C, due to the decomposition of
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sulfur from the compound, and the MoS2 oxidizes to MoO3, after which it remains stable up
to 1000 ◦C. Figure 12d(i) shows the TGA analysis of the MoS2 and its modified system [59].

4.3. Optical Properties

The optical properties are usually characterized by two different characterizing tools
(a) photoluminescence (PL) and (b) UV-diffuse reflectance spectroscopy (UV-DRS) study.
From the UV-DRS analysis, and Tauc plot, the band gap is calculated using Kubelka–Munk
function, which is given in Figure 12e,f. The PL spectrum has an important role in proposing
a mechanism in organic dye degradation using nanocomposites. The band gap of MoS2
using Tauc plot has been calculated for MoS2 as 3.26 eV [86]. Zhang et al. prepared a ternary
system of MoS2/g-C3N4/TiO2 and calculated the band gap as 2.76 eV. Chakrabarty et al.
determined the band gap of RGO-MoS2 supported NiCo2O4 as 2.36 eV [91]. Nayak et al.
prepared MoS2/NiFe layered double hydroxide (LDH), and using Tauc calculation, found
1.86 eV as the band gap [92]. In the modified MoS2 system, the UV-DRS of the composites
displayed a red shift towards the visible light spectrum [93].

5. MoS2-Based System for Degradation of Organic Dyes

Because of its strong optical absorption, MoS2 has a wide range of applications in
photochemistry, photocatalysis, and photoelectronic research. In electronics, the MoS2-
based materials are used as photodetectors [94], field-effect transistors [95], solar cells [96],
chemical sensors [97], and so on. MoS2 is also used in the transportation of drugs in
cancer chemotherapy. Major applications of MoS2 and MoS2-based systems in various
photocatalytic degradation reactions are discussed here.

5.1. Binary Systems of MoS2

Graphitic carbon nitride (g-C3N4) has been thoroughly explored for its small band gap
(2.7 eV), nonmetal characteristics, nontoxicity, ease of availability, and excellent thermal and
chemical stability since its debut in 2009 for photocatalytic hydrogen evolution. Many stud-
ies have been done by fabricating MoS2 on g-C3N4. Zhang et al. [98] prepared a nanocom-
posite by fabricating MoS2 and g-C3N4. Here, MoS2 was prepared by the hydrothermal
method. The photocatalytic efficiency of the samples was assessed by measuring their
ability to degrade the organic RhB and methyl orange (MO) dyes in aqueous solutions
when exposed to visible light. The prepared catalysts showed a satisfactory amount of
degradation of these dyes. Benavente et al. [99] synthesized a catalyst ZnO/MoS2 by a
sol-gel method and investigated the degradation of 10 ppm of Methylene blue (MB) dye
using visible light for 300 min, resulting in a 75% degradation.

Wang and their colleagues have prepared a binary system of MoS2 with TiO2. The MoS2 is
synthesized using a simple hydrothermal method, and their ability to degrade RhB, MB, and MO
dyes for 60 min showed activities of 99.6, 96.4, and 87.4%, respectively [100]. Selvaraj et al. [101]
have prepared a type-II MoS2/ZnO composite via the hydrothermal method. It degraded
the MB dye using UV light and demonstrated 99% degradation activity. In a recent study
by Bargozideh et al. [102], MoS2 nanoflowers were made using a hydrothermal process and
fabricated with BiFeO3, which showed degradation of 89% on RhB dye.

