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Abstract: Photo-thermal catalysis is among the most effective alternative pathways used to perform
chemical reactions under solar irradiation. The synergistic contributions of heat and light during
photo-thermal catalytic processes can effectively improve reaction efficiency and alter design se-
lectivity, even under operational instability. The present review focuses on the recent advances
in photo-thermal-driven chemical reactions, basic physics behind the localized surface plasmon
resonance (LSPR) formation and enhancement, pathways of charge carrier generation and trans-
fer between plasmonic nanostructures and photo-thermal conversion, critical aspects influencing
photo-thermal catalytic performance, tailored symmetry, and morphology engineering used to de-
sign efficient photo-thermal catalytic systems. By highlighting the multifield coupling benefits of
plasmonic nanomaterials and semiconductor oxides, we summarized and discussed several recently
developed photo-thermal catalysts and their catalytic performance in energy production (CO2 con-
version and H2 dissociation), environmental protection (VOCs and dyes degradation), and organic
compound synthesis (Olefins). Finally, the difficulties and future endeavors related to the design and
engineering of photo-thermal catalysts were pointed out to draw the attention of researchers to this
sustainable technology used for maximum solar energy utilization.

Keywords: photo-thermal catalysis; localized surface plasmon resonance; hot charge transfer
pathways; photo-thermal conversion; morphology engineering

1. Introduction

At present, due to the intense rise in the overall population, accompanied with the
massive industrial development and utilization of natural deposit, the world is cladding
two critical problems: the preservation and aggravation of the environment and energy
conservation, storage, and substitute transformation [1]. Several technologies have been
applied on the laboratory and industrial scale to overcome the aforementioned challenges.
Presently, material science and engineering is one of the trending research fields. The
successful direction for a convincing practical application is to develop a material with
distinctive and/or tailored properties [2]. Even though material engineering is the leading
light behind the recent advances in technology, scientific societies keep using and improving
material science to minimize the breach towards practical applications of smart materials
in various fields covering the environment and energy disciplines [3].

Over the past few decades, the catalysis of chemical transformations via light as an
energy source has become possible due to the discovery of heterogenous semiconductor-
based photocatalytic techniques. The semiconductor generates an electron–hole pair after
the absorption of a photon with equivalent or greater energy than its band gap. Ultimately,
these generated hot charge carriers migrate towards the surface of the semiconductor and
shift towards adsorbed molecules, thus initiating redox reactions [4]. After the innovative
study of Fujishima and Honda in 1972, remarkable developments have been reported
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in relation to the photocatalysis technique [5]. Still, the factor of low efficiency in most
photocatalytic processes remains a bottleneck (usually within the range of hundreds of
µmol g−1 h−1), primarily because of the rapid recombination of charge carriers, the lower
absorption rates, and the consumption of solar light energy through semiconductors with
conventionally larger band gap [6].

Beyond hot charge carrier separation under light excitation, plasma-driven routes have
been in the limelight. Excited charge carriers produced by the degeneration of localized
surface plasmon resonance (LSPR) retains higher energy levels compared to the directly
induced photoexcited charge carriers [7,8]. Moreover, these energetic carriers can also
produce a thermal effect by internal relaxing and dissipating their energy levels through
the local heat of the environs [9,10]. This generated heat has been extensively utilized in
numerous fields, including cancer treatment, pollutant degradation, water splitting, and
seawater desalination [11]. In a recent study, Nguyen et al. successfully synthesized a
ternary heterostructure catalyst composed of TiN nanotubes, with TiO2 as an intermediate
layer connected with the In2O3−x(OH)y nanoparticles for CO2 hydrogenation. The pho-
tocatalytic results of the study demonstrated that the three ordering components of the
heterostructure proved to be beneficial for its activity in CO2 photo-catalysis. Moreover,
it was also stated that the TiN nanotubes not only induced the photo-thermal effect, but
also provided a critical replacement to minimize the required amount of In2O3−x(OH)y
nanoparticles, thus leading to an enhanced CO production rate, whereas the TiO2 serves as
an efficient charge transport path [12]. Photo-thermal catalysis, which syndicates heat- and
light-based chemical influences, has appeared as a fast-developing and emerging novel
research field [13]. Photo-thermal catalysis enables more efficient trapping of the solar
energy in the light spectrum, covering visible and infrared photons which are otherwise
inadequate to excite photocatalytic reactions [14,15]. In addition, during the photo-thermal
catalytic process, the temperature of the catalytic sites rises; thereby, photo-thermal syn-
ergistic catalysis achieves exceptional production yields, even under normal operational
conditions [16].

Due to the rapid expansion of the field, scientific communities from all around the
world have been drawn to photo-thermal catalysis, which focuses on fuel generation and
chemical production. As in recent years, special emphasis has been placed on the rudi-
ments of the LSPR effect and the fundamental mechanisms underlying photocatalytic
and thermocatalytic routes that delineate the basic concept of the photo-thermal catalytic
process. Based on recent developments, novel characterization approaches and practices
can help to determine the dominant reaction pathway for a certain catalytic system, thus
facilitating a clear understanding. Afterward, for enhanced photo-thermal catalytic per-
formance, collecting the most relevant knowledge available with regards to performance,
target selection, and mechanistic insight is still needed. Following that, collecting the most
appropriate information relevant to all the above-mentioned terms is still required for
enhanced photo-thermal catalysis. Last but not least, the current focus is on designing
techniques to further enhance catalytic efficiency and highlight the future applications and
limitations. Therefore, this review summarizes the following: (i) fundamentals behind the
photo-thermal effect and LSPR formation, (ii) mechanisms of charge carrier generation and
the transfer from host to adsorbate, (iii) structural design and engineering of the catalysts
for efficient photo-thermal catalysis, (iv) photo-thermal applications of catalytic systems in
energy generation and conversion, chemical production, and environmental remediation,
and (v) the potential drawbacks and future endeavors of photo-thermal catalytic systems.

