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Abstract: We pursue to illustrate the capabilities of the Dual Model of Liquids (DML) showing that it
may explain crossed effects notable in Non-Equilibrium Thermodynamics (NET). The aim of the paper
is to demonstrate that the DML may correctly model the thermodiffusion, in particular getting formal
expressions for positive and negative Soret coefficient, and another “unexpected” mechano-thermal
effect recently discovered in liquids submitted to shear strain, for which the first-ever theoretical
interpretation is provided. Both applications of the DML are supported by the comparison with
experimental data. The phenomenology of liquids, either pure or mixtures, submitted to external
force fields is characterized by coupled effects, for instance mechano-thermal and thermo-mechanical
effects, depending on whether the application of a mechanical force field generates a coupled thermal
effect in the liquid sample or vice-versa. Although these phenomena have been studied since
their discoveries, dating back to the XIX century, no firm theoretical interpretation exists yet. Very
recently the mesoscopic model of liquids DML has been proposed and its validity and applicability
demonstrated in several cases. According to DML, liquids are arranged on a mesoscopic scale by
means of aggregates of molecules, or liquid particles. These structures share the liquid world with a
population of lattice particles, i.e., elastic waves that interact with the liquid particles by means of an
inertial force, allowing the mutual exchange of energy and momentum between the two populations.
The hit particle relaxes the acquired energy and momentum due to the interaction, giving them back
to the system a step forward and a time-lapse later, alike in a tunnel effect.

Keywords: liquid modelling; phonons in liquids; Soret effect; thermodiffusion; heat propagation
in liquids; shear waves in liquids; duality of liquids

1. Introduction

Non-Equilibrium Thermodynamics (NET), also named Thermodynamics of Irre-
versible Processes, or again Thermodynamics of Phenomenological Processes, is a very
robust method of physics to describe fluid systems, either gases or liquids (with appropriate
restrictions also solids), subjected to boundary conditions which may vary vs. time and/or
space [1]. NET is an extensive theory that follows from the Non-Equilibrium Statistical Me-
chanics, that in turn, other than those of the equilibrium theory, is based on the additional
relevant postulate of the time reversibility of the physical laws. Such additional postulate states
that “all the laws of physics remain unchanged upon time reversibility, i.e., if the time t
is replaced by −t, and if simultaneously the magnetic field H is replaced by −H”. We
will meet again such a postulate when dealing with the DML in Sections 3 and 5. Typical
phenomena described with the methods of NET are those in which transport processes
take place, such as for instance the heat flow crossing a medium (described by the Fourier
law), the mass flow due to a concentration gradient (Fick’s law), the volume flow due to a
pressure gradient (Poiseuille law), or also the electrical current due to a voltage difference
applied to an electrical load (Ohm’s law). The approach most largely adopted to describe
such phenomenology in NET is due to Onsager [2,3], in which it is supposed that the
gradients of some physical quantities, such as temperature, mass, pressure, voltage, etc,
behave as driving forces (sometimes named affinities) producing associated fluxes, such as the
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flux of heat, mass, volume, electrical charge, etc, similarly to the “cause-effect” relationship
adopted in classical mechanics. This approach uses a mathematical matrix formalism and
is based on four main hypotheses [1], namely:

a. The quasi-equilibrium postulate, requiring that gradients (driving forces) are not
too large.

b. The linearity postulate, stating that all fluxes are linear functions of the relevant
gradients (this is a consequence of the previous postulate, which allows a linear
dependence of fluxes upon driving forces).

c. Curie’s postulate, constraining the tensor rank of coupled fluxes and forces.
d. Onsager’s reciprocal relations, requiring symmetric coefficient matrices in the force-

flux relations.

Apart from the well-known phenomena listed above, there is a long list of “crossed”
phenomena, in which a driving force is responsible also for other fluxes not strictly related
to the applied force. Depending on which are the forces involved and the fluxes generated,
such crossed effects are named, for instance, mechano-thermal, thermo-mechanical, thermo-
electric, etc. Typical examples are the Soret, the Dufour, the Peltier, the Seebeck, the
Thomson effects, etc. We will deal with in this paper mainly two of such coupled effects,
one is the Soret effect [4,5] (with reference also to the Dufour effect), and the other is an
“unexpected” mechano-thermal effect recently revealed in confined liquids under shear
geometry [6–11].

The Ludwig–Soret effect, or simply Soret effect, is named after the German and
Swiss researchers who in the XIX century independently observed that a temperature
gradient applied to an isotropic mixture gave origin to a concentration gradient of the
mixture components (other than the heat flow crossing the mixture). This phenomenon,
generally named thermodiffusion, has been extensively experimentally investigated and
many theoretical models have been proposed to interpret the experimental results, although
none of them has provided yet a definitive explanation of all the characteristics of the Soret
effect ([12–14] and references therein).

The “unexpected” mechano-thermal effect we will deal with has been discovered a
few years ago by the group of Noirez and co-workers [6–11]. It is highlighted in two types
of similar experiments, whose difference is the motion law of a movable disk, oscillating
or following a Heaviside function. The mechano-thermal effect consists in both cases
of the occurrence in a liquid in shear geometry of a temperature gradient due to the
momentum transferred to it by a moving plate. Therefore, this mechano-thermal effect
reveals a coupling between a mechanical force induced to the liquid by the shear strain
which generates in turn the thermal gradient. Many interesting papers have been published
showing, for instance, that the universal law G′ ≈ L−3 for the low-frequency shear modulus
G′ is confirmed also in confined liquids [15,16]; however, no firm theoretical explanation of
such phenomenology at the mesoscopic level has been advanced yet.

In the frame of the liquid modeling at the mesoscopic scale, a new statistical model has
been recently proposed, the Dual Model of Liquids (DML), whose validity and applicability
have been shown in several cases [17–19] finding good correspondence with the experi-
mental data for several liquid specific quantities, such as the thermal conductivity [17], the
order-of-magnitude of the relaxation times governing the interaction process [17], the liquid
specific heat [17,18]. It has also allowed providing a physical interpretation of the memory
term appearing in the hyperbolic form of the heat propagation equation (Cattaneo) [19].
Shortly resuming the basis of the DML, this considers liquid molecules arranged at the
mesoscopic level on metastable solid-like local lattices. Propagation of perturbations occurs
at characteristic timescales typical of solids within these local domains of coherence, while
mutual interactions of local clusters with inelastic wave-packets allow exchanging with
them energy and momentum. The liquid is then assumed as a Dual System, the two subsys-
tems being the liquid particles (i.e., the clusters of molecules) and the lattice particles (i.e., the
wave-packets; we will use through the manuscript the terms lattice particle, wave-packet,
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phonon, collective excitation on one side, or liquid particle, molecular cluster, and iceberg on
the other, interchangeably, as synonyms).

The aim of this paper is to show that the crossed effects typical of NET may be fruitfully
explained by means of the DML. The paper is organized as follows: in the second section
the Soret and Dufour effects are shortly recalled as well as the main equations governing
the phenomenon in NET. In the third section, the DML is briefly summarized, in particular,
those aspects strictly related to the thermo-mechanical and mechano-thermal effects that are
the topics of the present manuscript. It is then shown how the supposed duality of liquids in
the DML characterized by the mechanism of “ lattice particle ↔ liquid particle ” collision
provides a physical explanation of the thermodiffusion as well as the sign dependence of
the Soret coefficient ST upon several mixture’ parameters. The fourth section is dedicated
to the interpretation in the frame of the DML of the “unexpected” mechano-thermal
effect detected in pure liquids. The agreement of the theoretical values obtained for the
temperature drop with the experimental data supports the fact that the DML represents
the first theory able to explain the conversion of mechanical energy into thermal energy
in liquids. The Section 5 is aimed at discussing the implications of the results obtained
in the previous sections. Finally, in the Section 6 other possible applications of the DML
are anticipated.

2. The Thermodiffusion and the Soret Equilibrium in NET

NET is a phenomenological approach describing (mainly) fluid systems out of equilib-
rium. As such, it does not provide any physical interpretation of the phenomena under
study, limiting its capabilities to describe them by means of macroscopic variables. When
two or more processes occur simultaneously in a system, they may couple, generating very
intriguing phenomena. Focusing our attention on phenomena involving only concentration
and/or thermal gradients as generalized forces, Soret and Dufour effects are among the
most known. The Soret effect is characteristic of the steady state that is reached in a fluid
mixture, i.e., made by at least two chemical species, the solvent, and one solute, submitted
to a temperature gradient. Even if such effects are known to occur also in multi-component
mixtures, here we focus the attention only on two-components systems; the reasoning may
be easily extended to multi-components mixtures, where the Soret coefficient ST becomes
a vector. Figure 1 represents the typical situation one is dealing with in analyzing the
thermodiffusion phenomenon. At the beginning the two chemical species are uniformly
distributed; when the heat starts crossing the medium, from the hot to the cold side, one
of the two species, for instance, the spheres of Figure 1, moves towards the cold side,
while the other is pushed back towards the hot side (for the Newton’ third law): this is the
phenomenon of thermodiffusion, i.e., a mass flow produced by a heat flow. As soon as the
thermodiffusion begins, as the spheres move along the heat current (and the cubes in the
opposite direction), the back diffusion acts on the chemical species to balance the concentra-
tion gradient that is being established. Definitively, the displacement of the components of
the solution generates at the steady state a concentration gradient for each of them, which
in turn generates two mass flows of the chemical species, coupled with the heat flux due
to the external temperature gradient. At the steady-state, or the Soret equilibrium, the
thermodiffusion is balanced by the ordinary diffusion; one may observe a temperature
gradient (external constraint) responsible for a heat flow, and two opposite concentration
gradients (crossed effect), for the spheres and the cubes. Generally, the attention is focused
on the less concentrated component of the mixture, the solute. Such dynamical equilibrium,
the Soret, is described by means of the Soret coefficient ST , which is positive when the
solute drifts towards the cold side, while it is negative when it drifts towards the hot
one. The Dufour effect is the opposite of the Soret. When there is an initial gradient of
concentration in a fluid mixture, i.e., a gradient of chemical potential, it is known that the
system spontaneously evolves towards the equilibrium due to the ordinary Fick diffusion.
A careful evaluation of the thermal evolution of the system shows that the spontaneous
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diffusion of the chemical species of a mixture to establish a uniform distribution generates
a temperature gradient: this phenomenon is named the Dufour effect in NET.
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Figure 1. Schematic representation of a mixture made by two different chemical species, 1 and 2,
ideally represented by spheres and cubes. The solids represent the icebergs that in the DML constitute
the liquid matrix. A temperature gradient ∇Text is applied to the medium generating a heat flux Jq.
At the beginning of the experiment (a) the two species are uniformly distributed. As far as the heat
crosses the medium, the two species separate, until a steady state is reached, characterized by the
separation of the two chemical species (b). The steady state is the Soret equilibrium, characterized by
the dynamical equilibrium reached by the two diffusive mechanisms, one driven by the temperature
gradient, the other by the concentration gradients of the chemical species. The arrows represent the
direction of the related vectors indicated at their tips.