Ding and co-workers have modified MoS2 with graphene oxide (GO), and studied
for the degradation of MB dye [103]. A total of 10 mg of the nanocomposite was used to
study the degradation of MB dye in the presence of visible light. The composite showed a
degradation of 99%, which is an enhancement of 20% activity over the pristine MoS2. In
this study, they have synthesized MoS2 using solvothermal method using n-butyl lithium
as solvent. The preparation of GO was carried out by the sol-gel method. Tang et al. [104]
in a recent study, prepared modified MoS2 using SrZrO3 via the hydrothermal method
and studied the photodegradation of the MB dye using visible light irradiation. The
degradation efficacy was found to be 99.7% for 15 mg nanocomposite in 25 ppm of MB
dye. MoS2/ZnS synthesized via hydrothermal method have been used for the degradation
of MB dye. In total, 10 ppm dye solution along with 50 mg of nanocomposite gave
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99.89% degradation activity [105]. In a recent study, Jian et al. constructed a BiOBr
loaded MoS2 and studied the photocatalytic activity on the RhB dye [70]. Using 20 mg of
nanocomposite in 10 ppm solution of RhB dye in Xenon arc light achieved 96% efficiency.
Liu et al., synthesized a flower-like CeO2/MoS2 composite and studied its catalytic activity
under visible light for the degradation of MO dye. The nanocomposite showed a 96.1%
efficiency in 90 min [106]. Sharma et al., used a biosynthetic approach to construct a 3D/2D
CeO2/MoS2 nanocomposite [107]. Here, 20 mg of the composite decomposed 20ppm of
Methyl violet (MV) dye solution under a visible light source (300 W). The efficiency was
found to be 96.25% in 90 min. Wang et al. [108], synthesied a CeO2/MoS2 2D nanostructure
via hydrothermal method for the reduction study of aqueous Cr(VI). Then, 6 mg of catalyst
and 5ppm of Cr(VI) resulted in a 99% removal of Cr(VI) in 120 min.

From all these studies, it can be seen that the fabrication of effective photocatalysts
on MoS2 reduces the band gap of the final composite prepared. All of the photocatalysts
discussed below are semiconductor photocatalysts, where the narrowing of the band gap
considerably boosts catalytic activity.

5.2. Ternary Systems of MoS2

Different oxides have been doped with MoS2 to increase their degradation efficacy
in photocatalysis. g-C3N4 is a metal-free semiconductor having a layered structure with
great electron-proton transferability and has found applications as a photocatalyst [109].
Incorporating TiO2 into the binary system above to obtain MoS2/g-C3N4/TiO2 ternary
system has led to a significant increase in the action of MoS2 and g-C3N4 photocatalysts.

Jo et al. synthesized a ternary MoS2/g-C3N4/TiO2 system in 2015 [110]. The composite
was prepared over multiple steps. Initially, MoS2 was prepared using hydrothermal method
and then exfoliated with g-C3N4. TiO2 was added by the impregnation method to obtain
MoS2/g-C3N4/TiO2. In the photocatalytic experiment, to 10 ppm MB, 30 mg of prepared
catalyst was added, and the reaction observed for 60 min under visible light irradiation.
The system g-C3N4 (10%)/TiO2/MoS2 (0.2%) showed an activity of 99.5%. Atrazine
herbicide degradation has also been studied under the same conditions for 300 min to
obtain 86% degradation [110]. In 2016, Zhang et al. [111] fabricated TiO2/g-C3N4/MoS2
composite from g-C3N4 and exfoliated it with hydrothermally synthesized MoS2 to obtain
TiO2/g-C3N4/MoS2 using solvothermal method and used for MO degradation (20 ppm
of MO solution). The degradation of pure TiO2, pure g-C3N4, g-C3N4/MoS2, and TiO2/g-
C3N4 was 28.9, 22.4, 26.7, and 90.1%, respectively (100 mg catalyst). In comparison, all
TiO2/g-C3N4/MoS2 composites had better photocatalytic activity than pure TiO2, g-C3N4,
and TiO2/g-C3N4 composites, demonstrating that TiO2 and g-C3N4/MoS2 hybrid had a
synergistic impact. The Gaussian09 programme was used to perform DFT investigations
on the as-prepared composite photocatalyst for both geometry optimization and frequency
estimation [111]. Figure 13 shows the optimized TiO2/g-C3N4/MoS2 composite structure
utilizing the LANL2DZ basis package at the density functional B3LYP level. Following the
calculations of the TiO2, MoS2, g-C3N4, and TiO2/MoS2 moieties, the structures of potential
TiO2/g-C3N4/MoS2 combinations were computed using the B3LYP density functional
theory with the LANL2D basis set. The B3LYP-D3 method was used to optimize the
adsorption energy of a TiO2/g-C3N4/MoS2 composite.