2. Fundamentals of LSPR Formation in Photo-Thermal Catalysis

Plasmonic photocatalysts, as a heterostructure, have attracted significant attention
due to their ubiquitous application in photocatalytic systems. There are three types of
plasmonic catalyst heterostructures: the first type includes rare earth metals or noble metals
(Au, Ag, Pd, etc.), which have been widely applied in the photo-thermal catalytic reactions
due to their significant LSPR property and efficient light to heat conversion ability; the
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second type mainly covers conducting oxides (RuO2, metallic-doped oxides, etc.), which
are considered as star materials in the field of the photocatalysis because of their wide range
of light utilization in the whole solar spectrum; and the third type entails the transition
of metal-based nanostructures, which are highly popular in the field of photo-thermal
catalysis owing to their excellent performance in different catalytic reactions, such as CO2
hydrogenation, Fischer–Tropsch synthesis (FTS), reverse water–gas shift (RWGS), and
the dry reforming of methane (DRM) activity [7,9]. Similarly, these types have special
characteristics and identification methods, as shown in Figure 1. In numerous metallic
nanoparticles, localized surface plasmon resonance (LSPR) occurs when the wavelength
of the photons ties the usual frequency of oscillating surface electrons in contrast to the
restoring force of positive nuclei. It can be visualized as a coherent oscillation of conduction
electrons [8]. An excited hot carrier is generated by dephasing the free-electron oscillation
via a non-radiative energy dissipation pathway (also known as the Landau damping
process) after the intra-band excitation of plasmonic nanoparticles (PNPs) (between the
Fermi level and the sp conduction band) or the inter-band excitation of PNPs (between the
d band and the sp conduction band) [10]. It is possible for hot carriers that are sufficiently
energetic to inject electrons into the nearby surface adsorbates or semiconductors, causing
surface chemical changes (at femtosecond to picosecond levels). In order to promote mass
transfer and reaction rates, the exchange energy of hot carriers with phonon modes (at
picosecond to nanosecond levels) can dissipate their energy into heat [13]. Based on the
type of main driving force, plasmonic photocatalytic reactions tend to be conducted with
plasmonic hot carriers, thus playing a major role in the reaction at ambient temperatures
or at a low reaction temperatures (less than 100 ◦C), whereas photo-thermal heat plays an
insignificant role [7]. Overall, the coupling of PNP-localized heating (hot carrier generation)
with the semiconductor oxide carrier (light utilization by relaxation behaviors) induced the
synergistic effect of photo-thermal catalysis; however, the heat generation in this process
was caused by the photo-thermal conversion activity under light irradiation [15].
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In plasmonic nanoparticles (PNPs), the localized surface plasmon resonance (LSPR)
band is a strong and wide absorption band alongside the UV–visible NIR range of the
electromagnetic spectra [13]. Plasmonic nanoparticles inducing the spherical-shape LSPR
band is the most common and extensively applied theory in the plasmonic field. This
signal is quelled by the inelastic motion of electron and the surface charge accumulation is
generated after restoring the electron cloud (Figure 2). Generally, the LSPR band formed
when the PNP size is smaller than the light wavelength. This phenomenon is explained by
the quasi-static approximation process, in which the interaction between light and spherical
PNP is directed by electrostatics instead of electrodynamics [17]. When compared to the
primary cross-sectional absorption, the LSPR band enhances the light absorption rate by
increasing the cross-sectional absorption to certain level [18,19].
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Figure 2. Schematic trends of a plasmonic nanoparticle under excitation. The (brown) color represents
the incoming electromagnetic field and changes induced in it are followed by the motion of the carriers;
thus, surface charges (blue) produce a restoring force towards the outer side of the equilibrium, and
electron vibrational motions (blue) result in hindering caused by the ionic system. Reprinted with
permission from Reference [20]. Copyright (2019) American Chemical Society.

Moreover, LSPR has the ability to generate a strong electric field around the external
surface of the PNPs, which is even more powerful than the preliminary electric field of
irradiated light [17]. This effect is known as near-field enhancement, and it is extremely
beneficial for hot charge carrier generation process and transfer to nearby semiconduc-
tors [21].

Near-field enhancement, plasmonic resonance intensity, and LSPR effect-based light
absorption are all important aspects of the LSPR that must be taken into consideration.
The incident light and gap from the PNP outer surface have a significant impact on the
near-field enhancement phenomenon [22]. Therefore, a light with a reliable intensity and a
specific distance from the PNP surface is crucial to intensify the near-field enhancement.

3. Photo-Thermal Enhanced Catalysis

As stated previously, under plasmonic excitation, NPs generated hot charge carriers
through the electronic transitions of intra-bands and/or inter-bands by non-radiative Lan-
dau damping [23]. The photons with energy hn speed up the excited electrons with energies
greater the Fermi level (EF + hn), which can then be induced by the metallic nanoparticles to
other species with electron-deficient orbitals. As a result of the plasmon-decaying process,
the excited hot electrons shifted the kinetic energy towards the adsorbates, which are chem-
ically stimulated by the transitions of electrical and vibrational motion [24]. Eventually, the
higher-energy electrons shifted to the antibonding orbitals of interfacial species, creating a
rift in the molecular bonds, and ultimately activating consequent chemical modifications.
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These aforementioned hot charge carriers can be utilized in four major routes for
different catalytic practices, depending on whether the plasmonic photocatalyst is a single-
component or in a heterostructure form. The first two plasmon-based photocatalytic
materials are associated with the use of hot charge carriers from sole plasmonic NPs that
interact with adsorbates through direct or indirect transferring. In the other two routes,
supported plasmonic nanostructures, which interacted with semiconductors via an indirect
insertion pathway to carriers or acceptor species, are directly promoted into the conduction
band (CB) [25,26].

3.1. Indirect Transfer of the Hot Electron into the Adsorbate

In the indirect transferring of electron, after plasmon activation, excited electrons are
first generated in the metallic NP and then forwarded towards the lowest unoccupied
molecular orbital (LUMO) of adsorbates on the metal surface [27,28]. As the electron
shifting into the adsorbate occurs after the generation of hot charge carriers, it is thereby
constrained by energy loss because of the scattering among electrons.

The performance of this indirect hot electron transfer route positively correlates with
the incident energy of the photon, as higher energy generates more electrons with adequate
potency to be inserted in the LUMO of adsorbates [29]. Such an indirect electron transfer
route has been demonstrated in the plasmon-mediated excitation of different molecules,
such as hydrogen (H2) and oxygen (O2) [30,31]. Lately, Halas et al., through DFT analysis
and H/D exchange experimentations, confirmed that generated hot electrons on Au NPs
could be transferred to the molecular H2 antibonding orbital via an indirect transfer, result-
ing in negatively charged H2

δ− species. Ultimately, electrons moved in a reverse direction
towards Au and H2, and then turned back to the ground state with aggregated vibrational
energy, causing the eventual detachment of the H2 molecule [32]. Linic et al. also suc-
cessfully carried out the partial oxidation of ethylene with a plasmon-induced technique
by employing Ag nanocubes. In the experiment, hot carriers were generated on the Ag
nanocubes surface and indirectly transferred to O2 antibonding sites, resulting to O2 gener-
ation. Similar to the H2 activation case, the aggregated vibrational energy incapacitated
the limitation of activation energy and resulted in O2 detachment [24]. Both the induced
electromagnetic flux as well as the resonant frequency of excited carriers are used in the
resonance phase; therefore, the maximum exploitation of the electric field in presumed
vacancies takes place on the plasmonic NP surface. Additional LSPR-related properties
rise from the different relaxation routes within plasmon-based structures, in addition to
the larger electric field. After activation, the stored energy in surface plasmons can be
degenerated in a variety of ways, either adopting irradiative (by re-emitting the photons) or
non-irradiative pathways (by exciting the charge carriers and electron–electron collisions).

