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Abstract: This article demonstrated an easily applicable method for measuring the similarity between
a pair of point patterns, which applies to spatial or temporal data sets. Such a measurement was
performed using similarity-based pattern analysis as an alternative to conventional approaches,
which typically utilize straightforward point-to-point matching. Using our approach, in each point
data set, two geometric features (i.e., the distance and angle from the centroid) were calculated and
represented as probability density functions (PDFs). The PDF similarity of each geometric feature
was measured using nine metrics, with values ranging from zero (very contrasting) to one (exactly
the same). The overall similarity was defined as the average of the distance and angle similarities. In
terms of sensibility, the method was shown to be capable of measuring, at a human visual sensing
level, two pairs of hypothetical patterns, presenting reasonable results. Meanwhile, in terms of the
method′s sensitivity to both spatial and temporal displacements from the hypothetical origin, the
method is also capable of consistently measuring the similarity of spatial and temporal patterns.
The application of the method to assess both spatial and temporal pattern similarities between two
deforestation data sets with different resolutions was also discussed.

Keywords: deforestation hotspots; generic method; similarity; spatial pattern; temporal pattern

1. Introduction

The similarity between multiple spatial patterns (or their representations) has often
been approached by a ‘distance′ concept, often after normalization in which the range
(maximum–minimum) is used as a unitary metric. The dimensions often include both
space and time plus other metrics of interest. In a two-dimensional plot, ‘lack of fit′ can
be expressed in terms of distance along either the x- or y-axis (as in standard deviations)
or as Euclidean distance (as in correlation coefficients). Beyond two dimensions, direct
visualization is more challenging, but Euclidean distances can be readily calculated. A
specific form of this problem also occurs in discussions of deforestation maps.

Measurement of the spatial agreement between deforestation maps from various
producers is usually carried out based on the point-to-point degree of matching (i.e., with
regard to their omission and commission disagreements; see, e.g., [1–5]). Nevertheless, spa-
tial discrepancies due to omission and commission disagreements between deforestation
maps from various producers often trigger political debates, regardless of the overall num-
ber, the temporal trend, the spatial pattern, or the operational forest definition (threshold)
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used, which are mostly counterproductive to efforts for providing salient, legitimate, and
credible data on deforestation for relevant policy formulation as guidance on the ground [6].
As suggested by [7], when the problem is situated within a political zone, science should
be a mediator.

In fact, point distributions over space from two different data sets can have zero point-
to-point degrees of matching, while they actually are similar in the sense that hypotheses
of random pattern generation can be rejected. Previously, considering such a possibility, [8]
proposed an approach to measure the spatial goodness of fit based on the degree of
matching between two spatial patterns at multiple resolutions; that is, using scanning
windows of various sizes, ranging from 1 pixel, 2 × 2 pixels, 3 × 3 pixels, to maximum
sizes of the extent, which are weighted using an exponential decay function of the window
size such that degree of matching resulting from larger windows is less weighted. Yet,
several significant innovations have been made to methods for measuring the similarity of
spatial patterns (i.e., concerning spatial pattern recognition) [9].

Moreover, other than important issues related to the spatial agreement between de-
forestation maps from various producers, there are also significant issues on the temporal
agreement between deforestation time-series data from various producers, as several pro-
ducers have developed near-real-time deforestation monitoring systems derived from
various sources of satellite imageries with different spatial resolutions and using vari-
ous change-detection algorithms. A discussion of uncertainty in image interpretation at
different spatial resolutions relating to metrics relevant for users in a specific location
was provided by [10]. Meanwhile, [11,12] provide discussions of uncertainty in various
change-detection algorithms and thresholds.

This article summarizes our study, which explored a generic method for measuring
spatial and temporal pattern similarities between deforestation data sets with different
spatial resolutions based on similarity-based pattern analysis. To achieve our objectives,
three steps were carried out consecutively: (i) conceptualizing the method; (ii) evaluating
the robustness of the method through sensibility and sensitivity analyses; and (iii) applying
the method using two deforestation data sets in Indonesia for 2020, derived from MODIS
and Landsat-8 OLI remote-sensing imagery.

The method offers an alternative to conventional approaches to accuracy assessment
of deforestation patterns in time and space across differences in resolution, which should
apply to various deforestation monitoring data sets, ranging from near-real-time [13,14]
to sub-annual and annual [15,16] monitoring systems, and covering local and national
scales [4–6] to global scales [2,3,5]. Beyond the deforestation data sets, another potential
application of the method is for validating spatio-temporal patterns of simulation results
from land-change models, such as [17–20].

2. Materials and Methods
2.1. Methods

This subsection elaborates the conceptual framework of the method and how its
robustness was evaluated through sensibility and sensitivity analyses before its application
to the measurement of spatial and temporal pattern similarities between two deforestation
data sets derived from two satellite imageries with different spatial resolutions (i.e., MODIS
and Landsat-8 OLI). For sensibility and sensitivity analyses, the method was assessed using
hypothetical data, either spatial or temporal.

2.1.1. Conceptual Framework

To measure the similarity between various patterns in point data sets, some type of
approximate point matching should be applied instead of exact-point pattern matching [21].
Moreover, regarding the presence of uncertainty in the data, the location of each point can
be represented as a probability density function (PDF) [22–26].

Inspired by [27], in which the similarity between various 3D shapes was sophisti-
catedly measured based on the similarity of probability density functions (PDFs) and
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cumulative distribution functions (CDFs) of some geometric features, we adopted the
method for measuring the spatial pattern similarity between various point data sets based
on PDF similarity measures of the distance (δ) and angle (θ) from a fixed point to each
point of each data set. With regard to the fairness of measuring δ and θ, we defined the
fixed point as the centroid of the extent where all point data sets under comparison were
located (Figure 1).

Figure 1. We compared the spatial pattern similarity of two point data sets by measuring PDF
similarities for the distance (δ) and angle (θ) from the centroid of the extent (red cross) to each point
of each data set (a,b).

As temporal data are, in fact, comparable to spatial data [28], where temporal data
are also projected using a particular coordinate system (i.e., Cartesian), with the x-axis
referring to time and the y-axis referring to magnitude, in this study, we also applied
the same method for measuring temporal pattern similarity between various temporal
data sets. Furthermore, we treated the temporal data as spatial data, where the x-axis
was considered as the longitude, and the y-axis was considered as the latitude (Figure 2).
Similarly, we measured the temporal pattern similarity between various temporal data
sets based on the PDF similarities of δ and θ, which, in this case, were measured from the
centroid of the graph.

Moreover, to measure the PDF similarity, 9 metrics were selected from the 45 metrics
reviewed in [29], where the selected metrics resulted in a similarity of zero for very contrast-
ing pairs of PDFs and a similarity of one for PDFs which were exactly the same (Figure 3).
Meanwhile, the other metrics reviewed in [29] resulted in similarity values beyond sensible
scales; for example, the metrics of City Blok L1, Czekanowski, and Squared-Chord resulted
in similarity values ranging from −1 to 1. The equations of the nine selected metrics
applied in this study are provided in Table 1.
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Figure 2. We compared the temporal pattern similarity of two time-series data sets by measuring the similarity of the PDFs
of distance (δ) and angle (θ) from the centroid of the graphs where all time-series data sets under comparison were plotted
(red cross) to each point within the pair of time series data sets (a,b).