The Soret equilibrium is characterized by a very small concentration gradient, a
second-order effect, induced by the heat flow. Nevertheless, because coupled heat and
mass fluxes occur in many relevant processes, such as distillation, extraction, crystalliza-
tion, absorption, drying, or even condensation, they can play an important role in many
natural [20–32] and industrial processes [33]. Thermodiffusion for instance may reveal
useful to separate mixtures that are hardly handled by conventional methods [34], such
as isotope fractionation [35], colloids separation [36], surface coating [37], enriched com-
bustion [33], etc. We will deeply analyze in this paper the thermodiffusion and the Soret
equilibrium, although the reader may certainly understand how our reasoning may be
easily applied to other cross phenomena typical of NET. The scientific literature on thermod-
iffusion is very wide, encompassing the experimental investigation [38–44] and theoretical
modeling [45–64] developed in the past two centuries after its discovery. Because this
effect is typical of fluid mixtures kept in thermal non-equilibrium, it is very difficult to get
the experimental setup sufficiently stable to avoid convection due to the coupling of the
earth’s gravity with the thermal field. For such reason, the thermodiffusion and the Soret
equilibrium have been studied for 20 years or more in microgravity environments [65–77],
exploiting the virtual absence of gravity typical of platforms orbiting around the earth.
In the literature a by far non-exhaustive list of references is reported, to which the reader
may refer; consequently we do not want to enter here into the historical developments
of the topic, but we will refer to some of the most important references to point out the
capabilities of the DML with respect to previous models. For the sake of clarity, we report a
brief description of the governing equations for thermodiffusion.
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Considering temperature and concentration gradients as generalized forces and heat
and mass current as generalized fluxes, the set of phenomenological equations in NET
needed to describe the observed phenomena in a 2-components fluid system are [1–5]:

Jq = −Lqq
∇T
T2 − Lq1

(
∂µ1

∂w1

)
T,p

∇w1

(1− w1)T
(1)

J1
m = −L1q

∇T
T2 − L11

(
∂µ1

∂w1

)
T,p

∇w1

(1− w1)T
(2)

where Jq and J1
m are the heat and mass fluxes, T the temperature, p the pressure, µ1 and

w1 the chemical potential and mass fraction of component 1 (the solute for instance), Lqq,
L1q, Lq1, L11 the phenomenological Onsager coefficients describing the proportionality
between the generalized forces and the fluxes they generate. In particular, L1q and Lq1
are the cross-correlated phenomenological coefficients, for which L1q = Lq1 holds in the
Onsager framework (reciprocity postulate). Equations (1) and (2) are often re-written
in terms of experimental coefficients instead of Onsager’s ones, in the following form
(constitutive equations):

Jq = −K∇T − ρw1

(
∂µ1

∂w1

)
T,p

TDD
T∇w1 (3)

J1
m = −ρw1w2DS

T∇T − ρD∇w1 (4)

where K is the thermal conductivity of the liquid mixture, ρ its mass density, and D, DS
T

and DD
T the ordinary Fick diffusion coefficient, the Soret and the Dufour thermal diffusion

coefficients, respectively. The Soret equilibrium is attained at the steady state, when the
heat still flows through the mixture but there is no more mass diffusion so that J1

m = 0 in
Equation (4); eventually we get:

ST =
DS

T
D

= − 1
w1w2

(
∇w1

∇T

)
J1
m=0

(5)

which defines the Soret coefficient ST and makes it evident that the equilibrium is attained
by balancing the thermodiffusion and the ordinary diffusion. Comparing Equations (1)–(4),
one may easily get the following expressions for the two thermal diffusion coefficients:

DS
T =

L1q

ρw1w2T2 (6)

DD
T =

Lq1

ρw1w2T2 (7)

From the Onsager’s reciprocity relations, it follows that DS
T = DD

T . Finally, the Fick
coefficient of ordinary diffusion D is related to L11 through:

D = L11
1

ρw2T

(
∂µ1

∂w1

)
T,p

(8)

The Heats of Transport are other parameters often used in NET to describe the Soret
or Dufour effects. We will take care of them elsewhere.

3. The Thermodiffusion and the Soret Equilibrium in the DML

In the first part of this section, we will shortly gather the main and relevant aspects of
the DML avoiding repeating the concepts introduced and extensively discussed elsewhere.
Readers interested in the details of the model are invited to refer to the literature [17–19]
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where the theoretical developments, numerical simulations, experimental results, and
applications are collected and discussed in depth. The second part is dedicated to showing
that the DML may provide a completely new approach to the physical interpretation of the
thermodiffusion phenomenon and of the Soret equilibrium occurring in liquid mixtures to
which a temperature gradient is applied (when the phenomenon involves macromolecular
solutes, it is generally named thermophoresis). A similar approach can be applied of course
also to the Dufour effect, as well as to other phenomena typical of NET. In particular, we
will show how the DML is able to model the thermodiffusion, taking into account even
the sign variation that sometimes occurs for the same couple of solute-solvent of a mixture
at varying parameters, such as the average temperature, the intensity of the temperature
gradient or also the initial concentration. The capability of the DML to justify that the
third law of dynamics is not falsified in such type of experiments, as some authors have
supposed ([12–14] and references therein), is dealt with in the Section 5.

Two facts make challenging the experimental determination of the Soret coefficient,
namely its small magnitude, usually of the order of

(
10−4 ÷ 10−3)◦C−1, and the presence of

undesirable convective disturbances due to the coupling of the temperature gradient with
gravity, sometimes even present in microgravity environments [66,68–77]. It is then not
surprising that the several theoretical models proposed through the years [12,13] often fail
when dealing with peculiar characteristics of ST , such as its sign inversion or the presence
of minima. Experimental [38–46], theoretical [36,45–64] and computational [12–14] studies
on thermodiffusion and Soret equilibrium have significantly advanced in recent years, but
several intriguing and fundamental questions still remain unanswered. One such question,
maybe the most relevant, is the origin of the forces driving the observed phenomenology at
the micro-mesoscopic scale. We will try to fill this gap by means of DML.

The DML rests on two hypotheses, both with an experimental background,
namely: (1) experiments performed by means of Inelastic X-ray Scattering (IXS) and Inelas-
tic Neutron Scattering (INS) techniques [78–97] allowed to discover that the mesoscopic
structure of liquids is characterized by the ubiquitous presence of solid-like structures,
whose size is of a few molecular diameters, through which elastic waves propagate as in
the corresponding solid phase; the number and the size of these structures depend upon
the temperature and pressure of the medium. (2) Elastic energy and momentum in liquids
propagate by means of collective oscillations, or wave-packets, similarly to phonons in
crystalline solids (this hypothesis is a consequence of the first). Although both arguments
have been largely and deeply dealt with in [17] where DML is introduced, it is the case to
recall the attention of the reader on the relevance of the INS and IXS experiments findings,
whose results are at the basis of a dual vision of the liquid modeling at the mesoscopic
scale. In fact, even if the frequency ranges of these experiments are high, typically from
less than 1 to 2–3 THz, however, the fact that the propagation speed of elastic waves in
the pseudo-crystalline structures of liquids are higher than those typical of liquids, and
closer to those of solids, ensures that these speeds are maintained over relatively long
distances, covering several molecular diameters, i.e., the dimensions of the clusters (see
also the Section 6 for further recent findings on this topic). In fact, the experimental results
show that, once these distances are exceeded, the propagation speeds of the elastic waves
return to the range of values typical of liquids, thus providing a signature of the borders
of the pseudo-crystalline structures. Among the many experimental works performed
on such topic, other than that of Ruocco et al. [81] who measured the speed of sound in
water amounting to ≈ 3200m/s on length scale of few molecular diameters, it is the case of
citing that of Giordano and Monaco [97]. They performed the first measurements across
the glass-liquid and solid-liquid transitions and reported on a comparison of the collective
excitations in liquid and polycrystalline sodium. As it concerns liquid sodium, it exhibits
acoustic excitations of both longitudinal and transverse polarization at frequencies strictly
related to those of the corresponding crystal. The relevant difference between the liquid and
the crystal is the broadening of the excitations in the case of liquid because of an additional
disorder-induced contribution coming into play. The authors deduce a direct connection
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between the structural and dynamic properties of liquids, with short-range order and over-
all structural disorder characterized by specific fingerprints. To confirm the validity of the
DML, we evaluated the OoM of the phonon mean free path 〈Λ0〉 and lifetime 〈τ0〉 within
a liquid particle [17]. With reference to the experimental values, 〈Λ0〉 will be a multiple of
the phonon wavelength λ0, 〈Λ0〉 = nλ0, and 〈τ0〉 of τ = 1/ν0, 〈τ0〉 = n/ν0, with n > 1.
Using the data for the water of [79,94], typical values for the parameters characterizing
a phonon (variation range is function of temperature, pressure, and q orientation) are:
(central) frequency n

〈τ0〉
=
〈
ν0〉 ≈ 0.95÷ 2.5 THz, wave-length 〈Λ0〉

n =
〈
λ0〉 ≈ 1÷ 3 nm

and velocity 〈Λ0〉
〈τ0〉

=
〈
λ0〉 · 〈ν0〉 = 〈

u0〉 ≈ 3.1÷ 3.4 · 103 m/s. Interestingly, this value fits
very well with the experimental data obtained for the propagation velocity of thermal
waves in water [81]. The value of 〈Λ0〉 represents also the typical OoM of the size of a liquid
particle at the exchanged momentum q, allowing us to confidentially assume a value of
few units for n. A theoretical explanation of the occurrence of a solid-like value of sound
propagation in liquids is based on the points of view of Brillouin and Frenkel. We may
distinguish two limit regimes for the propagation of perturbations in liquids. One is the
“normal” hydrodynamic regime, in which one considers the medium as a continuum and
the excitations on a so long timescale that the system may be assumed to be in thermo-
dynamic equilibrium. This regime is also usually referred to as viscous. The second is
the “solid-like” or elastic regime, in which the dynamics becomes that of a free particle
between successive elastic collisions. The investigation of collective dynamics becomes of
particular interest when intermediate time- and length-scale are considered, i.e., distances
comparable to those characterizing the structural correlations among particles, and times
comparable to the lifetimes of such correlations. Although these two extreme behaviors,
viscous and elastic, are well known in physics, the intermediate situation is still far from
being fully characterized. This intermediate range is referred to as viscoelastic regime. It is
just in this regime that the DML is applied, as is clear also from the characteristics of the
elementary interactions described in the following.

According to this view, thermal energy is considered a form of elastic energy, as
supposed by Debye [98,99], Brillouin [100,101], and Frenkel [102]. At the mesoscopic level
the liquid phase is modeled in the DML as constituted by two sub-systems, mutually
interacting among them, the liquid particles, i.e., a sort of solid-like aggregates of liquid
molecules, and the wave-packets, or lattice particles. Therefore we are led to define a “liquid”
in the DML not as a liquid in the classical assumption, but as a mixture of solid icebergs
(the solid-like part) and of an amorphous phase (the classical liquid part). It will not
have escaped a very attentive and informed reader that this approach is not completely
new in the world of the physics of liquids. First, it recalls that of Brillouin [17,100,101]
and Frenkel [102]; Landau also described the HeII as made of “normal” and “superfluid”
parts [103]. Eyring in his Reaction Rate Theory [104–106], also known as the “hole” theory,
had supposed that a liquid could be assumed to have a quasi-crystalline structure. Similarly
to a gas, the liquid should consist of molecules moving around empty spaces, or holes. A
molecule is pictured as vibrating around an equilibrium position until it acquires sufficient
energy to overtake the attracting forces “and” a hole is available in the nearest neighbor
where the molecule can jump (see also Figure 2 in [17]). More recently, Andreev [107] in
a very interesting paper assumed that a liquid consists of two weakly coupled systems,
the phonons and the remainder of the liquid. He calculates the effects connected with the
presence of weakly damped phonons in a normal liquid. In particular, he calculated the
expressions for mechano-thermal and thermo-mechanical effects, as well as the propagation
of shear oscillations (see also the Section 6 for recent experimental findings on this topic).