3.2. Direct Transfer of Hot Electron into the Adsorbate

The hot electrons can also be directly transferred from metal NPs into adsorbates
via LSPR activation [33]. This plasmon phase-shifting process, developed by chemical
interface damping (CID), occurred due to the interaction of vacant adsorbate states and
activated surface plasmons [25]. In the direct transferring pathway, excited electrons are
relocated straight into the hybridized states existed among the metallic nanoparticle and
adsorbates [34]. As a result, unlike the indirect pathway, which occurs after the excitation of
hot electron, direct transfer mechanism takes place concurrently during the phase-shifting
of the plasmon activation [35]. Therefore, the direct pathway is estimated to have greater
potential for electron transferring and lower energy deprivations because it avoids electron–
electron scattering. Nonetheless, this possible route for direct electron excitation is less likely
to occur, for the reason that it demands a strong interaction among adsorbate and metal for
the hybridization of surface orbital, which is unusual in plasmonic photocatalysts [25].

Remarkably, Linic and co-workers’ photo-degraded the methylene blue by using Ag
nanocubes and observed that the hot electron was transferred through directly. The Ag
nanocubes showed two absorption bands at the wavelength of 532 and 785 nm under
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irradiation, and the maximum degradation efficiency was displayed at 785 nm. The results
concluded that the extended wavelength retains lower energy, and thus can efficiently
transfer hot electrons, suggesting the direct electron transfer instead of the indirect transfer
pathway [28,34].

3.3. Indirect Transfer of Hot Electron into the Semiconductor

The methodology of supported plasmonic nanoparticles to absorb has been broadly
explained in the photocatalysis field [36]. LSPR bands containing metallic NPs completely
exploited solar light under visible and NIR regions. Moreover, the utilization of dual-
plasmonic metal–semiconductor systems possesses the further benefit of supporting the
spatial partition of photoexcited electron–hole pairs after hot electrons are transferred to
the semiconductor, thus extending their lifetime by avoiding the recombination of charge
carriers inside the metal [37,38].

The most convenient technique for excited electron transferring in heterostructures,
similar to the indirect transfer method used for non-supported plasmonic NPs, includes
hot electron generations in the plasmonic NP within the time frame of femtoseconds,
thenceforth allowing the transfer of electrons via the interface of the metal–semiconductor
hybrid system (Figure 3).
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electron transfer processes along with the reverse motion in the metal–semiconductor heterosystem.
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When a heterojunction is formed among the metal and semiconductor, the Fermi
level of both participating species align to support the charge redistribution and system
equilibrium (Figure 4) [39]. This effect tilters the valence and conduction bands of the semi-
conductor, resulting in the formation a Schottky barrier on the metal–semiconductor hetero-
junction interface whose energy (jSB) parallels to the difference in the metallic nanoparticle
Fermi level and the edge of the CB interface [40].

Importantly, only photogenerated electrons with greater energy than the Schottky
barrier energy threshold will be inserted into the CB and will be made accessible for
further reactions induced by electrons at the semiconductor surface. Incidentally, the lower
φSB promotes more charge carriers with higher energies to cross the barrier, and thus
takes part in chemical transformations. Nonetheless, it is also critical that the bending at
the interface of CB is sufficient to inhibit the back-flow of excited electrons towards the
metallic nanoparticle, ensuring the spatial partition of charge carriers [20]. Therefore, while
constructing heterojunction between metal and semiconductor, an appropriate equilibrium
between these two effects must be considered.
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Generally, the Schottky barrier scale lies in a range between 0.5 and 1.5 eV, and
noticeably detects the insertion efficacy of the hot electron from the metal nanoparticle to
the semiconductor conduction band [27]. Most importantly, the Schottky barrier length is
shorter than the various semiconductors band gap, and this represents the major benefit of
such heterostructures. As for their extraction, there is no need for the hot electrons to retain
a higher energy level than the semiconductor band gap [41].

3.4. Direct Transfer of Hot Electron into the Semiconductor

Aside from the previous reported indirect hot electron transferring route, few other
reports have mentioned the direct transfer pathway among metal–semiconductor hetero-
junctions (Figure 2). The timeframe for electron transfer in the indirect pathway is thought
to be in picoseconds.

Furube et al. discovered a more rapid timescale for electron transfer in the range of
hundreds of femtoseconds using transient absorption spectroscopy measurement results
in Au/TiO2 nanoparticles [42]. Furthermore, the actual quantum yield (QY) achieved in
the transfer pathway was 40%, in contrast to the overall yield obtained during the indirect
electron transferring mechanism, which was less than 8% [43]. In compliance with this
research field, numerous studies have reported superfast hot electron insertion in the
hybrid nanomaterials of a plasmonic metal–semiconductor, and some showed remarkably
higher QYs [44,45]. The direct route is supposed to be more effective in transferring hot
electrons from the plasmonic metal towards an adsorbate surface as it decreases the energy
dissipation of hot electrons [46].

4. Influential Aspects Contributing to Photo-Thermal Catalysts

Photocatalysts should meet a number of characteristics in order to maximize the
photo-thermal effect during the catalytic reaction, such as the intense absorption of light,
the ability to generate more charge carriers, and the large capacity to produce and transfer
heat [47]. A number of designing strategies are used to enhance the photo-thermal effects
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and their efficiency in a certain mechanism. The two major factors responsible for the
improved photo-thermal performance are as follows.

4.1. Effect of Size and Shape

To determine the LSPR phenomenon in the plasmonic materials, size and shape play a
vital role and can be attuned properly, so that the plasmon band of the material could match
with the solar spectrum and thus enhance catalytic activity [48]. In reality, both parameters
exhibit a huge impact on the charge carrier generation and the thermal properties of the
material.