Figure 3. Two pairs of hypothetical PDFs: PDFs (a,b) represent very contrasting pairs of PDFs, while PDFs (c,d) represent
exactly matching PDFs. We selected nine metrics out of the 45 metrics reviewed in [29], where the nine selected metrics
resulted in a similarity of 0 for (a,b) and a similarity of 1 for (c,d).
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Later, PDF similarity was measured for both of the geometric features used in this
study—that is, the distance (δ) and angle (θ) from the centroid to each point within the
pair of data sets under comparison—which applies to either spatial or temporal data sets.
The overall pattern similarity between various spatial or temporal data sets was calculated
from the average between the PDF similarities of δ and θ. Figure 4 summarizes the overall
workflow of our method.

Table 1. Equations of nine similarity measures (S) between PDF pairs, p and q, with n ordinal classes.
We selected these nine PDF similarity measures out of the 45 metrics reviewed by [29], as their values
ranged from 0 (for a pair of very contrasting PDFs) to 1 (for a pair of exactly matching PDFs); the
other metrics reviewed by [29] resulted in similarity values ranging beyond sensible scales (e.g., the
metrics of City Blok L1, Czekanowski, and Squared-Chord metrics had values ranging from −1 to 1).

Metric Equation
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2.1.2. Sensibility Analyses

Two pairs of hypothetical spatial patterns were used to evaluate the method in terms
of its sensibility (Figure 5). The first pair was two images of mirrored eagles with the same
size and pattern. The second pair was two images of turtles, having the same pattern
but different sizes. All four images were located within the same extent at the centered
position, converted into point data sets, and projected using the WGS 1984 World Mercator
coordinate system. It is visually obvious that both the eagle and turtle pairs had different
spatial distributions across their respective extent. However, concerning the geometric
features used in this study—namely, the distance (δ) and angle (θ) from the centroid to
each point within each pair—it is also visually obvious that the eagle pair should have a
relatively high PDF similarity of δ but relatively low PDF similarity of θ, and vice versa
for the turtle pair. Thus, using these hypothetical patterns, we evaluated the method with
regard to how it was capable of measuring their spatial pattern similarities, compared to
the human visual sense.
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Figure 4. Overall workflow of the proposed method for measuring spatial and temporal pattern
similarity between pairs of data sets.

2.1.3. Sensitivity Analyses

First, to evaluate the method′s sensitivity due to systematic displacement, sensitivity
analyses were carried out using two hypothetical spatial patterns: (i) a circular shape
with a diameter of about 1.0567 m and (ii) a square shape with dimensions of about
1.0567 × 1.0567 m2. All patterns were projected to the same extent, converted into point
data sets, and projected using the WGS 1984 World Mercator coordinate system. Each
pattern was then shifted by distances of 0 m, 0.1 m, 0.2 m, . . . , 1 m, 1.5 m, 2 m, and 2.5 m,
and at angles of 0◦, 30◦, 60◦, . . . , 330◦. Considering the dimensions of each shape, with
a maximum radius of about 1.057 m for the circular shape and that about 1.494 m for
the square shape, using the maximum shifting distance of 2 m in our sensitivity analyses
should represent no matching at all with the origin, while the original patterns of the
shapes were still maintained. Furthermore, we also aimed to evaluate the consistency of
the method in measuring the systematic displacement of the shapes at certain distances
in all directions, using shifting angles ranging from 0◦ to 330◦. The similarity measures
of the method were then evaluated in terms of sensitivity to systematic shifts from the
origin. Hence, in this case, the geometric features used in this study (i.e., distance, δ; and
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angle, θ) were measured from the centroid of each pattern of origin, not from the centroid
of the extent.

Figure 5. Two pairs of hypothetical spatial patterns used for evaluating the method in terms of its sensibility. With regard to
the geometric features used in this study—namely, the distance (δ) and angle (θ) from the centroid to each point within each
pair—the method should result in relatively high PDF similarity of δ but relatively low PDF similarity of θ for the eagle pair
(a,b), and vice versa for the turtle pair (c,d). The red cross is the centroid of the extent.

Second, to evaluate the sensitivity of the method due to changes in spatial resolution,
sensitivity analyses were carried out using two hypothetical spatial patterns of mirrored
eagles, as shown in Figure 5, which were resampled at resolutions of 2×, 4×, 6×, . . . , 20×
coarser than the resolution of the origin (Figure 6). With regard to the sensitivity of the
method due to changes in the spatial resolution of a pair of exactly the same patterns, the
spatial pattern similarity between each eagle pattern at its original resolution, as shown in
Figure 6a,b, and their resampled patterns at a resolution ranging from 2× to 20× coarser
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were measured. Moreover, regarding the sensitivity of the method due to changes in
spatial resolution of a pair of contrasting patterns, the spatial pattern similarity between
the eagle pattern at its original resolution (Figure 6a) and its mirrored pattern (Figure 6b)
at its original resolution, as well as at its resampled resolution ranging from 2× to 20×
coarser, were measured.

Figure 6. A pair of hypothetical mirrored eagle patterns at original resolution (a,b) and their resampled patterns at a 20×
coarser resolution (c,d). These hypothetical data sets were used to evaluate the method in terms of its sensitivity to changes
in resolution.

Third, we also performed sensitivity analyses for hypothetical temporal data sets
of deforestation by (i) shifting a hypothetical reference deforestation curve to the left
from 16 days to 80 days, representing an acceleration of detection (Figure 7); (ii) shifting
the reference to the right from 16 days to 80 days, representing a delay of detection;
(iii) shifting the reference upward from 1 pixel to 5 pixels, representing an overestimation
of detection; and (iv) shifting the reference downward from 1 pixel to 5 pixels, representing
an underestimation of detection.
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2.2. Deforestation Data Sets

Several deforestation hotspots in Indonesia for 2020 were detected using the 8-day
composite of MODIS at a resolution of 500 m using the algorithm developed by [30].
These were compared with higher-spatial-resolution deforestation hotspots in Indonesia
for 2020 based on Landsat-8 OLI data at a resolution of 30 m using the classification method
described in Appendix A (see Figure 8). In this case, to synchronize the data temporally,
deforestation hotspots resulting from the 8-day MODIS composite were aggregated with a
16-day composite time interval.

Deforestation hotspots derived from MODIS were determined by a threshold of
change in a composite index, which was calculated using short-wave infrared and near-
infrared bands [30]. Meanwhile, deforestation hotspots derived from Landsat-8 OLI were
defined as pixels experiencing land clearing, according to a classification method using red,
short-wave infrared, and near-infrared bands. Detailed methodology for the deforestation
detection method derived from MODIS has been provided elsewhere [30], while a general
description of the classification method applied to deforestation detection derived from
Landsat-8 OLI is provided in Appendix A.

Figure 7. A hypothetical reference deforestation time-series (red squares) was shifted to the left from
16 days to 80 days (grey squares)—representing an acceleration of detection—to perform sensitivity
analyses of the proposed method in terms of its robustness to measure the similarity of temporal
patterns. The blue cross is the centroid of the graph.

Figure 8. Deforestation hotspots (red) for 2020 derived from Landsat-8 OLI imagery.
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Furthermore, within each deforestation pixel derived from MODIS, with a size of
500 × 500 m2, the deforestation intensity was calculated based on Landsat-8 OLI with a
pixel size of 30× 30 m2, ranging from 0% to 100%. In addition, with regard to the quality of
Landsat-8 OLI due to cloud and haze, the clarity of pixels in Landsat-8 was also considered,
ranging from 0% to 100%.