Figure 2 shows in a pictorial way the model we have in mind. Solid-like icebergs,
the liquid particles, are dispersed in the amorphous phase of liquid, while thermo-elastic
waves, the lattice particles, travel through them. As far as the perturbations travel inside
a solid-like structure, they show a solid-like character, i.e., they are (quasi) harmonic
waves traveling at speeds close to that of the corresponding solid phase (3200 m/s in the
case of water, [17,18,81]). When however they leave the liquid particle and travel through
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the amorphous environment, lose the harmonic outfit and become wave-packets. The
interaction itself between these waves and the solid-like icebergs has an anharmonic
character, allowing momentum and energy to be exchanged between the two reservoirs,
the liquid particles and the lattice particles. The momentum transferred ∆pwp generates the
force f th

f th =
∆pwp〈

τp
〉 = −∇φth (9)

responsible for the energy and mass diffusion in liquids [17–19];
〈
τp
〉

represents the (fi-
nite) duration of the lattice particle↔ liquid particle interaction and φth is the anharmonic
interaction potential between the lattice particle and the liquid particle, given by [17,19]
(for a discussion about the functional dependence of φth upon distance and about its
quantum/classical form, the reader may refer to the Discussion in [17]):

−∇φth = f th = σpδ

(
Jwp
q

uϕ

)
(10)
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Figure 2. Icebergs of solid lattice fluctuating and interacting within the liquid global system at
equilibrium. As far as elastic (thermal) perturbations propagate within an iceberg, they behave as
in solids. Propagation velocity has then the values typical as those of the solid lattice, as found by
Ruocco et al. [81] of about 3200 m/s for the case of water. Average sizes of icebergs 〈Λ0〉 have been
estimated of the order of magnitude of some nanometers. When perturbations cross the boundary
between two icebergs, f th develops and energy and momentum are transmitted from one to the
nearest-neighbor iceberg. This pictorial model of liquids at mesoscopic scale, on which the DML is
based, reflects also what may be deduced from experiments performed with IXS techniques, able to
observe liquids at such scale-lengths. In a solution, solute particles may be considered as icebergs
having elastic impedance different from that of the solvent. Energy and momentum exchanged
between the two types of icebergs produce a net effect resulting in the diffusion of the solute along
the concentration gradient. If a temperature gradient is imposed externally, the net effect will depend
on the prevailing flux of wave packets, which will give rise to thermal diffusion of one species with
respect to the other.

Here uφ is the phase velocity associated with the wave-packet and σp is the cross-
section of the “obstacle”, the solid-like cluster, on the surface of which f th is applied; Jwp

q the
energy flux carried by wave-packets [17]. Some considerations on f th, or φth, are in order.
First, φth is supposed to be anharmonic because of the inelastic character of the interaction,
which is not instantaneous but lasts

〈
τp
〉

during which the particle is displaced by
〈
Λp
〉

(here and in the rest of the paper, the two brackets 〈〉 indicate the average over a statistical
ensemble of the quantity inside them). Second, f th can either be positive or negative
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depending on whether the quantity
(

Jwp
q /uφ

)
increases or decreases as a consequence

of the interaction. This point is connected with the last equality in Equation (10) which
deserves a more accurate analysis because it is pivotal for the purposes of the present
manuscript. It is indeed well known that a wave impinging on an obstacle exerts on it a
pressure. The radiation pressure was introduced for the first time by Balfour Stewart in
1871 [20] for the case of thermal radiation. Maxwell took up this theme in Arts. 792–793
of his Treatise in 1873 [21], arguing on the basis of his stress tensor. The first convincing
experimental evidence for the radiation pressure of light was given by Lebedev in 1901 [22]
(the Crookes radiometer does not demonstrate electromagnetic radiation pressure). We

have shown [17] by means of the radiant vector
→
R

→
R =

(
∆Π ·

.
ξ
)→

r =
→
Jel (11)

that this concept may be generalized and used for any type of wave (
.
ξ is the oscillation

velocity of the particles,
→
r the unit vector along the direction of propagation and

→
Jel the

flux of elastic energy generating the pressure Π). Here we exploit again this concept and
apply it to the momentum transferred by elastic, or thermal, waves that impinge on an
obstacle, such as for instance a solute molecule in a liquid mixture. Accordingly, we replace
the gradient of elastic pressure with that of thermal energy, yielding:

∇Πth = ∇
(

Jwp
q

uϕ

)
= −ψth (12)

Equation (12) contains two supplementary information; first, because thermal energy
is carried by elastic wave-packets, the velocity of energy propagation remains the same.
Second, the gradient of pressure gives rise to an inertial term, ψth, dimensionally a force
per unit of volume, responsible for momentum transport associated with the wave-packets
propagation. Equation (12) is valid when the characteristics of the medium change contin-
uously along the wave-packets propagation direction. The same argument may be used
when wave-packets impinge on an “obstacle”, as for instance a liquid particle, either of
solute or of solvent: the radiant vector changes and a thermal radiation pressure Πth is
produced on the boundary. Observing that the inelastic character of the collision allows the
exchange of momentum, this leads to the appearance of the force fth, acting on molecular
clusters. By rewriting Equation (12) in terms of discrete quantities, one yields the following
expression for the net Πth:

∆Πth =

[(
Jwp
q

uϕ

)
1

−
(

Jwp
q

uϕ

)
2

]
=

f th

σp
⇒ (13)

f th = σp

[(
Jwp
q

uϕ

)
1

−
(

Jwp
q

uϕ

)
2

]
(14)

We conclude that the last equality in Equation (10) provides the algebraic sign for f th ac-
cording to the sign of the quantity in square brackets of Equation (14), i.e., on whether the en-
ergy associated with the propagation of elastic waves in the medium “1” is larger or smaller
than that in the medium “2”. Expressions analogous to Equation (13) or Equation (14)
have been previously derived by many authors following different approaches [17,20–26].
It derives from the Boltzmann–Ehrenfest’ Adiabatic Theorem [27], later generalized by
Smith [28] and by Gaeta et al. [29]; another approach gave analogous results by calcu-
lating the radiation pressure produced by acoustic waves on an idealized liquid-liquid
interface [30].
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Let’s now go a little bit more into detail on the characteristics of f th in the DML, i.e.,
on its intensity, orientation, functional dependence, etc. Everything begins by remembering
that qT

qT =

T∫
0

ρCVdθ = f [Θ/T] (15)

is the internal energy per unit of volume of a liquid at temperature T, ρ the medium density,
CV the specific heat at constant volume per unit mass, Θ the Debye temperature of the
liquid at temperature T. Since this dynamics occurs mainly at high frequencies and involves
only the DoF of the lattice, we introduce the parameter m to account for the average number
of DoF participating in the collective dynamics. Defining m as the ratio between the number
of collective DoF surviving at temperature T and the total number of available collective
DoF, the fraction qwp

T of qT :

qwp
T = mqT = 〈N wp · εwp〉 = m

T∫
0

ρCVdθ

ρCV T
ρClT = m∗ρClT (16)

accounts for that part of the thermal energy transported by the wave-packets (the definition
of m∗ is easily deduced). Of course, it holds 0 ≤ m ≤ 1 [17]. N wp is the number of wave-
packets per unit of volume and εwp their average energy. qwp

T is propagated through the
liquid by means of inelastic interactions between the liquid particles and the lattice particles,
i.e., the wave-packets that transport the thermal or, generally, the elastic energy. Figure 3
exemplifies the elementary physical mechanism behind the DML. The lattice particle↔
liquid particle interaction allows the exchange of both energy and momentum between the
phonon and the liquid particle. To make more intuitive the model, we have ideally divided
the elementary liquid particle↔ lattice particle interaction into two parts: one in which the
lattice particle collides with the liquid particle and transfers to it momentum and energy (both
kinetic and potential) and the other in which the liquid particle relaxes returning the energy
to the thermal reservoir through a lattice particle, alike in a tunnel effect. Considering an
event of type (a) of Figure 3, an energetic wave-packet collides with a liquid particle that
acquires the momentum ∆pwp (Equation (16)) and the energy ∆εwp:

∆εwp = h〈ν1〉 − h〈ν2〉 = ∆Ek
p + ∆Ψp (17)

In Equation (17) 〈ν1〉 and 〈ν2〉 represent the wave-packet (central) frequency [17]
before and after the collision, respectively. Part of ∆εwp becomes the kinetic energy ∆Ek

p
acquired by the liquid particle, and the remaining part becomes ∆Ψp, i.e., the potential
energy of internal DoF of the solid-like cluster. As a consequence of the collision (a), the
wave-packet loses energy and momentum, which are acquired by the cluster and converted
into kinetic and potential energy. The kinetic energy is dissipated as friction against the
liquid. The potential energy ∆Ψp is relaxed by the liquid particle once the interaction is
completed, its dissipation lasts 〈τR〉 during which the liquid particle travels by 〈ΛR〉, at the
end of which the residual energy stored into internal DoF returns to the liquid reservoir.
The total displacement of the particle, 〈Λ〉, and the total duration of the process, 〈τ〉, are:

〈Λ〉 =
〈
Λp
〉
+ 〈ΛR〉 (18)

〈τ〉 =
〈
τp
〉
+ 〈τR〉 (19)

There are several interesting observations at this point that we want to propose to
the reader’s attention. First, as pointed out before, the elementary interaction looks like a
tunnel effect, inasmuch as the energy subtracted from the phonon’s reservoir returns to
it a time interval 〈τ〉 later and a step 〈Λ〉 forward. We want to clarify however that the
purely classical “tunnel effect” occurring in the liquid particle↔ lattice particle interaction
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should not be confused with tunneling in physics, which is ordinarily associated with
quantum phenomenology. We have adopted such a terminology only to give the reader the
idea of what happens in a liquid upon the interaction, but there are no hidden quantum
phenomena beyond such a word. What matters here to the scope of DML is the dynamics
linked to the relaxation time, i.e., to recognize that 〈τ〉 is the time interval during which the
energy disappears from the liquid thermal reservoir because it is trapped in the internal
DoF; once 〈τ〉 has elapsed, it reappears in a different place. In this way, relaxation times,
introduced ad hoc by Frenkel [102], find a clear physical interpretation (interestingly,
〈Λ〉 and 〈τ〉 in Equations (18) and (19) have the same meaning as δ and τF defined by
Frenkel [102], see also Figure 2 in [17]). The second point recalls us to the mind that in this
manuscript we are dealing with the Soret equilibrium, i.e., a phenomenon characterized
by a dynamical equilibrium between the diffusion of particles due to the heat crossing the
mixture, that is balanced by the Fick back diffusion due to the concentration gradient that is
being established by the thermodiffusion. In the papers published so far [17–19], we have
mainly been concerned with that part of the energy lost by the wave-packets and converted
into internal (potential) energy of liquid particles, ∆Ψp, and with the consequences of its
propagation. At equilibrium, the variation of potential energy ∆Ψp is zero in the average
because the thermal content of the system does not vary anymore, as well as the number
of DoF excited. Accordingly, the only term surviving in the third member of Equation
(17) is that accounting for the average kinetic energy acquired by the liquid particle, ∆Ek

p.
Apart from this, in the frame of DML, we are instead concerned with a flux of momentum,
in fact, we are analyzing the mechanism responsible for the solute, or solvent, molecules
flux pushed by a flux of thermal (elastic) energy crossing the liquid and due to an external
source, the temperature gradient applied to the system (a liquid mixture). We are then
concerned here with that part of energy lost by wave-packets and converted into kinetic
energy of liquid particles.