Hypothetical analysis revealed that the plasmonic ability of nanoparticles is strongly
dependent on the size, as large-size nanoparticles generate more charge carriers than
small-size nanoparticles; however, their energy display is closer to the Fermi level [7]. In
contrast, small-size nanoparticles have high energy levels but shorter lifetimes in the order
of femtoseconds [49]. Therefore, small-size nanoparticles have great significance in photo-
thermal catalytic reactions, due to the high energy level that they can overcome or cross the
Schottky barriers, which seems to be more convenient for the hot electron-excited catalytic
reaction. However, in the small-size nanoparticles based on photo-thermal reactions, due
to the reduction in nanoparticle size, there are higher chances of the separation of charge
carriers being inefficient [50]. Plasmonic nanoparticles, upon increasing the size, have also
shown another distinctive feature of red shift in their resonance frequency, and thus can
harvest the visible and IR regions of solar spectrum more efficiently [51].

Another major parameter of determining the optical properties of plasmonic nanos-
tructures featuring the LSPR effect is morphology. Certain morphologies, such as nanobars
and branched nanostructures, have shown the red-shift effect in their major LSPR ab-
sorption peaks, making them more appropriate for exploiting the lower-energy regions
of the light spectrum [52]. Govorov et al. stated that the morphology of the plasmonic
structures could also affect their hot carrier generation ability. In the experimental analysis,
authors compared the defective and inhomogeneous geometries with the non-defected and
uniform geometries. The final results concluded that the geometries with strong electric
fields, when combined with the confinement effects, generated more hot electrons of higher
energy levels, as compared to the non-defective or uniform electric field geometries, which
produced lower-energy hot charge carriers [53,54].

The size and shape parameters can also be engineered by modifying phonon transport
inductions in order to enhance the thermal properties of the plasmonic nanomaterials. For
example, the thermal conduction properties of the plasmonic material were reduced in
some reports by applying high-density grain barriers, which then amplifies the phonon
scattering process [46]. Similarly, increasing the surface roughness can also decrease the
phonon speed [55]. Therefore, an adequate balance between all above-described factors
should be carefully examined when designing and engineering photo-thermal catalysts.

4.2. Designing the Hybrid-Structure System

The design of hybrid materials is another alternative and frequently applied technique
used to enhance photo-thermal activity. In this strategy, composite structures sharing
different light, heat, and electrical properties improve photocatalytic performance by
generating synergism. In general, photo-thermal heterojunctions consist of an inorganic
host (mostly metallic oxides facilitated by plasmonic or non-plasmonic metal NPs). It
is also noteworthy that every component is not limited to play a single role within the
photo-thermal heterojunction, and either one or more elements can serve as an active site
in the catalytic reaction due to the nature of each composite material [46].

4.2.1. Metal–Semiconductor Hybrid Systems

As mentioned above, hybrid structures consisting of metals and semiconductors are
extensively studied in photo-thermal catalytic reactions. An ideal semiconductor should
display extraordinary characteristics, such as a large surface area and a wide range of light
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absorption, to generate hot charge carriers. In that case, metal oxide semiconductors are
the most feasible materials, showing a higher degree of defects along with mid-band gap
states that eventually intensify the optical absorption in the lower-energy regions of the
light spectrum [56]. In another study, Ozin et al. tested the photo-thermal effect based on
CO2 hydrogenation by using an unknown chemical ratio of black In2O3−x/In2O3 nanoma-
terial [57]. The findings revealed that the hydroxylation of pale yellow In2O3 at various
temperatures produced non-stoichiometric black heterostructures made up of In2O3−x
domains in single-crystal stoichiometric In2O3. These heterostructures showed wide-range
absorption across the light spectrum, resulting in outstanding photo-thermal activity. The
photo-excitation generated a strong thermal response within the In2O3−x/In2O3 nanostruc-
tures, also because the mid-gap states associated with photo-induced electrons enhanced
the photochemical hydrogenation of CO2. The utilization of semiconductors in such a wide
light absorption range, either alone or in combined form with certain metallic active sites,
can provide new directions in the design of efficient photo-thermal systems.

4.2.2. Metal–Porous Hybrid Systems

MOFs and zeolites, which have high porosity and larger surface area, have been
extensively used as hosts or supporting materials for metallic nanoparticles in a wide range
of catalytic approaches. On the other hand, very little knowledge is available on these types
of materials in the field of photo-thermal catalytic reactions.

In a recent study, Maspoch and co-researchers investigated the photo-thermal catalytic
response of a range of MOFs by covering the main subdivisions of such kind of porous
structure and evaluated the photo-thermal efficiency of each MOF [49]. In the experiment,
the temperatures of UiO-66-NH2 and CPO-27-Ni reached up to 149 ◦C and 167 ◦C, re-
spectively, after half an hour of light irradiation, and the photo-thermal rates obtained for
both composites were higher than 55%. Conversely, under similar operational parameters,
the temperatures of UiO-66 and ZIF-8 composites raised to 57 ◦C and 70 ◦C, respectively,
and the resulting photo-thermal rates were even smaller than 10%. The above results
showed that the obtained photo-thermal efficiency was strongly reliant on the MOF light
absorption band.

Although a lot is yet to be discovered, few other porous nanostructures, such as zeo-
lites, have also been reported as active components in photo-thermal catalytic processes.
Zhu et al. determined the photocatalytic response rate by oxidizing the benzyl alcohol and
derivatives under visible-light irradiation [58]. The author immobilized the Au nanopar-
ticles on the zeolite surface. According to the proposed reaction mechanism of the study,
zeolite support in the composite system efficiently adsorbed alcoholic compounds, while
Au nanoparticles played the role in O2 activation by transferring plasmon-excited hot
carriers. The kinetic study results also confirmed that the plasmonic effect reduced the
excitation barrier by 40%.

4.2.3. Core–Shell Hybrid Systems

Due to the bifunctional ability, core–shell hybrid systems offer the benefits of tunable
light, heat, and electrical properties, and illustrate a very appealing designing technique
for new nanomaterials with excellent photo-thermal activity [59].

For instance, Yang and co-workers designed AuCu-CuS core–shell hybrid nanostruc-
tures stabilized on a TiO2 surface [60]. The resulting synergic contribution of photo-thermal
local heat and LSPR increased the photocatalytic oxidation of glycerol. Generated hot-
electrons were abundantly transferred from the AuCu nanoalloy to the CB of TiO2, and
reacted with molecular O2 to yield either H2O2 or reactive superoxide species (O2−) which
derived the glycerol oxidation. In the meantime, the thermal heating effect in the plasmonic
CuS shell, due to the non-irradiative electron–hole pair recombination, further contributed
in the entire catalytic reaction.