In this study, we applied our method to measure the pattern similarity—either spatial
or temporal—between deforestation data sets in Indonesia for 2020 derived from MODIS,
with a threshold ranging from 50 to 130, and deforestation data sets in Indonesia for 2020
derived from Landsat-8 OLI, considering clarity ≥50% and deforestation intensity ≥50%.
All point data sets were projected using the WGS 1984 World Mercator coordinate system.
The maps of deforestation data sets used in this study are shown in Figures S1–S7, while
the time-series data sets used in this study are shown in Figures S8 and S9.

2.3. Tool

Based on our method described above, we developed a headless tool using the open-
source modeling platform NetLogo 6.2.0, which is detailed in [31]. For the input data of
the tool, all data sets used in this study were formatted into comma-separated variable
(csv) format, with the first line as header, the first column as longitude for spatial data sets
or time for temporal data sets, and the second column as latitude for spatial data sets or
magnitude for temporal data sets. As we were dealing with combinations of pairs of data
sets, either spatial or temporal, we therefore determined the centroids of the spatial and
temporal data sets externally (i.e., outside the tool), which were also formatted into the csv
files. The tool, including all the input data used in this study, can be downloaded from
ipb.link/similarity-tool.

3. Results
3.1. Sensibility of the Method

The PDFs of angle from the centroid to each point (θ) for each pair of hypothetical
patterns shown in Figure 5 clearly indicate that pair of eagle patterns had contrasting θ

PDFs, while the pair of turtle patterns had exactly similar θ PDFs (Figure 9). On the other
hand, Figure 10 shows that the pair of eagle patterns had exactly similar δ PDFs, while the
pair of turtle patterns had contrasting δ PDFs.

Furthermore, using the nine metrics listed in Table 1, the PDF similarities of θ and δ

for each pair shown in Figures 9 and 10 were measured. In this case, the overall similarity
was calculated as the average PDF similarity for θ and δ. Table 2 indicates that the spatial
patterns of pair of eagle shapes shown in Figure 5 had relatively low to fair similarity, in
terms of θ, and very high similarity in terms of δ, which was consistent across the nine
metrics; vice versa, the pair of turtle shapes has very high similarity for θ and relatively
low to fair similarity for δ, which was also consistent across the nine metrics.

In addition, although the Soergel, Ruzicka, and Tanimoto metrics use different ap-
proaches to measure similarity between PDF pairs (Table 1), they consistently resulted in
exactly the same results. Thus, henceforth, we use the term Soergel–Ruzicka–Tanimoto to
refer to these three identical metrics.

3.2. Sensitivity of the Method

Figures 11–13 show the sensitivity of the method to the systematic displacement of
two hypothetical shapes—a circle with a diameter of about 1.0567 m and a square with
dimensions 1.0567 × 1.0567 m2—in terms of how the nine similarity metrics used in our
method measure changes in spatial pattern similarity due to shifting from the origin,
with regard to the similarity of the angle from the centroids of origins (Figure 11), the
similarity of the distance from the centroids of origins (Figure 12), and the overall similarity
(Figure 13). It is obvious that the method performed consistently across these three types
of similarity: θ, δ, and overall similarity (i.e., the average of the θ and δ similarities). The
Fidelity metric produced the most optimistic similarity measure, bordering the upper
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edge of the envelopes, while the Soergel–Ruzicka–Tanimoto metric produced the most
pessimistic similarity measure, bordering the lower edge of the envelopes.

Figure 9. PDFs of angle from the centroid to each point (θ) for each pair of hypothetical patterns shown in Figure 5:
(a,b) the pair of eagle patterns and (c,d) the pair of turtle patterns.

Table 2. Spatial pattern similarity between two pairs of hypothetical patterns (shown in Figure 5),
measured using nine metrics (as listed in Table 1), in terms of the geometric features used in this study
(i.e., angle, θ, and distance, δ, from the centroid of the extent to each point). The overall similarity
was calculated as the average of similarity of θ and similarity of δ.

Metric
Pair of Eagle Patterns Pair of Turtle Patterns

θ δ Overall θ δ Overall

S∅rensen 0.48 1.00 0.74 0.98 0.39 0.68

Soergel 0.31 1.00 0.66 0.95 0.24 0.60

Intersection 0.48 1.00 0.74 0.98 0.39 0.68

Ruzicka 0.31 1.00 0.66 0.95 0.24 0.60

Tanimoto 0.31 1.00 0.66 0.95 0.24 0.60

Cosine 0.53 1.00 0.77 1.00 0.53 0.76

Jaccard 0.36 1.00 0.68 1.00 0.33 0.66

Dice 0.53 1.00 0.77 1.00 0.50 0.75

Fidelity 0.53 1.00 0.76 1.00 0.67 0.83
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Figure 10. PDFs of distance from the centroid to each point (δ) for each pair of hypothetical patterns shown in Figure 5:
(a,b) pair of eagle patterns and (c,d) pair of turtle patterns.

Figure 14 shows the sensitivity of the method to changes in spatial resolution using
the number of pairs of hypothetical shapes with different resolutions: (a) the eagle pattern
shown in Figure 6a compared with itself at different resolutions, ranging from 1× to 20×
coarser; (b) the eagle pattern shown in Figure 6b compared to itself at different resolutions,
ranging from 1× to 20× coarser; and (c) the eagle pattern shown in Figure 6a compared
with its mirrored pattern shown in Figure 6b at different resolutions, ranging from 1×
to 20× coarser. Consistent with the previous results, the Fidelity metric was the most
optimistic similarity measure, bordering the upper edge of the envelopes, while the metric
of Soergel–Ruzicka–Tanimoto was the most pessimistic similarity measure, bordering the
lower edge of the envelopes.
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Figure 11. PDF similarity of angle from the centroid of origin to each point (θ) of two hypothetical shapes: (a) circle with
diameter of about 1.0567 m, and (b) square with dimensions of 1.0567 × 1.0567 m2, due to shifting from the origin in all
directions. Green crosses indicate similarity of θ from all nine metrics. Red lines on the upper edge of the envelopes indicate
the similarity of θ using the Fidelity metric. Blue lines on the lower edge of the envelopes indicate the similarity of θ using
the Soergel–Ruzicka–Tanimoto metric.

Figure 12. PDF similarity of distance from the centroid of origin to each point (δ) of two hypothetical shapes: (a) circle with
diameter of about 1.0567 m, and (b) square with dimensions of 1.0567 × 1.0567 m2, due to shifting from the origin in all
directions. Green crosses indicate the similarity of θ from all nine metrics. Red lines on the upper edge of the envelopes
indicate the similarity of δ using the Fidelity metric. Blue lines on the lower edge of the envelopes indicate the similarity of
δ using the metric of Soergel–Ruzicka–Tanimoto.



Geomatics 2021, 1 477

Figure 13. Overall spatial pattern similarity (i.e., the average of similarity of θ and similarity of δ) for two hypothetical
shapes: (a) circle with diameter of about 1.0567 m, and (b) square with dimensions of 1.0567 × 1.0567 m2, due to shifting
from the origin in all directions. Green crosses indicate overall similarity from all nine metrics. Red lines on the upper edge
of the envelopes indicate the overall similarity using the Fidelity metric. Blue lines on the lower edge of the envelopes
indicate the overall similarity using the metric of Soergel–Ruzicka–Tanimoto.