We want now to draw the attention of the reader to the event of type (b) of Figure 3
which is the time-reversal of (a): an energetic cluster interacts with a wave-packet transfer-
ring to it energy and momentum. The outgoing wave-packet has momentum and energy
larger than the incoming one so that the net effect of the interaction is to increase the liquid
thermal energy carried by phonons at the expense of the kinetic and internal energy of
the liquid particle. Another crucial point relevant to our purposes is that at (thermal or
concentration) equilibrium conditions, events (a) will alternate over time with events (b),
to keep statistically equivalent the balance of the two energy reservoirs. The effect of the in-
teractions is null if integrated over the entire surface of the particle since its thermal regime
does not change, nor does it move; consequently the mesoscopic equilibrium induces the
macroscopic equilibrium, following the Onsager postulate [1–3,17]: events like those of
Figure 3 will be equally probable along any direction, with a null average over time and
space. On the contrary, when the symmetry is broken by an external force field, for instance
by a temperature (Soret) or a concentration (Dufour) gradient, type (a) events will prevail
over type (b), or vice-versa, along the direction of the gradient; the gradient will generate
an imbalance of the collisions and possibly also a variation of the energy of the phonons
(their number does not change as a first approximation) and an imbalance of the number of
collisions. We will return to this point when discussing the non-equilibrium phenomena
which are the topic of the present manuscript.

Figure 4 represents a close-up of Figure 3a and shows how the energy ∆Ψp is propa-
gated inside a liquid particle until it is given back to the thermal reservoir. The interaction
begins with a wave-packet impinging on a liquid particle, transferring to it energy and
momentum.

〈
Λwp

〉
is the extension of the wave-packet and

〈
dp
〉

that of the liquid particle.
Because the liquid particle in the DML is considered a solid-like structure, following the
experimental evidences obtained by means of IXS and INS experiments [17,78–97] and the
pioneering intuitions of Brillouin [101] and Frenkel [102], the phonon’s flight through the
liquid particle behaves like a (quasi-) harmonic wave, crossing it at a speed close to that of
the corresponding solid phase. Once

〈
τp
〉

has elapsed, the liquid particle has travelled by
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〈
Λp
〉
, it relaxes the energy stored in the internal DoF, then it travels again by 〈ΛR〉 during

〈τR〉 (not shown in the figure). The presence of a relaxation time is a signature of liquids
allowing to justify, among others, some of their peculiar characteristics [17,19].
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Figure 3. Schematic representation of inelastic collisions between wave-packets and liquid particles.
The dots represent the molecules, arranged in a metastable liquid particle, the small springs indicate
the forces involving the internal DoF and responsible for the temporary stability of the cluster. In
the event represented in (a), an energetic wave-packet transfers energy and momentum to a liquid
particle; it is commuted upon time reversal into the one represented in (b), where a liquid particle
transfers energy and momentum to a wave-packet. The particle changes velocity and the frequency of
wave-packet is shifted by the amount (ν2 − ν1). Due to its time symmetry, this mechanism has been
assumed the equivalent of Onsager’s reciprocity law at microscopic level [17,19]. This elementary
interaction has an activation threshold for potential energy and, depending on how much energy is
absorbed by internal DoF, the rest will become kinetic energy of the liquid particle. When a system
is subjected to an external temperature gradient, the first effect that occurs is the establishment of
the internal temperature gradient, according to the Cattaneo–Fourier equation. Once the internal
DoF have reached the statistical equilibrium in terms of distribution of their degree of excitation
depending on the local temperature, the phenomenon of matter diffusion develops due to the
temperature gradient and at the expense of the kinetic energy reservoir. In other words, inelastic
effects dominate the dynamics during the transient phase, leaving the control to the kinetic reservoir
at the steady-state, where only the elastic effects of the elementary interactions matter.

A question that the reader is certainly wondering at this point is “what pushes and
drives the wave-packets in liquids between two successive collisions?”. To answer such
question we should take in mind that in DML the wave-packet current is always present
in liquid, even in isothermal conditions. During their free-flight between two successive
interactions (Figure 2) with the liquid particle, the wave-packets are considered in the
DML as local microscopic heat currents. Each lattice particle propagates along an average
distance

〈
Λwp

〉
, during a time interval

〈
τwp
〉
, which is its average life-time. Accordingly,

the ratio
〈
Λwp

〉
/
〈
τwp
〉

defines the wave-packet average propagation velocity between two

successive interactions, uwp =
〈Λwp〉
〈τwp〉 = λwp · νwp, where νwp and λwp are the (central)

frequency and wave-length of the wave-packet (although an elastic perturbation of the
liquid lattice should be represented by a wave-packet, whose localization depends on
the microscopic structure to which it is associated, here it will be represented, for the
sake of mathematical simplification, before and after an interaction, as a monochromatic
wave, longitudinally polarized, and hence identified by its average wave-length λwp

and frequency νwp, whose product is equal to uwp). Considering a surface S arbitrarily
oriented within the liquid, at thermal equilibrium an equal number of wave-packets will
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flow through it in opposite directions. Let’s assume now that locally every heat current,
although isotropically distributed in the liquid, is driven by a virtual temperature gradient〈

δT
δz

〉
applied over

〈
Λwp

〉
. From Equation (16), the variation of the energy density within

the liquid along the “+z” direction is:

δ+zqwp
T =

1
6

δ(mqT) =
1
6

∂qwp
T

∂T
δT =

1
6

∂qwp
T

∂T

〈
δT
δz

〉
+z

〈
Λwp

〉
(20)

where the local virtual temperature gradient
〈

δT
δz

〉
in the last member represents the

thermodynamic “generalized” force (with the meaning of NET) driving the diffusion of
thermal excitations along z. The factor 1/6 accounts for the isotropy of the phonon current
through a liquid at equilibrium. By applying this driving force over the distance

〈
Λwp

〉
, a

wave-packet diffusion, i.e., the heat current jwp, is generated along the “+z” direction:

jwp
+z = −Dwp

+

(
δqwp

T
δz

)
+z

= −1
6

uwp〈Λwp
〉∂qwp

T
∂T

〈
δT
δz

〉
+z

(21)

where Dwp
+ = 1

6 uwp〈Λwp
〉

is the wave packets diffusion coefficient along “+z”. Therefore,
the propagation of an elementary heat current lasts the time interval

〈
τwp
〉

and is driven by

a virtual temperature gradient
〈

δT
δz

〉
over the distance

〈
Λwp

〉
. Of course, in an isothermal

medium the number of scatterings along any direction is balanced by that in the opposite
one, to get a null diffusion over time. On the contrary, when an external thermodynamic
(generalized) force is applied to the system, as for instance a temperature gradient, a heat
flux (in the opposite direction) is generated, and therefore, an increase of the number of
“wave-packet↔ liquid particle” interactions in the same direction. In this case (Soret effect),
events of type (a) of Figure 3 have a larger probability to occur than events of type (b).
Analogously, if the symmetry is broken by a particle concentration gradient (Dufour effect),
the events having a larger probability of occurrence will be the (b). To quantify such
reasoning, let dT

dz = T1−T2
L be the temperature gradient externally applied to a system.

As before, we assume here as a first approximation that the application of an external
temperature gradient does not change the average total number N wp of the wave-packets,
(small gradient assumption). Let then

〈
νp
〉

be the average number per second of “wave-
packet↔ liquid particle” collisions at T0 ≡ T2+T1

2 in the isothermal liquid; due to the presence
of the virtual temperature gradient, which is equally present in all three directions, for each
direction this number is

〈
νp
〉
/6. If an external (small) temperature gradient dT

dz is applied
to the liquid, the total number of collisions per second

〈
νp
〉
/6 is assumed to stay constant

because we have supposed that N wp does not change, but for collisions occurring in the
direction of heat propagation, there will be δ

〈
νp
〉

excess of collisions per second and an
equal defect −δ

〈
νp
〉

in the opposite direction. If the intensity of the temperature gradient
is not too high, we may assume that there will be no non-linear effects and that the initial
state of the system at the microscopic level locally continues to be similar to the one at
uniform temperature, except for thermal excitations along z. Therefore a liquid particle
at a given place in the liquid experiences the same number of collisions per second as if
the temperature was uniform; the only difference with the isothermal case is that there
is an imbalance in the number of collisions with wave-packets that originated in the two
half-spaces along z, one hotter and the other cooler. In other words, while phonons in
liquids are pushed by the local virtual temperature gradient

〈
δT
δz

〉
, the external temperature

gradient dT
dz has the duty of orienting them along its own direction. In the linear range,

we may assume that 2 · δ
〈
νp
〉

is proportional to the temperature gradient dT
dz externally

applied to the liquid. Consequently, there is a heat flux Jext
q = −Kl

dT
dz superimposed to two

equal and opposite heat fluxes +jwp
+z = −Kwp

〈
δT
δz

〉
+

and jwp
−z = −Kwp

〈
δT
δz

〉
−

(Kl represent
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the thermal conductivity of the macroscopic system, Kwp is that related to the collective
DoF, [17,19]) giving:

2 ·
〈
δνp
〉

2 ·
〈
νp
〉
/6

=
dT/dz
〈δT/δz〉 (22)Thermo 2023, 3, FOR PEER REVIEW  14 
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Figure 4. Close-up of the wave-packet–liquid particle interaction shown in Figure 3a. Only the first 
part of the interaction is represented, i.e., that during which the wave packet transfers momentum 
and energy to the liquid particle. 
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Figure 4. Close-up of the wave-packet–liquid particle interaction shown in Figure 3a. Only the first
part of the interaction is represented, i.e., that during which the wave packet transfers momentum
and energy to the liquid particle.

Accordingly, an external temperature gradient dT
dz increases by dT/dz

〈δT/δz〉 the phonon
flux with respect to that corresponding to the local microscopic heat currents jwp due to
spontaneous phonon diffusivity. Equation (22) gives the ratio of the number of “wave-packet
↔ liquid particle” collisions per second due to the applied gradient, to that due to the
random motions of collective thermal excitations. The clusters therefore will experience
2δ
〈
νp
〉

collisions in excess along the direction of the heat flux and will execute as many
jumps per second of average length 〈Λ〉 in excess in the same direction. Consequently,
every particle travels the distance 2〈Λ〉δ

〈
νp
〉

per second along the direction of heat flux

due to the external temperature gradient; this represents the drift velocity
〈

υth
p

〉
of the

liquid particle along z due to the external temperature gradient:

〈
υth

p

〉
= 2〈Λ〉

〈
δνp
〉
=
〈Λ〉

〈
νp
〉

3
dT/dz
〈δT/δz〉 (23)

Equation (23) allows defining the thermal diffusion coefficient Dth
p that we assume in

DML to be the equivalent of DS
T defined in NET (see Equation (6)) that by definition is the

drift velocity of molecules in a unitary temperature gradient:

Dth
p =

〈
υth

p

〉
dT/dz

=
〈Λ〉

〈
νp
〉
/3

〈δT/δz〉 (24)
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Because Dth
p is a signature of the “solute + solvent” mixture, it is correctly given in

Equation (24) in terms of the liquid particle drift 〈Λ〉 caused by the collisions
〈
νp
〉

with
the lattice particle. Even more relevant to the purpose of the manuscript is its (reciprocal)
dependence upon

〈
δT
δz

〉
. In fact

〈
δT
δz

〉
is the only term in Equation (24) that intrinsically

contains an algebraic sign, determining in such a way the possibility for Dth
p to change

sign when some particular conditions occur in a liquid mixture. The expression for the
Soret coefficient ST is easily obtained from its definition given by the ratio between the
thermodiffusion coefficient and that of ordinary diffusion, for which we exploit the well-
known Einstein relation (as specified before, we suppose the mixture sufficiently dilute so
that the motion of molecules, either of solute or of solvent, does not interfere each other):

ST =
Dth

p

Dp
=
〈Λ〉

〈
νp
〉

3〈δT/δz〉/
〈Λ〉2

〈
νp
〉

6
=

2
〈Λ〉 · 〈δT/δz〉 (25)

As for Dth
p , ST in Equation (25) contains its algebraic sign hidden in the term

〈
δT
δz

〉
. We

will discuss the consequences and implications of Equations (24) and (25) in the Section 5.
A direct evaluation of ST through Equation (25) is not a simple task, of course, for this

reason, dedicated numerical evaluations are in due course and their results will be reported
in a separate paper [Peluso, F. et al., in preparation]. However, Equation (25) contains
very useful and important information about the meaning of ST in the DML framework.
Recalling that 〈Λ〉 is the liquid particle drift caused by the

〈
vp
〉

collisions per second with
the lattice particle, Equation (25) becomes:

ST =
2

〈Λ〉 · 〈δT/δz〉 ≈
2
〈δT〉z

(26)

Here 〈δT〉z is the average temperature difference experienced by a solute liquid particle
over the distance 〈Λ〉 along z covered after a collision with a phonon. This is a direct
consequence of the dynamics characterizing the DML and fully in line with the macroscopic
meaning of the Soret coefficient in NET.