Xiong et al. successfully fine-tuned the shell thickness of the Pd in the Au nanorods to
design a core–shell nanocomposite system for the styrene hydrogenation [61]. The author
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stated that during photo-thermal catalysis, the core–shell hybrid system controlled both
the local heating effect as well as the hot electron transferring pathway.

5. Photo-Thermal Effect-Based Applications
5.1. Solar Fuel Generation

The urgent need of green energy motivates the researchers to discover new energy
materials and conversion technologies. Solar-light-based fuel production involves the
utilization of solar energy to initiate chemical reactions and generates low-cost energy.
Generally, plasmon thermal photocatalysis mainly yields certain types of chemicals and
fuels, including methane and CO, which are reliant on the number of excited electrons. Over
the past decade, to expedite the above-mentioned methods, the usage of photothermal-
based catalysis has risen substantially. Few major applications of photo-thermal catalysts
associated with the synthesis of fuels, organic compounds, and pollutant degradation are
enlisted (in Table 1) and discussed further in the following section.

Table 1. List of several photocatalysts applied in photo-thermal catalysis.

Photocatalysts Plasmonic NPs Light Source Absorption Wavelength
(nm) Temperature (◦C) Application Ref.

Au-Pd nanostructures Au nanorods 1.68 W Laser,
809 nm ca. 809 62 Suzuki coupling reactions [62]

Pd/WO3−x WO3−x Xe lamp 400–1100 60 Suzuki coupling reactions [63]
Ag-TiO2 Ag 150 W Xe lamp 200–1200 - 4-NP reduction [64]

LaB6@SiO2/Au LaB6
CW 808 nm diode laser, 808 nm,

2.7 W m−2 400–1200 40.5 4-NP reduction [65]

Aue-ZnO Au Laser, 532 nm, 8 × 105 Wm−2 ca. 538 600 CO2 reduction [66]
Group VIII metals/Al2O3 Group VIII metal 300 W Xe lamp 300–2500 300–400 CO2 reduction [67]

Ru@FL-LDHs Ru 300 W Xe lamp 250–1500 350 CO2 reduction [68]
Fe@C Fe 300 W Xe lamp 300–2500 481 CO2 reduction [69]

Al@Cu2O Al 10 Wcm−2,
VIS-light

300–1000 175 CO2 reduction [70]

Pd@Nb2O5 Pd 300 W Xe lamp, 18 kW m−2 250–2400 200 CO2 reduction [15]
Ru/SiNW SiNW Xe lamp 300–2500 125 CO2 reduction [14]

Cu7S4@ZIF-8 Cu7S4
Xe lamp,

700 mW cm−2 250–2500 122 Cyclocondensation reaction [71]

Flower-like CuS CuS
Xe lamp,

10 kW m−2 300–900 65 Methylene blue degradation [72]

Pd NCs@ZIF-8 Pd Ncs
Xe lamp,

100 mW cm−2 220–700 34 Hydrogenation reactions [73]

Cu-RM-C MnO2
Xe lamp,

96.3 mW m−2 200–2400 120 VOC oxidation [74]

SS-Co3O4 Co3O4
Xe lamp,

500 mWcm−2 200–1500 175 VOC oxidation [75]

Au@TiO2 yolk shell Au 300 W Xe lamp - - Methane production [76]
Ag-TiO2

hollow-sphere Ag 300 W Xe lamp
(λ > 420 nm) - - Methane production [77]

Ag@LixTiO2 nanocubes Ag
Xe lamp

100 mW/cm2

(λ = 420 nm)
- - Methane production [78]

Ag-MgO-TiO2
nanofibrous Ag 300 W Xe lamp - - Methane production [79]

Au-Cu alloys/TiO2 Au-Cu 1000 W Xe lamp
AM 1.5 filter - - Methane production [80]

Pd-ZnO nanosheets Pd 300 W Xe lamp - - Methane production [81]
Ni-modified

Ni-Gehydroxide Ni 300 W Xe lamp - - CO generation [82]

Au NR@ZnO Au 300 W Xe lamp - - CO generation [83]
Ag-ZnO nanosheets Ag 300 W Xe lamp - - CO generation [81]
Al@Cu2O antenna

heterostructures Al Supercontinuum fiber laser
(400 < λ < 850 nm) - - CO generation [70]

P25-rGO rGO Xe lamp 250–800 36 MB reduction [84]
Pt/PCN-224(Zn) PCN-224(Zn) Xe lamp 300–800 36 Benzyl alcohol oxidation [85]

Pt@TiO2-Au
nanodendrites Au

Xe lamp,

5.71 Wcm−2 - - Methyl alcohol production [86]

5.2. CO2 Reduction

The production of fuels and chemicals through the water and CO2 reaction is one of the
most promising technologies used to neutralize the CO2 in order to use in the transportation
and chemical industry. At the present time, CO2 reduction was mainly accomplished by
the photocatalysis or two-step thermochemical redox reactions of metallic oxides (Zn/ZnO,
Ce2O3/CeO2, FeO/Fe3O4 and SnO/SnO2) [87]; however, both reduction techniques have
challenges of lower yield and a high-temperature requirements of around 2000 ◦C during
the operation process. In contrast, the photo-thermal base CO2 reduction appears to be an
effective and simple route to reduce CO2 at moderate conditions.

Various groups have investigated CO2 reduction by photo-driven thermocatalysis.
Ye et al. sustained the temperature between 300 and 400 ◦C by applying group VIII
nano-catalysts and obtained photo-thermal CO2 reaction efficiency (mol h−1 g−1) with a
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larger magnitude than those observed by simple photocatalysis (µmol h−1 g−1) [87]. There
was no significant variance among the CH4 production by thermocatalysis and photo-
thermocatalysis (Figure 4), and the CH4 production rate was negligible under non-thermal
irradiation with simple monochromatic light, implying that the reaction was performed by
photo-driven thermocatalysis. Their later study of CO2 evolution was also investigated
on Ru@FL-LDHs by photo-driven thermocatalysis [68]. The obtained CH4 evolution rate
(277 mmol h−1 g−1), which was parallel to that of thermocatalysis, was greater than all of
the previously reported studies on LDH-based catalysts and other nanomaterials. Thus,
the influence of photocatalysis can be neglected. In another study reported by Chen
et al., where a CoFe alloy supported by alumina was synthesized to determine catalytic
performance, the results showed nearly similar catalytic performance for the CoFe-650
catalyst under UV–vis light excitation, and was directly heated from outside at the same
temperature (Figure 5b) [88].