These findings indicate that the similarity measures resulting from the method de-
creased consistently when the resolutions of the pairs were much coarser than the original
image at relatively low decreasing rates: of about −0.007, −0.009, and −0.005 per km
resolution decrease from the original in Figure 14a–c, respectively. This suggests that,
when the method is applied to measure the similarity of pairs of data sets with different
resolutions, the result should be calibrated with regard to the resolution difference effect at
rates ranging from −0.005 to −0.009 per km resolution difference from the origin.

Figure 15 shows the method′s sensitivity to the systematic displacement of hypo-
thetical reference deforestation time-series data due to acceleration, delay, overestimation,
and underestimation of detection. The results suggest that the method was less sensitive
to acceleration or delay (∆x) but relatively very sensitive to overestimation or underes-
timation (∆y). The similarity of the two temporal data sets decreased at rates of about
−0.0009 per day of departure due to acceleration or delay, while it decreased at rates of
about −0.004 per pixel of departure due to overestimation or underestimation. With regard
to deforestation alerts coming from different sources, this implies that a relatively high
temporal pattern similarity (of about 0.9) between two data sets derived from different
monitoring systems can imply a time lag of about 111 days or a magnitude lag of about
25 pixels. Again, still consistent with the previous results, the Fidelity metric was the most
optimistic similarity measure, bordering the upper edge of the envelopes, while the metric
of Soergel–Ruzicka–Tanimoto was the most pessimistic similarity measure, bordering the
lower edge of the envelopes.

3.3. Spatial Pattern Similarity of Two Deforestation Data Sets with Different Spatial Resolutions

Our method yielded relatively high overall similarity (i.e., the average of similarity of θ
and similarity of δ) for the spatial pattern between the deforestation hotspots in Indonesia in
2020 derived from Landsat-8 OLI using the classification method described in Appendix A
(at clarity ≥50% and deforestation intensity ≥50%), and the deforestation hotspots in
Indonesia in 2020 derived from MODIS using the change-detection algorithm developed
by [30] (at change-detection thresholds ranging from 50 to 130). The similarity from all
nine metrics ranged from about 0.81 to about 1.00 (see Figure 16). Although at the scale
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of Figure 16, the upper edge of the envelopes—indicating the Fidelity metric (red line)—
seemed relatively insensitive to changes of MODIS-detection thresholds, Table 3 suggests
that a threshold of about 100 was optimal. However, the lower edge of the envelopes—
indicating the metric of Soergel–Ruzicka–Tanimoto (blue line)—suggests that the most
optimal MODIS detection threshold was about 80, with regard to spatial pattern similarity.

Figure 14. Overall spatial pattern similarity (i.e., the average of similarity of θ and similarity of δ) of various pairs of
hypothetical shapes with different resolutions: (a) eagle pattern (shown in Figure 6a) compared with itself at different
resolutions, ranging from 1× to 20× coarser; (b) eagle pattern (shown in Figure 6b) compared with itself at different
resolutions, ranging from 1× to 20× coarser; and (c) eagle pattern (shown in Figure 6a) compared with its mirrored pattern
(shown in Figure 6b) at different resolutions, ranging from 1× to 20× coarser. Green crosses indicate overall similarity from
all nine metrics. Red lines on the upper edge of the envelopes indicate the overall similarity using the Fidelity metric. Blue
lines on the lower edge of the envelopes indicate the overall similarity using the metric of Soergel–Ruzicka–Tanimoto.
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Figure 15. Sensitivity of the method on hypothetical temporal deforestation data sets, due to: (a) acceleration; (b) delay;
(c) overestimation; and (d) underestimation of deforestation detection, compared to the reference. Green crosses indicate
overall similarity (i.e., the average of similarity of θ and similarity of δ) from all nine metrics. Red lines on the upper edge of
the envelopes indicate the overall similarity using the Fidelity metric. Blue lines on the lower edge of the envelopes indicate
the overall similarity using the metric of Soergel–Ruzicka–Tanimoto.

Figure 16. Overall similarity (i.e., the average of θ and δ similarities) of the spatial pattern between
deforestation hotspots in Indonesia in 2020, derived from Landsat-8 OLI (at clarity ≥50% and
deforestation intensity ≥50%) and deforestation hotspots in Indonesia in 2020 derived from MODIS
(at change-detection thresholds ranging from 50 to 130). Green crosses indicate overall similarity
from all nine metrics. Red lines on the upper edge of the envelopes indicate the overall similarity
using the Fidelity metric. Blue lines on the lower edge of the envelopes indicate the overall similarity
using the metric of Soergel–Ruzicka–Tanimoto.
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Table 3. Overall similarity (i.e., the average of θ and δ similarities) using nine metrics of spatial
pattern between deforestation hotspots in Indonesia in 2020, derived from Landsat-8 OLI (at clarity
≥50% and deforestation intensity ≥50%) and deforestation hotspots in Indonesia in 2020 derived
from MODIS (at change-detection thresholds ranging from 50 to 130).

Metric
MODIS Change-Detection Threshold

≥50 ≥60 ≥70 ≥80 ≥90 ≥100 ≥130

S∅rensen 0.9444 0.9530 0.9607 0.9620 0.9600 0.9518 0.8920

Soergel 0.8950 0.9104 0.9246 0.9268 0.9232 0.9083 0.8054

Intersection 0.9444 0.9530 0.9607 0.9620 0.9600 0.9518 0.8920

Ruzicka 0.8950 0.9104 0.9246 0.9268 0.9232 0.9083 0.8054

Tanimoto 0.8950 0.9104 0.9246 0.9268 0.9232 0.9083 0.8054

Cosine 0.9960 0.9970 0.9977 0.9978 0.9975 0.9964 0.9765

Jaccard 0.9904 0.9934 0.9953 0.9957 0.9947 0.9920 0.9474

Dice 0.9952 0.9967 0.9977 0.9978 0.9974 0.9960 0.9729

Fidelity 0.9942 0.9960 0.9971 0.9974 0.9971 0.9963 0.9866

3.4. Temporal Pattern Similarity of Two Deforestation Data Sets with Different Spatial Resolutions

Our method resulted in relatively low to fair overall similarity of temporal patterns
between deforestation hotspots in Indonesia in 2020 derived from Landsat-8 OLI using
the classification method described in Appendix A, at clarity ≥50% and deforestation
intensity ≥50%, and deforestation hotspots in Indonesia in 2020, derived from MODIS
with the change-detection algorithm developed by [30], at change-detection thresholds
ranging from 50 to 130; the similarity from all nine metrics ranged from about 0.25 to
about 0.71 (Figure 17 and Table 4). Both the upper edge of the envelopes from the metric of
Fidelity (red line) and the lower edge of the envelopes from the metric of Soergel–Ruzicka–
Tanimoto (blue line) suggest that increasing MODIS detection threshold above 90 will
consistently increase the temporal pattern similarity with deforestation hotspots derived
from Landsat-8 OLI.

Figure 17. Overall similarity (i.e., the average of similarity of θ and similarity of δ) of temporal pattern
between deforestation hotspots in Indonesia in 2020, derived from Landsat-8 OLI at clarity≥50% and
deforestation intensity ≥50%, and deforestation hotspots in Indonesia in 2020, derived from MODIS
at change-detection thresholds ranging from 50 to 130. Green crosses indicate overall similarity from
all nine metrics. Red lines on the upper edge of the envelopes indicate overall similarity using metric
of Fidelity. Blue lines on the upper edge of the envelopes indicate overall similarity using metric of
Soergel–Ruzicka–Tanimoto.
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Table 4. Overall similarity (i.e., the average of similarity of θ and similarity of δ) using nine metrics
of temporal pattern between deforestation hotspots in Indonesia in 2020, derived from Landsat-8 OLI
at clarity ≥50% and deforestation intensity ≥50%, and deforestation hotspots in Indonesia in 2020,
derived from MODIS at change-detection thresholds ranging from 50 to 130.