In 2020, Mahalakshmi et al. reported the g-C3N4/MoS2/TiO2 system for photodegra-
dation [112]. The g-C3N4, synthesized from melamine was added to titanium isopropox-
ide (TTIP) with rapid stirring. Then the hydrothermally prepared MoS2 and the above-
prepared solutions were added, and hydrothermal synthesis was carried out to obtain
a C3N4/MoS2/TiO2 system. They investigated the catalyst’s activity at various weight
percentages as well as the degradation of the MO dye. In 0.355 g of MO dye, 50 mg of
catalyst was added. Under visible light irradiation, the reaction was carried out for 60 min.
The catalyst showed an 88% degradation. The same hybrid catalyst has been used for the
degradation of 4-nitrophenol (4-NP) to obtain a degradation efficiency of 74%. In a recent
study, Jaleel et al. prepared the nanocomposite MoS2/g-C3N4/TiO2 using hydrothermal
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and exfoliation methods [59]. Here, 50 mg of prepared nanocomposite was added to 50 ppm
of malachite green (MG) dye to obtain 97% efficiency within 60 min. The Box–Behnken
design of the response surface approach is also used to examine the optimal experimental
conditions for dye degradation [59].
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Modification of MoS2 nanoparticles with the g-C3N4 and ZnO is also reported. Since
the two photocatalysts are well-matched with overlapping band alignments, coupling
ZnO with g-C3N4 could yield an excellent heterostructure where increased charge separa-
tion takes place [113]. Theoretically, electrons excited from the valence band (VB) to the
conduction band (CB) of the g-C3N4 will then migrate to the CB of ZnO, such heterostruc-
tures have been shown to have enhanced photocatalytic activity. The MoS2/g-C3N4/ZnO
nanocomposite is used to degrade the MB dye for 60 min, and the MB dye shows more than
90% degradation. Lu et al. [114] synthesized g-C3N4 and Ag on MoS2 and investigated
the degradation activity on the RhB dye for 90 min using a Xenon arc lamp as a light
source. The amount of MoS2 used in this analysis was 100 g, and the dye concentration
was 20 ppm to yield a degradation of 95.8%. The MoS2 has a flower-like morphology and
was synthesized using a hydrothermal process.

Beyhaqi and colleagues prepared a nanocomposite by modifying the MoS2 using
g-C3N4 and WO3. The photodegradation study was performed on three dyes RhB, MO,
and MB using Xenon lamps as the light source. The degradation efficiency obtained was
99.9, 83.4, and 91.8%, respectively, for RhB, MO, and MB. The same nanocomposite could
degrade ciprofloxacin drug completely within 2 h of irradiation of Xenon arc as light
source [115]. Pant et al. [116] modified MoS2 using CdS and TiO2, and it was used to
examine the breakdown of MB dye on carbon nanotubes. The dye degraded completely
within 15 min of irradiation with visible light. Vignesh et al. modified MoS2 using g-
C3N4 and Bi2O3 and studied the reaction of MB degradation. When the visible light
was irradiated for 90 min on the dye (20 ppm) using 50 mg catalyst, it gave a good
degradation activity of 98.5% [117]. This nanocomposite was also used for the destruction
of E. coli and S. aureus bacteria. Reusability plays an important role in catalysis. Most
of the reports related to MoS2-based systems have shown good reusability up to five
cycles [59,116,118–120]. Talukar et al., synthesized a ternary hybrid nanoflower CeO2-
ZrO2@MoS2 to study the sonophotocatalytic degradation of naproxen (NPX) using a visible
light source (250 W) LED lamp. In total, 50 ppm of NPX solution yielded an enhanced
degradation of 96% in 40 min.

A summary of the MoS2 nanocomposites and the degradation of various dyes has been
given in Table 1 [121–141]. In all these studies, we see that the fabricating/doping agent
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changes the degradational activity of the nanocomposite. The band gap shows a red shift in
the modified MoS2, which helps in the better utilization of visible light. The morphology and
degradation activities have a direct relationship which in turn depends on the preparation
technique. Many authors have done computational and statistical studies to understand the
highest degradation efficacy and optimal conditions for the degradation of organic dyes.