A CO2 reduction through the photo-thermal co-catalytic reaction has also been re-
ported. Zhao et al. successfully produced CH4 by using m-WO3−x under photo-thermal
conditions. The obtained value (25.77 µmol g−1) after 12 h of irradiation was much higher
than the values under thermal (21.42 µmol g−1) and vis-light illumination (0.15 µmol g−1)
conditions. Therefore, an exclusive synergistic photo-thermal catalytic effect is generated
via the meantime insertion of both catalytic systems [89]. The same group also determined
the CH4 evolution efficiency by using DOM-LSCF as a photocatalyst, and stated that the
optimal performance of the photocatalyst was five times greater under photo-thermal
conditions than that of sole thermal treatment conditions [90].

Photochem 2022, 2, FOR PEER REVIEW 13 
 

 

optimal performance of the photocatalyst was five times greater under photo-thermal 
conditions than that of sole thermal treatment conditions [90]. 

 
Figure 5. (a) CH4 production by Ru/Al2O3 photocatalyst under combined photo-thermal and sole 
thermocatalytic conditions, under both treatments, where temperature was fixed by light source 
(300 W Xe lamp) and the whole reaction was carried out in the CO2 and H2 gas mixture. Then, 0.1 g 
of sample was taken and spread onto a spherical shaped filter . (b) CO2 evaluation of CoFe-650 
photocatalyst during photo-thermal irradiation (with UV–vis light) and direct heating without any 
light irradiation. Adopted with permission from Reference [91]. Copyright (2020) Elsevier Ltd. All 
rights reserved. 

5.3. H2 Evolution 
Solar-light-based water splitting is a promising alternative for the H2 evolution and 

is achieved by various electrolysis and catalysis techniques. Among them, photocatalysis 
has been proven to be the easiest and most direct pathway in which solar light is directly 
employed to split water into H2 gas. However, it has certain limitations, such as a slow 
reaction rate, along with poor solar light absorption and conversion efficiency. In contrast, 
thermo-assisted photocatalysis has been demonstrated as the simplest pathway for direct 
photocatalytic H2 evolution. Ho et al. measured the H2 evolution rate by fabricating the 
CuO on the TiO2 surface. Results demonstrated that the photocatalyst exhibited 40 times 
higher H2 evolution yield during photocatalysis by increasing the reaction temperature 
from 25 to 90 °C [92]. Furthermore, they also determined the photo-thermal performance 
of SiO2/Ag@TiO2 in seawater catalysis [93]. According the authors, the catalytic property 
of the photocatalyst was increased with an increase in temperature for altered sacrificial 
chemical components (Figure 6). Among all sacrificial reagents, glycerol achieved the 
maximum H2 generation rate of 56.6% when the temperature increased from 30 to 90 °C. 
Likewise, Liu et al. acquired the H2 evolution amount (27.4 mmol g−1) with the Pt/TiO2 
photocatalyst under UV–vis IR light, which was twice the value (13 mmol g−1) obtained 
under UV–vis irradiation [94]. 

In addition, Kubacka et al. reported the photo-thermal production of H2 in a gas 
phase using methanol as a sacrificial agent by fabricating a noble metal ruthenium-doped 
catalyst (Ru/TiO2) in a different weight ratio from 1 to 10 wt%. The photo-thermal catalytic 
performance was more significant than thermal catalysis within the temperature range of 
120 to 300 °C. The authors also demonstrated that a clear synergy among light and heat 
was observed with temperatures up to 240 °C and then decreased subsequently [95]. In 
another report, Zhang and co-workers hydrothermally synthesized the (Ni/RGO) catalyst 
and applied the hydrogen evolution reaction by combining the photo-thermal and elec-
trocatalysis processes. The catalytic activity of the prepared catalytic system was com-
pared under light irradiation and in dark conditions, and the comparison results clearly 

Figure 5. (a) CH4 production by Ru/Al2O3 photocatalyst under combined photo-thermal and sole
thermocatalytic conditions, under both treatments, where temperature was fixed by light source
(300 W Xe lamp) and the whole reaction was carried out in the CO2 and H2 gas mixture. Then,
0.1 g of sample was taken and spread onto a spherical shaped filter. (b) CO2 evaluation of CoFe-650
photocatalyst during photo-thermal irradiation (with UV–vis light) and direct heating without any
light irradiation. Adopted with permission from Reference [91]. Copyright (2020) Elsevier Ltd. All
rights reserved.

5.3. H2 Evolution

Solar-light-based water splitting is a promising alternative for the H2 evolution and
is achieved by various electrolysis and catalysis techniques. Among them, photocatalysis
has been proven to be the easiest and most direct pathway in which solar light is directly
employed to split water into H2 gas. However, it has certain limitations, such as a slow
reaction rate, along with poor solar light absorption and conversion efficiency. In contrast,
thermo-assisted photocatalysis has been demonstrated as the simplest pathway for direct



Photochem 2022, 2 821

photocatalytic H2 evolution. Ho et al. measured the H2 evolution rate by fabricating the
CuO on the TiO2 surface. Results demonstrated that the photocatalyst exhibited 40 times
higher H2 evolution yield during photocatalysis by increasing the reaction temperature
from 25 to 90 ◦C [92]. Furthermore, they also determined the photo-thermal performance
of SiO2/Ag@TiO2 in seawater catalysis [93]. According the authors, the catalytic property
of the photocatalyst was increased with an increase in temperature for altered sacrificial
chemical components (Figure 6). Among all sacrificial reagents, glycerol achieved the
maximum H2 generation rate of 56.6% when the temperature increased from 30 to 90 ◦C.
Likewise, Liu et al. acquired the H2 evolution amount (27.4 mmol g−1) with the Pt/TiO2
photocatalyst under UV–vis IR light, which was twice the value (13 mmol g−1) obtained
under UV–vis irradiation [94].