Metric
MODIS Change-Detection Threshold

≥50 ≥60 ≥70 ≥80 ≥90 ≥100 ≥130

S∅rensen 0.4130 0.3913 0.4783 0.3696 0.4783 0.5435 0.6522

Soergel 0.2797 0.2664 0.3417 0.2446 0.3690 0.4456 0.5416

Intersection 0.4130 0.3913 0.4783 0.3696 0.4783 0.5435 0.6522

Ruzicka 0.2797 0.2664 0.3417 0.2446 0.3690 0.4456 0.5416

Tanimoto 0.2797 0.2664 0.3417 0.2446 0.3690 0.4456 0.5416

Cosine 0.5327 0.5127 0.5653 0.4792 0.5841 0.6124 0.6968

Jaccard 0.3896 0.3787 0.4349 0.3395 0.5059 0.5491 0.6151

Dice 0.5005 0.4769 0.5365 0.4464 0.5675 0.6072 0.6950

Fidelity 0.5055 0.4767 0.5454 0.4956 0.5500 0.5998 0.7107

4. Discussion
4.1. Spatial Sensibility

In terms of sensibility, we demonstrated that our method could measure at a human
visual level of sensing two pairs of hypothetical patterns (Figure 5), showing reasonable
results (Figures 9 and 10 and Table 2). As we described previously in the Methods section,
we used two geometric features of point patterns—the distance and angle from the centroid
to each point within the extent. For further studies, other geometric features (e.g., the
square root of the area of the triangle between three random points from the centroid [27])
may be explored.

4.2. Spatial Sensitivity

In addition, the results of the sensitivity analyses performed in this study suggest that,
when the method is applied for measuring the similarity of pairs of spatial data sets with
different resolutions, the result should be calibrated, with regard to the resolution difference
effect, at rates ranging from −0.005 to −0.009 per km resolution difference from the origin.
This implies that, when deforestation hotspots derived from MODIS with a resolution
of 500 m are compared to those derived from Landsat-8 OLI with a resolution of 30 m,
their similarity, as measured using the method, should be calibrated with a resolution lag
of about 0.470 km such that that the calibrated similarity will be around 0.0024 to 0.0042
higher than the measurement.

Moreover, we also found that our method consistently produced envelopes, with up-
per and lower edges always being bordered by the Fidelity and Soergel–Ruzicka–Tanimoto
metrics, respectively. Thus, we suggest a new single metric that considers both optimistic
and pessimistic metrics, which is the average of these two abovementioned metrics, which
we denote by Ruzicka–Fidelity, as follows:

S =

(
∑n

i=1 min(pi ,qi)

∑n
i=1 max(pi ,qi)

)
+

(
∑n

i=1
√

piqi
)

2
, (1)

where S denotes the similarity measure for a pair of PDFs (p and q) with n ordinal classes.
In this case, we selected Ruzicka among the other two (Soergel and Tanimoto) metrics, as
Ruzicka provides the most sophisticated equation compared with Soergel and Tanimoto
(see Table 1).

We applied Equation (1) to perform sensitivity analyses of the systematic displacement
of two hypothetical shapes: (i) a circle with a diameter of about 1.0567 m and (ii) a
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square with dimensions of 1.0567 × 1.0567 m2; our previous results regarding the overall
similarity (as shown in Figure 13) were enhanced by the Ruzicka–Fidelity metric, as
shown in Figure 18. Furthermore, Figure 18 suggests that the Ruzicka–Fidelity metric
provides a more sensible measure, in terms of its proportionality, as it resulted in an
overall similarity ranging from 0.4 to 0.5 when displacement from the origin took place
at about half the size of the maximum radii of the shapes and decreased to relatively low
similarity (of about 0.1–0.2) when displacement from the origin took place at about the
maximum radii of the shapes. The results also suggest that, when displacement from the
origin took place much further than the maximum radii of the shapes, the method still
appreciated the pattern similarity between the shifted shapes and their origins, with an
overall similarity between 0 and 0.1, which is not recognized in conventional accuracy-
assessment methods, where the agreement between pairs of spatial patterns is measured
based on their point-to-point degree of matching. Appendix B illustrates how our method,
based on pattern-similarity analysis, differs from conventional omission/commission
disagreement approaches using a confusion matrix.

With regard to spatial data sets of deforestation hotspots derived from two satellite
imageries with different resolutions (e.g., MODIS and Landsat-8 OLI), results suggested
that: (i) when the higher resolution data set (Landsat-8 OLI) is considered as the reference,
spatial pattern similarity between the two data sets is relatively poor, indicating relatively
far departure from the reference such that the change-detection algorithm of the lower-
resolution data set (MODIS) should be revisited, but (ii) when both data sets (MODIS and
Landsat-8 OLI) are considered as two versions of information on deforestation hotspots,
then the classification method used by the higher-resolution data set (Landsat-8 OLI)
should also be revisited.

Figure 18. Overall spatial pattern similarity (i.e., the average of similarity of θ and similarity of δ) of
two hypothetical shapes: (a) circle with diameter of about 1.0567 m and (b) square with dimensions
of 1.0567 × 1.0567 m2, due to shifting from the origin in all directions. Green crosses indicate overall
similarity from all 10 metrics. Orange lines in the middle of the envelopes indicate overall similarity
using the new metric of Ruzicka–Fidelity (Equation (1)). Vertical blue lines indicate half size of the
maximum radii of the shapes, while vertical red lines indicate the maximum radii of the shapes.

4.3. Temporal Sensitivity

In terms of the sensitivity of our method to displacement in temporal data (Figure 15),
our method was found to be much more sensitive in similarity measures to changes in the
y-axis (∆y) due to overestimation or underestimation, rather than changes in the x-axis
(∆x) due to acceleration or delay; as such, it may be constrained by different dimensions
of the x-axis or y-axis of temporal data. Thus, we performed rescaling of our hypothetical
time-series data such that Figure 7 was transformed into Figure 19.
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Figure 19. Normalized hypothetical time-series data as shown in Figure 7. Red squares indicate
the origin; grey squares indicate left shifts from the origin, representing an acceleration of detection
from 16 days to 80 days. The blue cross is the centroid of the graph.

We found that the method still had similar sensitivity as our previous results shown in
Figure 15, where the method was more sensitive to changes in y-axis variables than changes
in x-axis variables (Figure 20). Thus, we argue that rescaling the x- and y-axes of time-series
data before applying our method should not be performed due to the persistence of the
sensitivity results. Moreover, we also argue that rescaling time-series data can degrade the
fundamental meaning of the results, as shown by Figures 15 and 20, where the level of
similarity due to a shift in the x-axis dropped from a relatively high similarity to a relatively
low similarity when the data were normalized.