We now have all the ingredients to calculate the flux of solute (or solvent) molecules
Jm due to the collisions with phonons in the presence of an external temperature gradient.
If all solute particles have mass mp and their density is Np, we have:

Jm = NpmpDth
p

dT
dz

= Npmp
〈Λ〉

〈
νp
〉

3〈δT/δz〉
dT
dz

= 2 · δ
〈
νp
〉
· Npmp〈Λ〉 (27)

To recover from the present lack of getting a numerical evaluation of Equation (25),
we propose here an analysis of thermodiffusion from another perspective, still in the DML
framework, namely that of the variation of Πwp, or Πth, along the gradient. Besides being an
energy density, qwp

T represents in fact also the pressure Πwp exerted by elastic wave-packets
on the liquid particles. Compiling Equation (13) with Equations (20) and (21) we get:

Πwp
+z ≡ δ+zqwp

T =
1
6

δqwp
T =

1
6

δ

(
jwp

uwp

)
= δ+z

(
jwp

uwp

)
=

∂qwp
T

∂T

〈
δT
δz

〉
+z

〈
Λwp

〉
(28)

Of course also for Πwp the time-averaged pressure generated by the ubiquitous wave-
packets streams in a system without external gradients is zero. This is no longer true in the
presence of a temperature (or a concentration) gradient working on the system. Assuming
as always that the external gradient is small enough that linear deviations suffice to describe
the induced variations due to its application, Equation (22) still holds for

〈
δνp
〉
, i.e., the

increase in the number of collisions due to the external gradient. Such an increase in the
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number of collisions causes in turn an increase in the energy and momentum exchanged
upon the collisions, namely:

δWth =
〈
δνp
〉
· ∆εwp (29)

δFth =
〈
δνp
〉
· ∆pwp (30)

The reader has certainly guessed that δWth and δFth are respectively the total power
dissipated by collisions and the force exerted on the collision target, i.e., the liquid particle
or the lattice particle, depending on which situation prevails in the system, (a) or (b) of
Figure 3. At the Soret equilibrium, δWth is the power needed to sustain the thermal and
concentration gradients of the mixture (the Soret equilibrium is characterized by a positive
rate of entropy production, the ratio δq/T at the cold side being higher than that at the hot
side, ∆s = δq(1/Tc − 1/Th) > 0, while δFth is the net force responsible for the separation of
the two chemical species, for instance, cubes and spheres of Figure 1. Recalling Equations
(10), (13), (14), (22), and (30), and adapting Equation (28) for the continuum to the “discrete”
situation involving the two distinct liquid particles “1” and “2”, we get that:

δFth = σp · ∆Πth =

〈
νp
〉

6
dT/dz
〈δT/δz〉∆pwp = σp · ∆

(
Jwp
q

uφ

)
= σp

[(
Jwp
q

uφ

)
1

−
(

Jwp
q

uφ

)
2

]
(31)

Equation (31) provides a comparison between two expressions for the total force, or
the pressure, exerted on the targets following the application of an external temperature
gradient. Comparing in fact its third and last members, we understand how the imbalance
of the number of collisions influences the dynamical behavior of the mixture. In other
words, Equation (31) tells us which of the two species, “1” or “2”, is pushed by the
collisions to the cold side and why: the chemical species which is pushed towards the cold
side by the external thermal gradient is the one for which the difference ∆

(
Jwp
q /uφ

)
is

positive, and therefore generates a virtual thermal gradient
〈

δT
δz

〉
parallel to the external one,

determining in turn the algebraic sign of
〈

δT
δz

〉
in Equation (25) or Equation (26). Because

the concentration of the solute, i.e., of the less concentrated species, is usually observed in
solutions, one refers to positive or negative Soret depending on its concentration variation.
Actually, when there is a negative Soret coefficient, according to the DML it happens that
δFth, or ∆Πth, is positive for the solvent molecules, which will therefore concentrate on
the cold side, while the solute will concentrate on the hot side due to Newton’s third law.
In general, saying that δFth, or ∆Πth, is positive (negative) means in the DML that the
radiation pressure due to the lattice particle stream on species “1” is higher (lesser) than on
species “2”. Because the system is closed, it will obviously happen that only one of the
two species will be pushed towards the cold side by the stream of lattice particles, while
the other chemical species will move to the hot side due to Newton’s third law (a bit like
cork floats on water while also being attracted by gravity, or a foam floating on the liquid
surface will concentrate towards the axis of rotation in a closed rotating system).

In order to get an expression for ST that can be easily evaluated on an experimental
or numerical basis, we write Equation (31) at equilibrium replacing the expression for the
thermal flux Jq using the Fourier law; we get then:

δFth = σp · ∆Πth = σp ·
[(

Jwp
q

uφ

)
1

−
(

Jwp
q

uφ

)
2

]
= σp ·

[(
KdT/dz

uφ

)
2
−
(

KdT/dz
uφ

)
1

]
(32)

where K is the thermal conductivity. Proceeding now in the reasoning, what happens at the
equilibrium, i.e., when also the concentration gradient is established in the mixture, is that
the power generated by the thermal engine is dissipated against the viscous forces:

Wph ≡Wth = Wη (33)
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The velocity of the liquid particle is
〈

υth
p

〉
defined by Equation (23); accordingly:

 Wth = δFth ·
〈

υth
p

〉
= σp

[(
KdT/dz

uφ

)
2
−
(

KdT/dz
uφ

)
1

]
·
〈

υth
p

〉
Wη = 6πηrp

(〈
υth

p

〉)2 ⇒ (34)

σp

[(
KdT/dz

uφ

)
2
−
(

KdT/dz
uφ

)
1

]
= 6πηrp

〈
υth

p

〉
= 6πηrpDth

p
dT
dz

∣∣∣∣
ext

(35)

In Equation (35) we have used Equation (24) and have indicated with the suffix ext the
external temperature gradient. It is trivial to get:

Dth
p =

σp

[(
KdT/dz

uφ

)
2
−
(

KdT/dz
uφ

)
1

]
6πηrp

dT
dz

∣∣∣
ext

(36)

Introducing the well-known Stokes–Einstein expression for the diffusion coefficient
Dp = KBTav

6πηrp
eventually we get for ST :

ST =
σp

[(
KdT/dz

uφ

)
2
−
(

KdT/dz
uφ

)
1

]
KBTav

dT
dz

∣∣∣
ext

=
δFth

KBTav
dT
dz

∣∣∣
ext

∼=
σp

[(
K
uφ

)
2
−
(

K
uφ

)
1

]
KBTav

(37)

Equations (25) and (37) provide for the first time a simple interpretation of the Soret
effect at the mesoscopic level, they are without matching parameters and can be verified
by means of experiments. Equation (25) is based on elementary principles applied at the
mesoscopic level, while Equation (37) is based on macroscopic quantities. Both equations
and their implications, as well as their capabilities in the comparison with experimental
data on the Soret coefficient and on its sign, will be extensively analyzed in the Section 5.

4. An “Unexpected” Mechano-Thermal Effect in Pure Liquids Explained by Means
of DML

The other cross-effect we will frame in the DML is that discovered by the group of
Noirez a few years ago [6–11]. The effect results from the coupling between an acceleration
field and a thermal field in a confined liquid layer submitted to shear strain. The system
consists of a pure liquid layer confined in between two coaxial disc plates, one is fixed
while the other one is mobile following a Heaviside function or an oscillatory motion, see
Figure 5 for a schematic. The system is observed by far by means of a thermocamera, which
allows for measurement of the thermal field that is being established inside the liquid, as
well its time evolution. When the Heaviside motion law is applied to the mobile plate,
typically the lower one, it undergoes a sudden acceleration in one direction, performs the
expected movement, and then stops for a few seconds. Then it goes back to the starting
point with an acceleration lower than that of the outward path. In the second type of
experiment, the rotating plate oscillates according to a periodic law. The thermal behavior
of the liquid in the two cases is not exactly the same, although the dependence of the
intensity of the mechano-thermal phenomenon, in particular of the temperature difference
that originates with respect to the acceleration field, remains almost the same. From the
classical point of view, even a hardly detectable (faint) heating of the liquid layer facing the
moving plate is not expected. Indeed, at these low frequencies and strain amplitudes, the
energy stored cannot generate viscous heating following the classical empirical evaluation
of the Nahme number (also known as the Brinkman number). Much faster velocities are
needed for viscous liquids, closer to sound velocities. Experiments performed by Noirez
and co-workers revealed instead that unexpectedly liquids confined to sub-millimeter scale
show a thermal response consisting of the cooling of the layer facing the moving plate and
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a corresponding heating of that facing the fixed plate. The aim of this section is to provide
a theoretical interpretation of such counter-intuitive response in the framework of DML.
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Figure 5. Schematic (drawing not to scale) of the experimental device adopted in [11]. The liquid,
glycerol in this case, lies in between the two plates, one of which may rotate, the other is fixed.

Generally, the non-uniform temperature shear bands observed along the strain direc-
tion indicate the formation of a faint temperature gradient in phase with the deformation.
The synchronization of the thermal field with the mechanical strain is a signature of a
mechano-thermal effect of elastic origin indicating that viscous liquids might exhibit ther-
moelastic behavior, as pointed out also by the authors of the experiments [108,109].

Noirez and co-workers pointed out that this response to low-frequency mechanical
stress is typical of amorphous solids, exhibiting a storage shear modulus G′ much higher
than the loss viscous modulus G′′. This is a key point in both of the experiments and
the theoretical interpretation of the DML framework that we are going to show in what
follows. In fact, being the geometry of these experiments of shear strain type, it is implicitly
demonstrated by the experimental results that liquids possess shear elasticity as solids,
contrary to what is generally supposed due to the absence of rigidity, but in line with the
duality of liquids as supposed in the DML. By increasing the frequency of the mechanical
stress and/or the scale on which such stress is applied, the effect disappears, and the
liquid returns to its classical full-viscous behavior (G′ = 0). Nonaffine framework has
provided the physical interpretation of such behavior, consisting of the cut-off of low-
frequency transverse modes, that in turn allows the high-frequency modes to maximize
their effect at the mesoscopic level [16]. In this framework, the authors have assumed that
transverse modes are carried by phonons. Accordingly the DML may provide the missing
ingredient to nonaffine treatment by means of the phonon↔ liquid particle interactions,
where phonons assume the role of transforming the momentum they receive from the
liquid particles in a thermal field. Therefore, f th is the best candidate for the nonaffine
force introduced in the equation of motion of the microscopic building block [16]. In
fact, in the nonaffine framework, there is a competition between the rigid-like behavior of
coordinated clusters and the relaxations via nonaffine motions due to unbalanced forces in
the disordered molecular environment.