Table 1. Comparison of the photocatalytic degradation of various dye using MoS2-based catalysts.

System Dye

Reaction Conditions

Degradation (%) Ref.
Time (Min) Light Source Catalyst

Amount (mg)
Conc of Dye

(ppm)

MoS2/SnO2 MB 90 Visible 20 95.0 [30]
MoS2 nanosheets MB 120 Fluorescent lamp 10 100 49.3 [121]

CeO2-ZrO2@MoS2 NPX 40 Visible light 50 96.0 [142]
CeO2/MoS2 MO 90 Visible light 25 20 96.1 [106]

3D/2D CeO2/MoS2 MV 30 Visible light 20 20 96.25 [107]
Cerium-doped MoS2 Cr(IV) 30 Visible light 6 20 40 [108]

MoS2/BiOBr RhB 30 Xenon arc 20 10 96.0 [70]
MoS2-x nanosheet arrays RhB 60 Visible 5 97.2 [122]

10% g-C3N4/TiO2/MoS2(0.2) MB 60 Visible 30 10 99.5 [110]
Layered MoS2 MB 90 Visible 50 10 71.0 [133]

TiO2/SnS2/MoS2 MB 90 Visible 5 81.8 [135]
TiO2/g-C3N4/MoS2 MO 60 Visible 100 20 90.6 [111]
g-C3N4/MoS2/TiO2 MO 60 Visible 50 0.03 88.0 [112]
MoS2/g-C3N4/TiO2 MG 60 Visible 50 10 86.0 [59]

TiO2/MoS2

RhB
MB
MO

60 Visible 50 10
99.6
96.4
87.5

[100]

RGO-MoS2 supported
NiCo2O4

RhB 90 Visible 50 10 95.0 [91]

SrZrO3/Flower-likeMoS2 RhB 80 solar 15 25 99.7 [104]
g-C3N4/Ag/MoS2 RhB 90 Xenon arc 100 20 95.8 [114]
MoS2/NiFe LDH RhB 120 Solar 20 20 90.0 [92]

MoS2/COF RhB 30 Solar 10 20 98.0 [136]
MoS2–GO MB 60 solar 10 10 99.0 [103]

BiPO4, MoS2 and graphene RhB 90 Mercury 100 5 - [137]

g-C3N4/WO3/MoS2

RhB
MO
MB

Xenon arc 100
50
20
20

99.9
83.4
91.8

[115]

MoS2/CdS/TiO2 MB 15 Visible 25 10 100 [116]
g-C3N4-based MoS2 and Bi2O3 MB 90 Visible 50 20 98.5 [117]

MoS2/ZnS MB 32 Visible 50 10 99.9 [105]
MoS2/CdIn2S4 RhB 30 Visible 10 - [138]

CoFe2O4/MoS2 CRMBMO 60 Visible 30 20 94.9
67.8 [139]

ZnO/MoS2 MB 300 Visible 10 1 75.0 [99]
Type II MoS2/ZnO MB 120 UV 10 99.0 [101]

BiOIO3/MoS2 (BM-x) 2D/2D RhB 90 500 W Xenon
lamp 50 10 98.7 [140]

ZnO-MoS2 MR 60 Solar 10 10 89.0 [141]
BiFeO3/MoS2 RhB 200 Visible 50 10 89.0 [102]

ZnO nanorods/MoS2 RhB UV - 4 - [123]

Ultrathin layered MoS2
MB
RhB 36 Visible 100 5 95.3

41.1 [124]

MoS2/TiO2 MB 12 UV-Vis 50 5 99.3 [125]
TiO2/MoS2 MB 30 Visible 10 10 94.2 [126]

NMS
incorporateda-Fe2O3/ZnO RhB 240 Visible 40 91.0 [127]

Ag3PO4/MoS2 MB 15 60 W CFL 0.20 g/L 20 97.6 [128]
MoS2/g-C3N4 RhB/MO 60 Visible 5 50 92.0 [98]