Figure 20. Sensitivity of the method on hypothetical deforestation temporal data sets after normal-
ization, due to possibility of: (a) acceleration, (b) delay, (c) overestimation, and (d) underestimation
of deforestation detection, compared to the reference. Green crosses indicate the overall similarity
(i.e., the average similarity of θ and similarity of δ) from all nine metrics. Red lines on the upper edge
of the envelopes indicate the overall similarity using the Fidelity metric. Blue lines on the lower edge
of the envelopes indicate the overall similarity using the metric of Soergel–Ruzicka–Tanimoto.
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We then performed linear interpolation on our hypothetical deforestation time-series
data shown in Figure 7 to downscale the temporal resolution from a 16-day time interval
to a 1-day, 1-h, and 1-min interval, aimed at assessing the sensitivity of our method to
displacement in temporal data with regard to the temporal resolution. Figure 21 shows
the interpolated results at a time slice with a 1-day interval for our hypothetical deforesta-
tion time-series data, as well as their displacement, in terms of acceleration of detection
from 16 days to 80 days (see Figure 7).

Figure 21. Interpolated hypothetical deforestation time-series data shown in Figure 7 at a time slice
of a 1-day interval. Red squares indicate the original time-series; grey squares indicate left shifts from
the original, representing an acceleration on detection from 16 days to 80 days. The blue cross is the
centroid of the graph.

The sensitivity results to changes in y-axis variables (∆y) due to overestimation or
underestimation, as well as changes in x-axis variables (∆x) due to acceleration or delay,
using linearly interpolated data at time-slices of 1-day, 1-h, and 1-min intervals are shown
in Figures 22–24, respectively, and summarized in Table 5. The results suggested that
the most sensible sensitivity of our method to changes in y-axis variables (∆y), due to
overestimation or underestimation, as well as changes in x-axis variables (∆x), due to
acceleration or delay, was given by temporal data sets at a 1-day temporal resolution.

Table 5. Sensitivity summary of the method on hypothetical temporal data sets on deforestation after interpolation at a
time slice of 16 days, 1 day, 1 h, and 1 min, due to the possibility of (a) acceleration, (b) delay, (c) overestimation, and
(d) underestimation of deforestation detection, compared to the reference.

Time
Interval

Equidistance
Interpolation Slice
from the Original

time Interval

Linear Slope, Indicating Sensitivity Due to

Acceleration,
from 16 to 80 Days
from the Reference

Delay,
from 16 to 80 Days
from the Reference

Overestimation,
1 Pixel to 5 Pixels

from the Reference

Underestimation,
1 Pixel to 5 Pixels

from the Reference

16-day 1× −0.0026 −0.0027 −0.0526 −0.0379

Daily 16× −0.0026 −0.0045 −0.0230 −0.0214

Hourly 384× −0.0026 −0.0027 −0.0034 −0.0033

Minutely 34560× 0.0001 0.0000 0.0000 0.0000
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Figure 22. Sensitivity of the method on hypothetical temporal data sets on deforestation after inter-
polation at a time slice of 1 day, due to the possibility of (a) acceleration, (b) delay, (c) overestimation,
and (d) underestimation of deforestation detection, compared to the reference. Green crosses indicate
overall similarity (i.e., the average of θ and δ similarities) from all nine metrics. Red lines on the upper
edge of the envelopes indicate the overall similarity using the Fidelity metric. Blue lines on the lower
edge of the envelopes indicate the overall similarity using the metric of Soergel–Ruzicka–Tanimoto.

Thus, we applied linear interpolation to temporal deforestation data in Indonesia
for 2020 to downscale its temporal resolution from a 16-day interval to a 1-day interval
(Figure S9). The overall similarity (i.e., the average of θ and δ similarities) of the temporal
pattern between deforestation hotspots in Indonesia in 2020 derived from Landsat-8 OLI
(at clarity ≥50% and deforestation intensity ≥50%) and deforestation hotspots in Indonesia
in 2020 derived from MODIS (at change-detection thresholds ranging from 50 to 130), after
interpolation with a 1-day interval, is shown in Figure 25.

Moreover, relatively high overall similarity (0.81–1.00) was obtained by our method
when it was applied to measuring the spatial pattern similarity between deforestation
hotspots in Indonesia in 2020 derived from Landsat-8 OLI (using the classification method
described in Appendix A, at clarity ≥50% and deforestation intensity ≥50%) and defor-
estation hotspots in Indonesia in 2020 derived from MODIS (using the change-detection
algorithm developed by [30], at change-detection thresholds ranging from 50 to 130).
Figure 16 suggests that the spatial patterns of the deforestation results from those two data
sets were, in fact, similar. This result is confirmed by Figures S1–S7, where the patterns
between pairs of data sets are visually similar for all MODIS-detection thresholds. In
addition, when the effect of resolution lag between MODIS and Landsat-8 OLI of about
0.470 km was considered, the calibrated overall similarity could still be a bit higher.
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Figure 23. Sensitivity of the method on hypothetical temporal data sets on deforestation after
interpolation at a time slice of 1 h, due to the possibility of (a) acceleration, (b) delay, (c) overestimation,
and (d) underestimation of deforestation detection, compared to the reference. Green crosses indicate
overall similarity (i.e., the average of θ and δ similarities) from all nine metrics. Red lines on the upper
edge of the envelopes indicate the overall similarity using the Fidelity metric. Blue lines on the lower
edge of the envelopes indicate the overall similarity using the metric of Soergel–Ruzicka–Tanimoto.

Using Equation (1) to perform similarity analyses for either spatial or temporal pat-
terns of deforestation between MODIS and Landsat-8 OLI, as shown in Figures 16 and 25,
we can obtain a clearer result (Figure 26), which suggests that the MODIS-based deforesta-
tion monitoring system developed by [30] can still be calibrated—in terms of increasing its
change-detection threshold parameter to above 130—to increase its temporal pattern simi-
larity with the reference derived from Landsat-8 OLI without significantly losing spatial
pattern similarity.

4.4. Further Development

Finally, other than providing a generic method to measure both spatial and temporal
pattern similarities between deforestation data sets derived from various monitoring
systems, the method developed in this paper may also be applied beyond the remote-
sensing domain, for example, in ecological modeling, to validate the simulated data of
an ecological model with the reference data or to compare the similarity between the
simulated data of an ecological model and simulated data derived from other models. Our
method is efficient in terms of computation and, thus, applies to big data. The method will
further be developed by integrating spatial and temporal point data sets in 3D point cloud
xyz-coordinate format—where x is the longitude, y is the latitude, and z is time—to obtain
a single spatio-temporal pattern similarity measure.
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Figure 24. Sensitivity of the method on hypothetical temporal data sets on deforestation after inter-
polation at a time slice of 1 min, due to the possibility of (a) acceleration, (b) delay, (c) overestimation,
and (d) underestimation of deforestation detection, compared to the reference. Green crosses indicate
overall similarity (i.e., the average of θ and δ similarities) from all nine metrics. Red lines on the upper
edge of the envelopes indicate the overall similarity using the Fidelity metric. Blue lines on the lower
edge of the envelopes indicate the overall similarity using the metric of Soergel–Ruzicka–Tanimoto.

Figure 25. Overall similarity (i.e., the average of θ and δ similarities) of the temporal pattern
between deforestation hotspots in Indonesia in 2020 derived from Landsat-8 OLI (at clarity ≥50%
and deforestation intensity ≥50%) and deforestation hotspots in Indonesia in 2020 derived from
MODIS (at change-detection thresholds ranging from 50 to 130), after interpolation at a time slice
of 1 day. Green crosses indicate overall similarity (i.e., the average of θ and δ similarities) from all
nine metrics. Red lines on the upper edge of the envelopes indicate the overall similarity using the
Fidelity metric. Blue lines on the lower edge of the envelopes indicate the overall similarity using the
metric of Soergel–Ruzicka–Tanimoto.
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Figure 26. Overall similarity (i.e., the average of θ and δ similarities) of spatial pattern (red line)
and temporal pattern (blue line) between deforestation hotspots in Indonesia in 2020 derived from
Landsat-8 OLI (using the classification method described in Appendix A, at clarity ≥50% and
deforestation intensity ≥50%) and deforestation hotspots in Indonesia in 2020 derived from MODIS
(using the change-detection algorithm developed by [30], at change-detection thresholds ranging
from 50 to 130). In this case, the overall similarity was calculated using the new Ruzicka–Fidelity
metric (see Equation (1)), and time-series data were interpolated at a time slice of 1 day.