Let’s then proceed with the DML interpretation. The key is provided indeed by
the elementary lattice particle ↔ liquid particle interaction, described in Figure 3b. The
acceleration of the moving plate generates a velocity gradient through the liquid, which
in turn gives rise to a momentum flux, directed towards the fixed plate, following the
relation Jp = −ηl

dυ
dz , with ηl the liquid viscosity. According to the DML, and also following
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Rayleigh’s reasoning, the momentum flux is dimensionally an energy density and generates
a temperature gradient. The liquid particles, pushed by the momentum flux, transfer their
excess impulse to the phonons of the liquid, following the (b) event of Figure 3; the phonons
emerge from each single impact with an increased energy, being frequency-shifted. They
are then pushed and collected towards the fixed plate, giving rise to a temperature gradient
directed towards the fixed plate. The rationale is the same adopted to justify Equation (22),
where however in this case the imbalance of collisions

〈
δνwp

〉
affects the wave packets

instead of the liquid particles, and is due to the ratio between velocity gradients instead
of temperature:

2
〈
δνwp

〉
2
〈
δνwp

〉
/6

=
dυ/dz
〈δυ/δz〉 (38)

The supposed linear dependence this time is between the external velocity gradient
dυ
dz and that virtual, normally present in mechanical equilibrium for a liquid particle between

two successive collisions with the lattice particles,
〈

δυ
δz

〉
. Each wave packet executes 2

〈
δνwp

〉
jumps per second in the direction of the momentum flux, each long 〈Λwp〉; they accumulate
towards the fixed plate and decrease near the moving one, generating the temperature field
observed. The product

υ
wp
∇υ = 2〈Λwp〉

〈
δνwp

〉
(39)

defines the drift velocity of the thermal front due to the velocity gradient. The phenomenon
is therefore very rapid because it is determined by a succession of (almost) elastic collisions,
which propagate very quickly. Obviously, the higher thermal content of the liquid in prox-
imity to the fixed plate compensates for the lower thermal content near the rotating plate,
keeping the thermal balance unchanged (neglecting the losses toward the environment).
It is important to highlight that the lattice particle↔ liquid particle collision also explains
why a temperature gradient (i.e., a generalized flux-force crossed effect) is generated inside
the liquid instead of a simple heating due to the energy stored as a consequence of the
mechanical stress (G′ >> G′′), as one would have expected on the basis of a classical
interpretation of the elastic modulus. At the same time, the phenomenon can be observed
only on the small length scale as that adopted in the experiments, the faintness of the
thermal gradient would be in fact destroyed by the thermal unrest of the molecules in
larger liquid volumes.

When the plate stops, the system relaxes and reaches the temperature it had at the
beginning. During the return of the rotating plate to the starting position, the liquid is in
exactly the same condition it had at the beginning of the experiment, and the temperature
gradient forms again. This interpretation is in line with all the basic hypotheses made by
the authors, including the one on the number of Grüneisen. In this particular case, the
expansion/compression effect of the material medium would be a consequence of the
density of the phononic contribution.

We will now try and get an expression for the (rate of) temperature variation due
to the occurrence of events of type (b) of Figure 3 which are at the base of the observed
phenomenon. In fact, what happens inside the liquid is that the mechanical energy injected
into the liquid by the rotating plate is (partially) commuted in thermal energy carried
by wave-packets. This energy, as we have seen, accumulates close to the fixed plate. To
do this, we begin by considering that the momentum flux Jp through the liquid due to
the plate rotation represents also the pressure ∆Πl exerted by the liquid molecules on the
wave-packets, and is given by [110]:

Jp =
(

ρυ2
)

l
= ∆Πl (40)

where ρl and υl are the density and shear speed of liquid, respectively. Neglecting dissipa-
tion effects due to the liquid viscosity, and remembering Equation (13), the momentum flux
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is converted into the pressure that pushes the phonon’s stream and gives rise to a heat flux
along the opposite direction:

Jp = ∆Πl ≡ −∆Πth = −∆

(
Jwp
q

υwp

)
(41)

where υwp is the wave-packet average speed. As is well known, the momentum flux
corresponds even to the energy density ∆Wth injected into the system by the mechanical
stress. The duality of the DML provides us a key to (partially) convert at a mesoscopic level
such mechanical energy in thermal energy, i.e., that carried by phonons that are excited
at higher frequencies upon interactions of type (b) of Figure 3 with the liquid particles.
Neglecting variations with respect to the temperature, we may use the average macroscopic
value given by the ratio υwp = h/∆t, where h is the height of the liquid sample (parallel
to the rotation axis), and ∆t the time necessary to establish the observed temperature
difference across the liquid. Such value will be a multiple of the ratio 〈Λ〉/〈τ〉. Getting now
the temperature difference ∆T (or the temperature gradient ∆T/h) is trivial, being enough
to divide Equation (41) by the specific heat (per unit of volume) of the substance, i.e.,:

∆T =
1

(ρC)l
∆

(
Wth

υwp

)
=

1
(ρC)l

∆

(
Jwp
q

υwp

)
≈

υ2
l

Cl
(42)

Using the data contained in [11], we give now a numerical estimation of ∆T from
Equation (42). First, we use the value of the momentum flux averaged over the disc surface,〈

Jp
〉
= 1

A

R∫
0
(ρυ)2

l dA = ρl ω
2R2

2 , where ω is the plate angular velocity and R = 20 mm its

radius. The liquid used in the experiment was glycerol, for which ρl = 1.26 g/cm3 and
cp = 2.39 J/g·K. Using a value of 100 µm for h and 10 Hz for ω, one gets ∆T ≈ 0.06 K of
the correct order of magnitude as measured and reported in [11].

It is relevant to point out that the above interpretation is made possible because the
DML foresees the presence of wave-packets that, interacting with the liquid particles, behave
in this case not only as carriers of the thermal energy but also as converters of mechanical
energy into thermal energy.

5. Discussion

In this paper, we have used the DML to explain two cross effects in liquid mixtures
and in a pure liquid out of equilibrium, namely the thermodiffusion and a mechano-
thermal effect recently detected in isothermal liquids in shear strain geometry. Both have
been interpreted thanks to the duality of liquids, supposed in the DML as constituted
by metastable solid-like icebergs fluctuating in the liquid amorphous phase [17]. Elastic
perturbations, hence the heat, are carried by elastic wave-packets that interact with the
liquid particles exchanging with them energy and momentum. In particular, the exchange
of momentum allows to provide an interpretation of the selective migration of solute
and solvent molecules, which are pushed along the thermal current, i.e., the current of
wave-packets, following the dynamics shown in Figure 3a. More in detail, the separation
of the components of a liquid mixture upon the application of a thermal gradient, is due to
the capability of the forces acting at the mesoscopic level in a liquid to convert the heat flux
into a momentum flux. An external temperature gradient has the effect of orienting the
local gradients along the same direction. When instead ST or Dth are negative means that
the local virtual gradients are oriented along the direction opposite to that of the external
gradient (see Equations (25) and (37)). This circumstance produces a thermodiffusive drift
along the direction opposite to that of the external gradient, resulting in a negative value of
ST . In other words, the thermodiffusive drift of the solvent prevails on that of the solute,
consequently we will observe the solute migrating to the hot side and the solvent to the
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cold one because the force due to the radiation pressure exerted by wave-packets on the
solvent particles is higher than that produced on the solute particles.

Through the equations describing the DML and the liquid particle ↔ lattice particle
interactions, we have provided for the first time an expression (actually two) for the
Soret coefficient ST without matching parameters, falsifiable (in the Popperian meaning)
because verifiable through experiments and manifesting even the sign dependence typical
of the Soret coefficient. The order of magnitude of ST as well the sign inversion will be
compared in this section with experimental data available in the literature. The time-
reversal mechanism shown in Figure 3b is instead responsible, in our vision, for the Dufour
effect and of the mechano-thermal effect described in Section 4.

In this section, we will discuss the equations and deepen the concepts introduced in the
previous two paragraphs. Let’s then start with the expressions for ST . Equation (26) allows
us to speculate on a very intriguing aspect related to the meaning and definition of ST in
NET. As widely discussed in [17,19], in the phonon-liquid particle collisions of Figure 3a, part
of the phonon energy is transformed into kinetic and potential energies of the liquid particle.
The interaction definitively has an activation threshold for potential energy and, depending
on how much energy is absorbed by internal DoF, the rest of the transferred energy will
increase the kinetic energy of the liquid particle. When an external temperature gradient
is applied to a system, the first effect that occurs is the establishment of the temperature
gradient across the system, according to the Cattaneo–Fourier equation [19]. Therefore,
once the internal DoF have reached the statistical equilibrium in terms of the distribution of
their degree of excitation depending on the local temperature, the phenomenon of matter
diffusion takes place due to the temperature gradient and at the expense of the kinetic
energy reservoir, Equation (21). Inelastic effects dominate the dynamics during the transient
phase, leaving the control to the kinetic reservoir at the steady-state, where only the elastic
effects of the elementary interactions matter. Accepting the above reasoning ST may be
seen as the activation energy for the thermodiffusion process:

C(T) = C0 exp
(
−R/ST

RT

)
= C0 exp

(
− 1

TST

)
≈ C0 exp

(
−〈δT〉z

T

)
(43)

where C is the solute concentration: if the energy RT available at the temperature T exceeds
the activation energy R/ST , or alternatively, the average temperature of the system exceeds
the temperature difference over 〈Λ〉 following the elementary interaction (see Equations (25)
and (26)), the phenomenon takes place. It should be interesting to theoretically speculate
on whether, and how, such activation energy is related to the presence in liquids of gapped
momentum states [111,112]. We have already discussed in [17] how the “lattice particle↔
liquid particle” interaction can be assumed as responsible for such phenomenon in liquids
exhibiting k-gap.

Of the two expressions obtained for ST , Equation (25) is based on elementary principles
applied at the mesoscopic level, while Equation (37) is based on macroscopic quantities. A
question that the reader has certainly wondered is what one expects from their comparison.
Let’s then consider the third member of Equation (37); the numerator is the force exerted
by the thermal field to displace the solute or solvent, molecules to generate and sustain the
concentration gradient that gives origin to the Soret effect. At equilibrium the (average)
energy available in the system is KBTav. The ratio between such two quantities is just
the mean displacement of the solute (solvent) particle, 〈Λ〉, due to the collisions with the
phonons, ST = δFth

KBTav
dT
dz |ext

≈ 1
〈Λ〉·dT/dz ≈

1
〈δT〉z

. Consequently, Equations (25) and (37)

formally represent two similar expressions for the Soret coefficient (apart from a numerical
factor due to statistical averages).