PbS/MoS2 MB 180 Visible 1% 30 83.0 [129]

MoS2QDs@ZnIn2S4@RGO) RhB/MB 30 300 W Xenon
lamp 100 80 98.8

98.5 [130]

SnO2-MoS2 MR/MB 120 Visible 1 100 58.5
94.0 [131]

MoS2-SrFe12O19 RhB 120 300 W Xenon
lamp 10 96.5 [132]

Au-CoFe2O4/MoS2 MO 60 300 W iodine
tungsten lamp 70 50 96.0 [134]

6. Mechanism of Dye Degradation Using MoS2-Based Systems

MoS2, a semiconductor photocatalyst undergoes electron-hole pair recombination dur-
ing the degradation reaction. The mechanism of the MoS2-based photocatalyst is described
using electron pairs and holes [143]. Based on the different types of electron transfer, the
mechanism is classified as traditional and Z-scheme mechanisms. The traditional mecha-
nism of the binary system MoS2/Cu2O is given in Figure 14a [144], and the ternary system
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MoS2/CdS/TiO2 is given in Figure 14c [116]. The Z-scheme mechanism of the binary
system MoS2/g-C3N4 [145], and ternary system MoS2/g-C3N4/TiO2 [59] are shown in
Figure 14b,d, respectively. In the traditional mechanism, valence band electrons (e−) absorb
enough energy to migrate to the conduction band and form holes (h+). Because the conduc-
tion band of MoS2 is close to that of TiO2, photoelectrons released in TiO2 are transported
to MoS2 more quickly, enabling carrier separation and minimizing the photogenerated
electron and hole recombination [126]. In the Z-scheme mechanism [146], the electrons
move to CB from VB, and then they will transfer to the VB of the nearest atom. Thus, a
zig zag electron transfer is exhibited by these nanocomposites. Mahalakshmi et al. [112]
presented an S-scheme mechanism, using MoS2/g-C3N4/TiO2 catalyst (Figure 14e). During
the irradiation of light, electrons from VB of g-C3N4, MoS2, and TiO2 are stimulated singly
to the CB in this process. In the hole of TiO2’s VB, the excited electrons recombine. The
approach helped in the spatial isolation and extraction of photoexcited carriers with larger
redox capabilities, and stored electrons of the MoS2/TiO2/g-C3N4 surface are helpful in
the decomposition of organic dyes.
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As mentioned earlier, the PL spectra have an important role in identifying the par-
ticular mechanism of dye degradation. Figure 15a represents the PL spectrum and its
traditional mechanism using MoS2@TiO2 [86]. Jia et al. have proposed a Z-scheme mecha-
nism based on the PL spectra for the Au-CoFe2O4/MoS2 nanocomposite [134]. When the
spectral intensity is increased after the fabrication, the nanocomposite chooses a Z-scheme
mechanism. At low intensities, the composite chooses a traditional mechanism. The PL
spectra and the mechanism are given in Figure 15b. A reduction in PL strength indicates
that the electron-hole pair recombination has been suppressed.
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7. Conclusions and Future Perspective

This review has discussed the geometry, polymorphism, different methods of prepara-
tion, and characterization, of MoS2-based composites for the photocatalytic degradation
of organic dyes. MoS2-based binary and ternary systems have been considered. The
degradation ability depends on factors such as morphology and the preparation techniques
employed. The chemical properties of the added components help in the formation of a het-
erojunction with MoS2, leading to an increase in the efficacy of the final catalyst towards the
degradation of dyes. Based on the various studies conducted, the photocatalytic activity of
MoS2-based nanomaterials has the following characteristics. The force of attraction between
the various materials used to fabricate the hybrid catalyst, and the crystallographic plane
where the fabrication is taking place on the nanomaterial are significant factors affecting
their efficiency. The MoS2-based nanomaterials show great degradation activity towards
organic dyes and toxic pollutants. This area of study offers significant opportunities for
fabricating excellent photocatalysts to affect the degradation of organic pollutant dyes
from wastewater.
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