5. Conclusions

In this article, we developed a generic method for measuring the spatial and temporal
pattern similarity between deforestation data sets with different spatial resolutions based
on similarity-based pattern analysis. The robustness of the method was evaluated through
sensibility and sensitivity analyses before its application to the measurement of spatial and
temporal pattern similarity between two deforestation data sets derived from two satellite
imageries with different spatial resolutions (i.e., MODIS and Landsat-8 OLI). For sensibility
and sensitivity analyses, the method was assessed using hypothetical data, either spatial or
temporal. The highlighted findings of our study are as follows.

Firstly, we demonstrated that our method could measure, at the level of human visual
sensing, two pairs of hypothetical patterns with reasonable results. The first pair was
two images of mirrored eagles with the same size and pattern. The second pair was two
images of turtles with the same pattern but different sizes. The PDFs of angle from the
centroid to each point (θ) for each pair of hypothetical patterns indicated that the pair of
eagle patterns had contrasting θ PDFs, while the pair of turtle patterns had exactly similar
θ PDFs. On the other hand, the pair of eagle patterns had exactly similar δ PDFs, while the
pair of turtle patterns had contrasting δ PDFs. Furthermore, using the nine metrics, the
PDF similarities of θ and δ for each pair were measured. In this case, the overall similarity
was calculated as the average PDF similarity for θ and δ. The spatial patterns of pairs
of eagle shapes had relatively low to fair similarity, in terms of θ, with values ranging
from 0.31 to 0.53, and very high similarity in terms of δ, with values close to 1, which
was consistent across the nine metrics. Vice versa, the pair of turtle shapes had very high
similarity for θ, with values ranging from 0.95 to 1, and relatively low to fair similarity for δ,
with values ranging from 0.60 to 0.83, which was also consistent across the nine metrics.
Moreover, we also found that our method consistently produced envelopes, with upper
and lower edges always being bordered by the Fidelity and Soergel–Ruzicka–Tanimoto
metrics, respectively. Thus, we suggest a new single metric that considers both optimistic
and pessimistic metrics, which is the average of these two abovementioned metrics, which
we denote as Ruzicka–Fidelity.

Secondly, in terms of the method′s sensitivity to spatial displacement from the hypo-
thetical origin, we demonstrated that our method was capable of consistently measuring
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spatial pattern similarity with reasonable results. Based on sensitivity analyses of the
systematic displacement of two hypothetical shapes: (i) a circle with a diameter of about
1.0567 m and (ii) a square with dimensions of 1.0567 × 1.0567 m2, the results suggested
that the method provides a sensible measure, in term of its proportionality, as it resulted in
an overall similarity ranging from 0.4 to 0.5 when displacement from the origin took place
at about half the size of the maximum radii of the shapes, and decreased to relatively low
similarity (of about 0.1–0.2) when displacement from the origin took place at about the
maximum radii of the shapes. The results also suggested that, when displacement from
the origin took place much further than the maximum radii of the shapes, the method still
appreciated the pattern similarity between the shifted shapes and their origins, with the
overall similarity between 0 and 0.1, which is not recognized in conventional accuracy
assessment methods where the agreement between pairs of spatial patterns is measured
based on their point-to-point degree of matching.

Thirdly, we also demonstrated the method′s sensitivity to changes in spatial res-
olution using several pairs of hypothetical shapes with different resolutions, ranging
from 1× to 20× coarser. The results indicated that the similarity measures resulting
from the method decreased consistently when the resolutions of the pairs were much
coarser than the original image at relatively low decreasing rates, ranging from −0.005 to
−0.009 per km resolution decrease from the original. This suggests that, when the method
is applied to measure the similarity of pairs of data sets with different resolutions, the
result should be calibrated with regard to the resolution difference effect at rates ranging
from −0.005 to −0.009 per km resolution difference from the origin.

Fourthly, we also performed sensitivity analyses for hypothetical temporal data sets
of deforestation by (i) shifting a hypothetical reference deforestation curve to the left
from 16 days to 80 days, representing an acceleration of detection; (ii) shifting the reference
to the right from 16 days to 80 days, representing a delay of detection; (iii) shifting the
reference upward from 1 pixel to 5 pixels, representing an overestimation of detection;
and (iv) shifting the reference downward from 1 pixel to 5 pixels, representing an under-
estimation of detection. Moreover, linear interpolation on our hypothetical deforestation
time-series data was performed to downscale the temporal resolution from a 16-day time
interval to a 1-day, 1-h, and 1-min interval, aimed at assessing the sensitivity of our method
to displacement in temporal data with regard to the temporal resolution. The results sug-
gested that the most sensible sensitivity of our method to changes in y-axis variables (∆y),
due to overestimation or underestimation, as well as changes in x-axis variables (∆x), due
to acceleration or delay, was given by temporal data sets at a 1-day temporal resolution.

Finally, we performed similarity analyses for spatial and temporal patterns of de-
forestation data sets in Indonesia in 2020, derived from MODIS and Landsat-8 OLI. The
results suggested that the MODIS-based deforestation monitoring system developed by [30]
can still be calibrated, in terms of increasing its change-detection threshold parameter to
above 130, to increase its temporal pattern similarity with the reference derived from
Landsat-8 OLI, without significantly losing spatial pattern similarity.