Equation (37) allows us to open a very interesting discussion, based on several points.
The first and more immediate is that the last member is obtained by simplifying the
temperature gradient in the two parentheses in the numerator with that in the denominator.
Equation (37) has a huge relevance because it allows it to evaluate ST more easily than
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Equation (25). Nevertheless, the difficulty in this case arises from the fact that the physical
quantities involved are not, in principle, those of the bulk materials, but rather those in the
effective configuration in which they are in the mixture. What helps is that in the DML,
solvent, and solute particles are not seen as isolated molecules but rather as islands, those
we have dubbed icebergs or liquid particles. Incidentally, the proportionality of Equation (37)
to the cross-section of the solute particle copes with the law ST ∝ M2/3

p to the solute mass
early evidenced by Emery and Drickamer [46] and successively by other authors [40,52] for
solutes of large molecular weight. For such large particles, in fact, the surrounding layer of
solvent molecules is relatively less relevant than for small solute particles.

In Table 1 some examples of Soret coefficients evaluated from Equation (37) are pro-
vided for both positive and negative ST . Table 2 collects data for the rations K/u elaborated
from thermodiffusion in liquid mixtures performed with a Klusius–Dickel device. Original
data report only which of the two species involved in each single experiment concen-
trate on the hot or cold side, however, this is enough to verify how the direction of the
thermodiffusion drift is correctly predicted from Equation (37).

Table 1. Experimental values for Soret coefficient (last column, units 10−3K−1) for mixtures of
polyvinylpyrrolidone K90 of 360,000 amu in various solvents as listed in first column, measured and
reported in [113]. Thermodiffusion of this macromolecule was experimentally studied in several solvents;
in particular, an inversion of the sign of the Soret coefficient was detected in buthanol and propanol. The
columns 2 and 3 report the values of the ratios K/u for the several substances (units 10−3 Jm−2K−1).
Their differences are reported in fourth column. It is interesting to note the sign inversion for the same
two solvents as experimentally detected. Data for K′s and u′s are deduced from [114].

Mixture ( K
u )l ( K

u )p ( K
u )l−( K

u )p ST

K-90 in water 0.4031 0.137 0.266 19.82

K-90 in methanol 0.1830 0.137 0.046 0.38

K-90 in ethanol 0.1440 0.137 0.007 2.31

K-90 in buthanol 0.1205 0.137 −0.016 −5.78

K-90 in propanol 0.1197 0.137 −0.017 −6.01

Table 2. Values of the ratios K/u elaborated from experimental data of thermodiffusion in liquid
mixtures obtained with the Klusius-Deckel device [115]. The columns 2 and 3 report the values of the
ratios K/u for the substances (units 10−3 Jm−2K−1). Their differences are reported in fourth column.
It is interesting to note the sign inversion for the same two solvents as experimentally detected. Data
for K′s and u′s are deduced from [114]. Data from the two Tables, in particular for the ratios K/u,
must however be taken cum grano salis and considered with caution, a thorough evaluation of ST in
the DML should be elaborated from Equation (25).

Mixture ( K
u )1 ( K

u )2 ( K
u )1−( K

u )2 Component Drifting to Cold Plate

Hexane-
Carbontetrachloride 0.1130 0.1120 0.0010 2

Hexane-Cyclohexane 0.1130 0.0978 0.0152 2

Toluene-Cyclohexane 0.1100 0.0978 0.0122 2

Toluene-Benzene 0.1100 0.1028 0.0072 2

Benzene-Chlorobenzene 0.1028 0.1021 0.0007 2

Benzene-Nitrobenzene 0.1028 0.0990 0.0038 2

Bromobenzene-
Carbontetrachloride 0.0973 0.1120 −0.0157 1

m-Xylene-o-Xylene 0.0978 0.0974 0.0004 2
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Figure 6 shows another way to conceptually validate the expression of ST given by
Equation (37). Figure 6a collects the data obtained by Bierlein, Finch, and Bowers for several
mixtures of benzene and n-heptane [116]. The interesting point is that ST for such liquid
mixtures increases with the average temperature for all the relative concentration values of
the two components. Even more interesting is the fact that the three plots obtained as a
function of temperature cross the “zero” value for ST at about the same temperature, around
60 ◦C. More precisely, ST is negative for temperature below such threshold, goes through
zero, and becomes positive for average temperature above the threshold. In Figure 6b we
have plotted the values of the ratio K/u for the two components; it is straightforward to
note that such a ratio assumes the same value around the temperature of 60 ◦C. Because the
sign of ST in Equation (37) depends just upon the difference of the ratios K/u for the two
components, this observation confirms that Equation (37) is a good candidate to foresee
even the sign inversion of ST . As specified above and also in Section 3, Equation (25), that
is in principle the correct expression for ST in the DML, contains the sign dependence
hidden into the term 〈δT/δz〉, more precisely in the orientation of 〈δT/δz〉 with respect to
the external temperature gradient. Supporting the above reasoning is the dependence of
Dth

p in Equation (25) upon 〈δT/δz〉 instead of the external gradient. This is not surprising
because the thermodiffusion is a signature of the mixture, therefore it shall be dependent
only upon the mixture’s parameters. Moreover, the reader must not be fooled by the inverse
proportionality with 〈δT/δz〉: it tells us that as large the local virtual gradient 〈δT/δz〉, as
difficult will be to observe the thermodiffusion, as one would have expected. Of course,
〈δT/δz〉 as well 〈Λ〉 or

〈
νp
〉

will change according to the relative concentration of the
components, or to the temperature of the system.
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A more extensive collection of experimental data on thermodiffusion is in due course
and their comparison with the theoretical predictions of Equations (25) and (37) will be
shown elsewhere. Because we do not have access to a lab, the only possibility to provide
further quantitative evaluations of Equation (37) is through experimental data available
in the literature for which enough data should even be available for K’s and uφ’s. As it
concerns the validation of Equation (25), dedicated numerical analysis will be the core of
another work.

The comparison between Equations (25) and (37) opens to a more wide reasoning con-
cerning the displacement of the energy and mass barycenters of a mixture as a consequence
of the thermodiffusion. Making reference here to Figure 7, the drawing on the left shows a
mixture, “0”, constituted by two chemical species, “1” and “2”, in a container in thermal
equilibrium at T0 with the environment; only the exchange of thermal energy is allowed
with the environment. For such a system the mass, S0, S1, S2, and energy, E, barycenters
are all coincident and positioned in the cell middle. Figure 7b on the right shows the
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same system once the Soret equilibrium is reached. In this situation, we have a heat flux
Jq = −K dT

dz crossing the system, with Tw > T0 > Tc, so that the four barycenters are no
longer coincident. In the drawing we have supposed “1” to be the solute, with a molecular
mass ρ1 and ratio (K/u)1 higher than those of the solvent “2”, ρ2 and (K/u)2; this explains
the positioning of the three mass barycenters. As it concerns the energy barycenter E, it is
shifted towards the warmer side due to the higher thermal content of the system. Several
considerations are now in order. (i) The force acting on the mixture’s components pushes
the solute particles toward the cold side; consequently, the solvent particles are pushed
toward the warm side. The fact that S2 is shifted toward the opposite side with respect to
S1, is a direct consequence of the III Principle of dynamics, being the system closed, so that
a net volume flux is not allowed, JV = 0. This is a relevant point because some authors
in the past have argued that the phenomenon of thermodiffusion was characterized by a
violation of the III Principle [47]. (ii) The energy introduced into the system at the expense
of the external thermal field ensures the stability of the mass and energy distributions
obtained as effects of the thermodiffusion and gives also rise to a positive rate of entropy
production. However, to keep such distributions stable with time, it is necessary that part
of this energy is converted into momentum, which pushes the solute and solvent molecules
towards their respective barycenters (see Equations (29) and (30) and related comments).
Let’s then calculate this momentum rate, for which we will see that the duality of liquids of
the DML is a necessary prerequisite, being the phonons the carriers of such momentum
flux. If ∆t is the time interval to reach the Soret equilibrium, the net mass current JM will
be given by (Figure 7b):

JM = (ρ1 − ρ2) ·
∆z
∆t
· A = (ρ2 − ρ1) · Dth

1
dT
dz
· A (44)

where A is the cell cross area and Dth
1 the coefficient of thermal diffusion of species “1”.

The mechanical momentum flux, d(mυ)
dt ≡ υ dm

dt at equilibrium, is then given by:

υ
dm
dt

=
∆z
∆t
· JM =

∆z
∆t
· (ρ1 − ρ2)

∆z
∆t

A = (ρ1 − ρ2) ·
(

Dth
1

dT
dz

)2
A (45)
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Figure 7. (a) Closed system constituted by a mixture of two substances at thermal equilibrium with
the environment; only thermal energy can be exchanged with the environment. (b) How the mass
S0, S1, S2 and energy E barycenters of the same system as in (a) appear at the Soret equilibrium, by
supposing that the species “1” has and higher density than species “2”.

Equation (45) gives the net rate of transfer of momentum from the phonons to the
solute particles in the course of the processes of type (a) shown in Figure 3.
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It is instructive and interesting to perform the same calculation but in a situation in
which the system is closed and thermally isolated, and the starting situation is the one in
which the two components are already separated, for instance with a solute concentrated
solution on the bottom of the cell and the pure solvent on the top. We all know that the
final distribution reached by the system will be that of a homogeneous mixture; we could
thus think of a time reversal experiment with respect to thermal diffusion, known in NET
as the ordinary diffusion giving rise to the Dufour effect. Of course, the constraint JV = 0 is
valid also in this case. Equation (44) now becomes:

JM = (ρ0 − ρ1) ·
∆z
∆t

A = (ρ0 − ρ1) · D1
dn
dz

A (46)

ρ0 is the density of the solution, D1 the solute diffusion coefficient and dn
dz the time averaged

value of the solute concentration gradient. The momentum transfer accordingly is:

υ
dm
dt

=
∆z
∆t
· JM =

∆z
∆t
· (ρ1 − ρ2)D1

dn
dz

A = (ρ0 − ρ1)

(
∆z
∆t

)2
A (47)

This time Equation (47) represents the momentum transfer from the liquid particles to
the phonons, following the events represented in Figure 3b. The reader may now wonder
how it is possible that the momentum of an isolated system has changed. The duality of
the DML makes the answer straightforward; in fact, the phonon population was initially
uniformly distributed in the system, which was indeed in thermal equilibrium, but not the
population of solute particles, for which a concentration gradient is present at the beginning
of the experiment. The mass flow due to the concentration gradient produced in turn a
phonon concentration gradient opposite to the solute concentration gradient, due to an
excess of collisions with solute particles in the direction of the mass flow, i.e., following
just the type (b) processes of Figure 3. This quantity is used by the liquid particles to shift
their barycenter mass. Of course, and as is well known, the Dufour effect produces a (faint)
thermal gradient, that we identify as that of the phonon concentration gradient that is
established in the system as a consequence of the liquid particle current. Once again, the
two events shown in Figure 3 represent the elementary interactions occurring in liquids,
either in equilibrium or out of equilibrium, their time-reversibility being the best candidate
to justify the Onsager reciprocity law at the mesoscopic level [17,19].