In addition, Kubacka et al. reported the photo-thermal production of H2 in a gas
phase using methanol as a sacrificial agent by fabricating a noble metal ruthenium-doped
catalyst (Ru/TiO2) in a different weight ratio from 1 to 10 wt%. The photo-thermal catalytic
performance was more significant than thermal catalysis within the temperature range of
120 to 300 ◦C. The authors also demonstrated that a clear synergy among light and heat was
observed with temperatures up to 240 ◦C and then decreased subsequently [95]. In another
report, Zhang and co-workers hydrothermally synthesized the (Ni/RGO) catalyst and ap-
plied the hydrogen evolution reaction by combining the photo-thermal and electrocatalysis
processes. The catalytic activity of the prepared catalytic system was compared under light
irradiation and in dark conditions, and the comparison results clearly demonstrated that
light enhanced both the kinetics and the thermodynamics of the reaction, yielding superior
H2 evolution activity. The researchers described this unique etiquette with the capacity of
the irradiated photocatalyst to generate excited carriers after absorbing the light; therefore,
the temperature of the system was increased to 50 ◦C wit in 5 min [96]. Thus, operational
temperature and optimum light irradiation both play a key role in the efficiency of the
certain photo-thermal catalytic system and develop an adjustable synergism between light
and thermal effect.
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5.4. Organic Compound Degradation and Production

It is highly desirable to develop sustainable technologies to degrade various types
of organic pollutants in air and water, such as volatile organic compounds (VOCs), 4-NP,
and methylene blue (MB). The photo-thermal catalytic process seems a practical approach
in environmental remediation as it utilizes both the light and heat energy of the solar
spectrum.

Numerous studies have reported on VOC abatement, including acetone, benzene, and
toluene, which are crucial air-polluting agents and cause damage to humans as well as the
atmosphere. Photo-thermal catalysis has gained serious attention in this field because it can
utilize the whole light spectrum covering UV, VIS, and NIR ranges. In this aspect, Li et al.
reported the photo-thermocatalytic oxidation of benzene by coating the TiO2 on a Hg lamp
without any additional heat and light source. The obtained photo-thermocatalytic rate
constant (KPTC) was 2.4 times greater than the total sum of KPC and KTC [97], suggesting
the synergistic use of UV light and heat from the Hg lamp, therefore belonging to the photo-
thermal co-catalytic reaction. The similar co-catalytic effect of heat and light was observed
in a study reported by [98], in which quite a different type of photo-thermal synergic effect
was observed. In the experiment, the Hg lamp coated by the ZnO powder was used for the
gaseous phase photo-thermal catalytic oxidation of acetone. Almost no CO2 production
was observed at 240 ◦C without UV-light irradiation. In contrast, the photocatalytic activity
of the ZnO powder was increased with the temperature increase from 40 ◦C to 240 ◦C, and
the amount of CO2 production increased from 10.7 to 173.1 mg m−3, respectively.

Dyes are one of the most common organic pollutants present in waste effluents from
different industries, and are thus considered a bottleneck in wastewater purification tech-
nologies due to their larger volume, high toxicity, and slow biodegradation rate. In this
scenario, the photo-thermal catalytic reaction has proven to be an effective technique due
to its lower cost, operational sustainability, and renewable solar energy consumption.

There has been extensive interest surrounding the construction of efficient catalysts
to convert the toxic 4-NP into the non-toxic 4-AP. In various reports on the photo-thermal
catalytic-based reduction of 4-NP, the catalytic reaction in the existence of NaBH4 can
take place without any light exposure, and has been proven to be temperature-dependent.
Therefore, the photo-thermally improved performance can be attributed to photo-assisted
thermocatalysis. Kim et al. successfully suspended the Au nanoparticles on a filter paper
and examined the photo-thermocatalytic activity in the 4-NP reduction [99]. The 4-NP
was reduced more rapidly with the light irradiation than under dark conditions due to the
photo-thermal activity of Au nanoparticles. It was also noticed that the reduction rate was
marginally higher under light-irradiated processes than under dark conditions at the same
temperature (Figure 7).

Photo-thermal synergic interaction mode is also applied to degrade certain dyes, in
which thermocatalysis shows no activity, but the photocatalytic activity of the catalytic sys-
tem is increased with the increase in reaction temperature. Wang et al. degraded the methy-
lene blue (MB) via thermal-assisted photocatalysis by constructing the Mn3O4/MnCO3
system [100]. The system showed negligible degradation under the dark or irradiation
at 20 ◦C, while under visible-light exposure, the degradation rate was increased with
increasing of temperature (Figure 8a). Consequently, the enhanced catalytic performance
of the Mn3O4/MnCO3 nanocomposite under photo-thermal effects was not only because
of the photocatalysis and thermocatalysis, but also due the existence of synergistic influ-
ence which existed in Mn3O4/MnCO3 nanocomposites, infatuating significant oxygen
present in the lattice to entrap the holes, which then led to efficient oxidization at high
temperatures (Figure 8b). Huang et al. synthesized the nanocomposite system of cerium
oxide–cerium nitride (CeO2/CeN) to degrade MB in wastewater using the photo-thermal
catalytic method. No degradation efficiency was obtained after heating the solution to 80 ◦C
under dark, while the photocatalyst showed a 90% degradation rate in 1 h below 25 ◦C,
and obtained a 100% degradation rate in 30 min without the temperature regulation, signi-
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fying that the thermal effect generated by light irradiation enhanced the photodegradation
efficiency [101].
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Besides energy production and environmental protection, the photo-thermal catalytic
method has also been utilized in the synthesis of organic compounds. An organic reac-
tion is strongly correlated with a heat-derived catalytic process and intensely affected by
temperature of the reaction, thus making it quite relevant to photo-thermocatalysis [102].
Christopher et al. derived ethylene epoxidation by depositing Ag nanocubes on the Al2O3
surface [24]. The results demonstrated that under an irradiation at 430 K, the steady-state
ethylene epoxidation rate was four times greater than the rate of pure thermocatalysis.
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80 ◦C). (b) The proposed interaction mechanism of the coupled light and heat effect. Adapted with
permission from Reference [101]. Copyright (2020) Elsevier Ltd. All rights reserved.