The mechano-thermal effect analyzed in Section 4 even deserves some comments.
Equation (42), with all the limitations and simplifications adopted, shows that the tempera-
ture difference is proportional to the square of the shear speed, making the ∆T orientation
independent upon the shear versus, as expected. The energy and momentum input depend
only upon the momentum of the moving disc, and the ∆T observed is independent of the
amount of substance or of the gap thickness of the layer (Cl is the specific heat per unit of
volume). In the comparison of our results with the experimental observation, we should on
one side keep in mind either the simplifications adopted in obtaining Equation (42), and
the experimental difficulties in getting a stable and well-thermally isolated experimental
setup. Nevertheless, on the other side, we could speculate on those aspects that may appear
contradictory. One of these is that in some cases an apparent inversion of the thermal
gradient was observed upon inversion of the shear motion. This effect could have the same
origin as that observed in those cases where more than a single gradient was observed
in the liquid, a sort of alternation between hot and cold layers. A possible explanation,
although on a purely speculative basis, could be that the stationary plate reacts to the
inversion of the shear direction with a sort of “mirror” effect, pushing back the thermal
excitations. The liquid near the stationary plate perceives the shear inversion as a sort of
mirror effect of the stationary plate. Very interestingly, upon the revision process, one of the
Reviewers called my attention to the non-Fourier processes recently identified in various
thermal mechanisms. The review by G. Chen [117] may help us to understand the origin
of such effects. Generally, the momentum of normal phonons is conserved in scattering
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processes; in systems where normal phonon scattering dominates, phonons under temper-
ature gradient can acquire a non-vanishing drift velocity similar to fluid flow driven by
a pressure gradient: this is named the phonon hydrodynamic regime, which originates
from the Landau treatment of superfluid Helium [103], and has been already dealt with
in detail in a previous paper on the DML [17]. The Casimir–Knudsen is one among the
several heat conduction phenomena associated with the phonon hydrodynamic regime. A
necessary (but not sufficient) condition for the Casimir–Knudsen regime to take place is that
the phonon mean free path 〈Λ0〉 is comparable to, or larger than, the characteristic length
of the system, say 〈l〉. In the system under study, the phonons propagating in the pure
liquid interact with the material constituting the plates. Hence the problem is restricted
to considering such interface, of thickness 〈l〉, and the related highly uncertain boundary
conditions. These uncertainties arise because of the atomic-scale defects present at the
interface affected by physical roughness, in turn responsible for how phonons are scat-
tered because the phonon wavelength amounts to several nanometers, as estimated also in
DML ([17], Table 1). To bypass the problem a “specularity” parameter is usually introduced,
accounting for the fraction of “specularly” reflected phonons, which should depend on the
phonon wavelength and surface roughness [118]. The speculative explanation proposed
above could then be a consequence of the shear strain and may represent coherence bands
of phonons originated just at the interface between the plate and the liquid. The incoming
phonons experience reflection and transmission, being responsible for the temperature
drop across the interface. This phenomenon, quantified in Section 4, could explain either
the inversion of the temperature drop upon inversion of the plate rotation or the formation
of multiple temperature layers.

One of the characteristics of the Casimir–Knudsen regime is that the thermal con-
ductivity is linearly proportional to the specific heat, as is the case just for the thermal
conductivity Kwp

l in the DML (see Equation (12) in reference [19]). During the thermal
transient, the heat pulse generates heat wave propagation (second sound) similar to a
mechanical pulse generating a sound wave in a solid. Thus, as extensively described
in [19], phonon heat propagation can be described using a Cattaneo-type (telegraph)
equation [117]. In addition to thermal transport, it has also been predicted that signatures
of phonon hydrodynamic transport can be observed from neutron and Brillouin scattering
experiments [17,119]. In conclusion, the DML allows a direct comparison with many other
interesting aspects characterizing either the solid-like behavior of liquids or the presence of
phonons as carriers of elastic (and thermal) excitations.

Returning to Equation (28) or Equation (31), it is interesting to note that ∆Πth rep-
resents the radiation pressure exerted by the current of wave-packets on the liquid par-
ticles following the interaction. This pressure may also be regarded as a sort of osmotic
pressure determining the displacement of liquid particles following the collisions with
the wave-packets. Indeed, to a pressure difference, ∆Πth the pure liquid responds with
the self-diffusion of the liquid particles [17,19]. The tunnel effect could be regarded as a
semi-permeable membrane, that works allowing only the passage of liquid particles and
preventing that of lattice particles. A similar argument was raised by Ward and Wilks [120]
in dealing with the mechano-thermal effect observed in HeII.

Finally, some considerations could be dedicated to a comparison between the capa-
bilities of DML applied to cross effects in NET and the previous theoretical models for
thermodiffusion. As anticipated in Section 2, we do not want here to enter into the debates
of the models or make a historical excursus, that is however the topic of other interesting
papers [12,13], but only propose a critical comparison of the DML with some of the most
relevant alternative models. The first comment is dedicated to the interesting paper by
Najafi and Golestanian [47], in which they suppose the thermodiffusion to be due to the
Soret-Casimir effect. They in fact calculate such force in several configurations, however
this method is intrinsically unable to foresee negative values for ST . Besides, they have
also argued that in some cases the Soret effect violates the III Principle of dynamics, a
circumstance that has been definitively excluded in the present manuscript because of
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the liquid’s duality. Duhr and Braun [52] have modeled the thermodiffusion due to the
gradients of thermodynamic potentials inside mixtures. They have applied the model to
macromolecular solutions, in particular DNA, finding good correspondence also with the
mass and size of the solute, however only in those cases with positive ST .

Two very interesting historical reviews are represented by the works of Eslamian
and Saghir [12] and Rahman and Saghir [13], from which a large amount of models
of thermodiffusion jumps to the eye, very different from one another and often from
experimental data. These reviews are united by similar conclusions on the several models
they deal with. In particular, it is affirmed that many theoretical models, initially accepted
by the scientific community, were found wrong after more careful analysis [49,121]; many
others correctly reproduce the thermodiffusion only in gases, while “in liquids, reliable and
satisfactory predictive theories are still lacking”; furthermore “the largest part of models
necessitate of external matching parameters to be defined, making the models dependent
on the experiments” [12]. A relevant point is the fact that quite all the models either do not
predict negative ST or fail in its prediction [14].

All the above points of weakness are overcome by the DML, as discussed above.

6. Conclusions and Future Perspectives

In the previous papers, the DML has shown its capabilities in the calculation of the
specific heat of liquids, thermal conductivity, the modeling of diffusion, the relevance, and
the calculation of the relaxation times involved in the liquid dynamics at the mesoscopic
scale, the justification of the Cattaneo equation for heat propagation, the self-diffusion
in pure liquids, etc. In the present manuscript, its application field has been extended
to the modeling of thermodiffusion and of the Soret equilibrium, as well the Dufour
effect. In particular, the DML provides a simple model not only for positive but also for
negative values of ST . Moreover, DML has been used to provide the first-ever theoretical
interpretation of a new unexpected mechano-thermal effect discovered in liquids in shear
geometry; at the same time, DML represents, to the author’s knowledge, the first theory
able to explain the conversion of mechanical energy into thermal energy, either in pure
liquids or in liquid mixtures. Comparison with experimental results has been provided for
all the cases considered.

The three major ingredients of the DML that make it new with respect to other
liquid models are: (i) The dual character of liquids, supposedly composed by quasi-solid
liquid particles and wave-packets, or lattice particles. (ii) The interaction between these
two populations, in particular, its inelastic character and the time reversibility; the first
allows modeling the mutual transfer of momentum other than energy between the lattice
and the liquid particles, and the second makes this interaction as a good candidate for the
elementary interaction at the base of the Onsager’s time-reversibility that characterizes the
NET. (iii) The so-called “tunnel effect” of the interactions between lattice and liquid particles,
whose effects deeply influence the transient phases of a thermodynamic perturbation on
the system.

Although there are still many aspects characterizing the liquid structure and their
dynamics to be verified, a large field of applications for the DML represents a good test bed
for such a model, also in view of further developments. The next big challenge will certainly
be the modeling of viscosity, it will not be a surprise if many insights and similarities are
found with the works of Eyring [104–106,122–124]. Recently [125], experiments performed
in Newtonian fluids, such as water and glycerol, revealed for the first time the presence and
long-lasting permanence of elasticity on a mesoscopic scale. The elastic response in such
liquids persisted indeed for time laps of microseconds, hence four orders of magnitude
longer than the typical intermolecular relaxation time. Such rubber-like elasticity and large
strain response in fluid glycerol were interpreted by the authors as due to the relaxation
processes of collective modes in metastable groups of molecules (those we have dubbed
icebergs in the DML). Consequently, one may argue that the lifetime of such icebergs is equal
to, if not larger than, the relaxation time of elastic propagation, as already hypothesized in
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a previous paper [17]. The authors also point out that such modes require the existence of a
transient state with solid-like long-range correlations, although different from the bulk state.
This study has then revealed that liquid shear elasticity could be very underestimated on
such a mesoscopic scale and high-frequency domain with respect to what is measured with
the classical methods on a macroscopic scale. The same effect could affect also the viscosity
value on the same scale, hence it is arguable that measuring viscosity at a mesoscopic scale
in high frequency domain may reveal a response very different with respect to that typical
of liquids. Once again, the DML is potentially able to provide the basis for the viscosity
modeling in Newtonian fluids. This shall be the topic of future works.

Understanding how liquid parameters, as correlation lengths, sound velocity, thermal
conductivity, etc., evolve from equilibrium to non-equilibrium conditions is an interesting
topic that could be achieved by performing experiments in non-stationary temperature
gradients. Also very interesting is to understand whether and how a temperature gradient
affects the viscous coupling, and this could be understood by performing experiments by
applying a temperature gradient to a stabilized isothermal liquid, ensuring that the average
temperature remains unchanged, preventing the convection instability and performing
light scattering experiments during the transient, exactly the situation that is normally
avoided in all the experiments. An alternative way is to heat a small volume of liquid by
hitting it with a focalized high-power laser beam.

One point that deserves deepening is certainly that of the evaluation of the parameter
m, i.e., the collective DoF available at a given temperature and pressure for a liquid particle. In
one of the previous papers [17], generic numerical results on dual models have already been
commented on, although the calculation of the parameter m necessitates to be supported by
specific calculations. This and other simulations will be the core of future works currently
in preparation.

The proposed interpretation of the mechano-thermal effect discovered by Noirez and
co-workers stimulated the suggestion for a further experimental set-up that could shed
more light on such phenomenon, namely: 1. It would be very interesting if it were possible
to carry out a scattering experiment in the liquid cavity, although this would imply serious
experimental difficulties; 2. To carry out the experiment by moving both plates in opposite
directions (provided to have a suitable rheometer). If, on one side, this certainly increases
the momentum flux transferred to the liquid, and hence to the phonons, on the other,
it becomes extremely interesting and instructive to see “if” and “how” the temperature
gradient is formed, and also verify the L−3 rule. 3. To evaluate a possible effect due to the
extension of the surface area of the two plates (see Equations (40)–(42)).

We want to close the paper with a further consideration of the capabilities of the DML,
trying to answer the question of why an approach based on non-equilibrium statistical
mechanics of a dual system succeeds whereas other molecular, traditional approaches fail.
The gold example is the Boltzmann equation and its application to transport processes in
dense fluids. Prigogine [126] highlighted that it relates the derivatives of the one-particle
velocity distribution function with the collision operator. Such collisions are characterized
by their instantaneity and localization at a point in the space. This simplification may be
fruitful in gases but can fail when applied to liquids, where the duration of the interactions
can be of the same order of magnitude as the interval between two successive interactions
or of the relaxation times. The DML approach, although considering the interactions in a
scheme that is simple and powerful at the same time, bypasses this weak point by means
of the tunnel effect and considers the interactions as inelastic. The tunnel effect allows
introducing the relaxation time(s) and moreover separates the interactions one from the
other. The inelastic character ensures the capability of exchanging momentum other than
energy between the two reservoirs, that of the liquid particles and the lattice particles. This
last point will be the core of future works.
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