In another example, Wang et al. performed a cyclic condensation reaction by applying
Cu7S4@ZIF-8 nanocomposites (Figure 9a) [103]. Figure 9b shows that the conversion rate
of the photo-thermal catalytic process reached 97.2% within 6 h of irradiation, while at
temperatures of 43 ◦C and 20 ◦C, pure thermocatalysis rates were only up to 55.4% and
18.1%, correspondingly. The conversion rate of 93.5% was finally reached at 43 ◦C by
extending the reaction duration to 18 h, indicating that the traditional heating process was
very time-consuming. Figure 9c demonstrates that the local heating-enhanced reaction
efficiency was more than double that obtained by overall heating.
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tion reaction process. (b) Transformation rate of the cyclocondensation reaction process by photo-
thermocatalysis and thermalcatalysis as a function of the reaction time. The photo-thermocatalytic
reaction was regulated under laser light irradiation (1450 nm, 500 mW cm−2) with no thermostatic
regulation and the bulk reaction solution reached a maximum temperature of 43.3 ◦C. (c) Overall
and amplification factor of localized conversion was determined by dividing the photo-thermally
converted efficiency by the thermally converted efficiency at 20 ◦C and 43 ◦C, correspondingly.
Reprinted with permission from Reference [103]. Copyright (2016) Royal Society of Chemistry.
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6. Conclusions and Perspective

In recent years, plasmonic photocatalysts have attracted huge attention in relation to
the photo-thermal catalytic process owing to their higher solar energy utilization efficiency
as compared to other conventional photocatalysts. In the present review, the fundamental
mechanism of the LSPR effect was displayed by plasmonic photocatalysts and its role in
the performance of certain photo-thermal catalytic reaction was briefly explained. Under
solar irradiation, photo-thermally induced heat and light properties of the plasmonic and
non-plasmonic nanomaterials can be utilized to enhance catalytic conversions, either indi-
vidually or in a synergistic manner. The exact interaction mechanism of both approaches
during a photocatalytic reaction still needs to be further discovered; however, an insightful
revision of the methodologies to differentiate the leading pathway was included. Several
types of design and material selection techniques were compiled in order to enhance the
light absorption range and photo-thermal transformation efficiency of the plasmonic cata-
lysts, concluding that controlled size and tailored morphology containing nano-defective
structures (rods, bars, wires, etc.) could significantly control the plasmonic ability and
generate high-energy electrons. Moreover, hybrid heterostructures (metal–semiconductor,
metal–porous, and core–shell hybrid systems), due to their dual nature, could effectively
tune the photo, thermal, and electrochemical properties of the photo-catalysts. Further-
more, we also summarized newly developed plasmonic catalysts and their synergistic
photo-thermal catalytic performances in various photocatalytic processes of energy pro-
duction and environment remediation, including CO2 reduction, H2 production, organic
pollutant degradation, and organic compound synthesis. The wide range of catalytic appli-
cations, along with the prospect of tailoring morphology, and tuning the electrical, thermal,
and optical properties of photocatalysts, signifies the potential and sustainability of the
photo-thermal catalytic regime.

Indeed, photo-thermal catalysis has a wide range of applications, but the large-scale
implementation is still facing various challenges, as there are few studies on synergistic
interaction mechanisms and competence with conventional thermal methods. Primarily,
the heat and light contributions in photo-thermal catalysis must be distinguished and
quantified. The synergistic interactions between photo and thermal catalysis are very
diverse and complex, and the fundamental mechanism of synergy should be well distinct
and estimated, which is crucial to synthetically enhance the synergy among photo and
thermal catalysis, and to amplify the utilization of solar energy. To identify the relative
contributions, a precise estimation of the local heating of the photocatalyst is required. In
the view of this, the photo-thermal technique has major benefits as it has the potential
to enhance selectivity to encounter targets by choosing appropriate light wavelengths.
Hot-carrier chemistry has proven to be more proficient than the thermochemical route
in triggering a particular reaction pathway by restrictively exciting molecular bonds of
adsorbent. In comparison with traditional heat-based catalytic reactions, photo-thermal
catalysis retains high production efficiency even under harsh conditions due to its solar
energy utilization capability, which is not only beneficial in case of adaptability, but also in
the vein of reusability and strength of catalysts.

As mentioned above, the size and shape of plasmonic catalysts have a strong impact
on the hot charge generation and transfer process, which clearly signifies the importance of
photochemical contributions during a photo-thermal catalytic reaction. Furthermore, only
the high-energy charge carriers can pass the Schottky barrier at the metal–semiconductor
heterojunction interface, so the efficiency of the charge transfer is not only dependent on
the hot electron energy level, but also on the length of the Schottky barrier. Therefore, it
can be an effective strategy to promote the charge transfer by tuning the energy bands
of the semiconductors using doping or vacancy formation techniques. In addition, some
other designing strategies, such as metal loading, high-adsorption-capacity intermediates,
and small-size nanoparticles, also determine the hot electron transfer rate; hence, all these
designing parameters should be prudently considered when constructing a photo-thermal
nanomaterial. On the other hand, in thermocatalytic reactions, the nanomaterials with a
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wide light absorbance range, lower heat loss, and less irradiative emissions have greater
potential to increase the catalytic performance. Non-stoichiometric materials with more
vacancies or defects are mainly preferred. In general, a perfect design and an appropriate
engineering of the photocatalyst can develop an ideal synergy between photo and thermal
contributions, thus resulting in excellent photo-thermal activity.

Nonetheless, photo-thermal catalysis has limitations, which hinder its broad appli-
cation in the field of energy production and conversion, environmental remediation, and
organic compound synthesis. Some of these are mentioned below.

1. Photo-thermal catalysis is far better than the other conventional technologies as it can
perform efficiently under mild conditions, but the main challenge is to incorporate
the light into photo-thermal systems; for that purpose, suitable photoreactors with
higher solar energy harvesting and utilization efficiency are required. However,
various reported studies indicated that the application of continuous flow systems is
more feasible for large-scale implementation, instead of applying batch experimental
systems. Thereby, more attention should be paid in this approach to develop highly
efficient and configured reactors.

2. Among the extensive amount of investigations available on photo-thermal catalysis,
few have explained the dominant reaction pathway that governs the actual reaction
mechanism. Fundamentally, more research in this area is required.

3. Although several different plasmonic materials, other than the noble plasmonic metals,
have been revealed in recent years, a lot still needs to be discovered. In recent years,
chalcogenides and nitrides have been extensively applied in photo-thermal catalytic
processes due to their efficient photo-thermal ability.

4. For instance, the CO2 conversion process mainly yields CO and CH4; however, more
attention should be paid towards other valuable alkanes and alkenes (olefins), such as
propylene, formic acid, ethylene, etc. In addition, one of the most vigorous character-
istics in photo-thermal catalysis is the selectivity control, so more information on this
could be favorable for designing high-selectivity photo-thermal catalytic systems.

5. The stability and recyclability of photocatalysts are also major challenges, as most
stability assessment experiments are severely constrained to a few hours. Therefore,
highly sustainable photocatalysts are urgently needed in order to meet these large-
scale requirements.
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