Overall, we demonstrated that the proposed method offers an alternative to con-
ventional approaches to accuracy assessment of deforestation patterns in time and space
across differences in resolution, which should apply to various deforestation-monitoring
data sets, ranging from near-real-time [13,14] to sub-annual and annual [15,16] monitoring
systems, and covering local and national scales [4–6] to global scales [2,3,5]. In addition,
with regard to the urgent need to take action to mitigate climate change through, among
other things, reducing deforestation [32], the method should offer an easily applicable
approach to evaluate several available deforestation data sets from various producers to
saliently provide the most credible data on deforestation for legitimate guidance on the
ground to take immediate action. Meanwhile, beyond the deforestation data sets, another
potential application of the method is for validating spatio-temporal patterns of simulation
results from land-change models, such as [17–20].
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However, the current method should further be improved by, among other things:
(i) exploring other geometric features, e.g., the square root of the area of the triangle between
three random points from the centroid [27]; and (ii) integrating spatial and temporal point
data sets in 3D point cloud xyz-coordinate format, where x is the longitude, y is the latitude,
and z is time, to obtain a single spatio-temporal-pattern-similarity measure. We developed
a tool for this method using the open-source modeling platform NetLogo 6.2.0 and have
provided it at ipb.link/similarity-tool. Thus, the tool should be adopted by others looking
to utilize and further improve it and the method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/geomatics1040000/s1, Figure S1: Deforestation hotspots in Indonesia in 2020 derived from
MODIS, using the change-detection algorithm developed by [1] at a change-detection threshold of
50 (green points). Red points indicate deforestation hotspots confirmed by Landsat-8 OLI at land
clarity ≥50% and land-clearing intensity ≥50%. The blue cross is the centroid used to measure
the spatial pattern similarity between these two deforestation data sets. Figure S2: Deforestation
hotspots in Indonesia in 2020, derived from MODIS using the change-detection algorithm developed
by [1] at a change-detection threshold of 60 (green points). Red points indicate deforestation hotspots
confirmed by Landsat-8 OLI at land clarity ≥50% and land-clearing intensity ≥50%. The blue cross
is the centroid used to measure the spatial pattern similarity between these two deforestation data
sets. Figure S3: Deforestation hotspots in Indonesia in 2020, derived from MODIS using the change-
detection algorithm developed by [1] at a change-detection threshold of 70 (green points). Red points
indicate deforestation hotspots confirmed by Landsat-8 OLI at land clarity ≥50% and land-clearing
intensity ≥50%. The blue cross is the centroid used to measure the spatial pattern similarity between
these two deforestation data sets. Figure S4: Deforestation hotspots in Indonesia in 2020, derived
from MODIS using the change-detection algorithm developed by [1] at a change-detection threshold
of 80 (green points). Red points indicate deforestation hotspots confirmed by Landsat-8 OLI at land
clarity ≥50% and land-clearing intensity ≥50%. The blue cross is the centroid used to measure
the spatial pattern similarity between these two deforestation data sets. Figure S5: Deforestation
hotspots in Indonesia in 2020, derived from MODIS using the change-detection algorithm developed
by [1] at a change-detection threshold of 90 (green points). Red points indicate deforestation hotspots
confirmed by Landsat-8 OLI at land clarity ≥50% and land-clearing intensity ≥50%. The blue cross
is the centroid used to measure the spatial pattern similarity between these two deforestation data
sets. Figure S6: Deforestation hotspots in Indonesia in 2020, derived from MODIS using the change-
detection algorithm developed by [1] at change-detection threshold of 100 (green points). Red points
indicate deforestation hotspots confirmed by Landsat-8 OLI at land clarity ≥50% and land-clearing
intensity ≥50%. The blue cross is the centroid used to measure the spatial pattern similarity between
these two deforestation data sets. Figure S7: Deforestation hotspots in Indonesia in 2020, derived
from MODIS using change-detection algorithm developed by [1] at a change-detection threshold
of 130 (green points). Red points indicate deforestation hotspots confirmed by Landsat-8 OLI at
land clarity ≥50% and land-clearing intensity ≥50%. The blue cross is the centroid used to measure
the spatial pattern similarity between these two deforestation data sets. Figure S8: Green squares
indicate deforestation hotspots in Indonesia in 2020, as detected using the 8-day monitoring system
based on MODIS developed by [1] at change-detection thresholds of: (a) 50, (b) 60, (c) 70, (d) 80,
(e) 90, (f) 100, and (g) 130. Red squares indicate deforestation hotspots detected by Landsat-8 OLI
at land clarity ≥50% and land-clearing intensity ≥50%. The blue cross is the centroid of the graph,
which was used to measure the temporal pattern similarity between these two deforestation data
sets. In this case, to synchronize the time interval of MODIS to Landsat-8 OLI, time aggregation was
completed for MODIS results at a 16-day time interval. Figure S9: Interpolated deforestation time-
series data shown in Figure S8 with 1-day interval. Green squares indicate deforestation hotspots in
Indonesia in 2020, as detected using the 8-day monitoring system based on MODIS developed by [1]
at change-detection thresholds of: (a) 50, (b) 60, (c) 70, (d) 80, (e) 90, (f) 100, and (g) 130. Red squares
indicate deforestation hotspots detected by Landsat-8 OLI at land clarity ≥50% and land-clearing
intensity ≥50%. The blue cross is the centroid of the graph, which was used to measure the temporal
pattern similarity between these two deforestation data sets.

https://www.mdpi.com/article/10.3390/geomatics1040000/s1
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Appendix A

This part describes the classification method (i.e., the knowledge-based tree-classifier
algorithm [33]) for deforestation detection derived from Landsat-8 OLI, which was used in
this study. Furthermore, deforestation hotspots were defined as pixels experiencing land
clearing based on the classification results.

Table A1. Knowledge-based tree-classifier algorithm used in deforestation detection derived from Landsat-8 OLI.

Step Category Classifier Supporting Findings

1 Thick cloud Red > 200
Use of red band, in combination with blue, green,

and TIRS bands thresholding of Landsat-8 OLI
for detecting thick cloud [34]

2 High NDVI Not(thick cloud) and (NDVI > 0.35) Landsat-8 NDVI of deciduous and coniferous
forests ranging from 0.40 to 0.74 [35]

3 Shade
(Not(thick cloud or high NDVI) and

(NIR < 100 and SWIR < 50)) and
(NIR < 150 and SWIR < 80 and NIR-SWIR < 90)

Use of NIR and SWIR bands thresholding of Landsat-8 OLI,
in combination with projective geometry modeling for

detecting cloud shadows [36,37]

4 Water ((Not(thick cloud or high NDVI) and
(NIR < 100 and SWIR < 50)) and not(shade)

Use of NIR and SWIR bands, in combination with blue
or green bands of Landsat-8 OLI, composed into

composite indices for detecting water [38,39]

5 Cleared land Not(thick cloud or high NDVI or shade or water)
and (SWIR–max(NIR, Red)) > −50

Use of NIR and SWIR bands of Landsat-8 OLI, composed
into a composite index for detecting bare land [40]

Use of NIR and SWIR bands, in combination with green
band of Landsat-8 OLI, composed into composite

indices for detecting bare land [41]

6 Green zone 1
Not(thick cloud or high NDVI

or shade or water or cleared land)
and (NIR–max(SWIR, Red) >50)

−

7 Green zone 2
Not(thick cloud or high NDVI or shade
or water or cleared land or green zone 1)

and (NIR–Red >20)
−

8 Haze
Not(thick cloud or high NDVI

or shade or water or cleared land
or green zone 1 or green zone 2)

Use of NIR and SWIR bands of Landsat-8 OLI
for detecting haze [42]

https://lulcc.ipb.ac.id/
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Appendix B

This part describes how our method, based on pattern-similarity analysis, differs from
conventional omission/commission disagreement approaches using confusion matrices.
Pairs of hypothetical circular shapes with various overlapping possibilities were used for
the purpose. A hypothetical circular shape with a radius of about 0.417 m (red) and its
displacements (green), in which (a), (b), (c), and (d) intersect with the origin in the cardinal
directions, from north to west; (e), (f), (g), and (h), touch the origin around the edge in
the cardinal directions, from north to west; and (i), (j), (k), and (l) are not connected to the
origin in the cardinal directions, from north to west. These hypothetical shapes were used
to demonstrate the difference between conventional omission/commission disagreement
analyses—based on the point-to-point degree of matching using a confusion matrix—and
our method, which is based on pattern-similarity analysis. Tables A2–A4 summarize
the results using those two approaches. Once a pair of spatial patterns is disjoint, the
conventional approach immediately ignores the pair′s agreement, regardless of whether
the pair is, in fact, still relatively close to each other, while our method still appreciates
such a possibility.

Table A2. Comparison between omission/commission disagreement approach and pattern-similarity based approach to
measure pairs of a hypothetical circular shape and their displacements in cardinal directions intersecting each other.

Approach Metric

Pair of Hypothetical Circular Shapes

Omission/commission
disagreement using

confusion matrix

User′s agreement of true category (%) 39.20 40.08 40.08 39.20

User′s agreement of false category (%) 0.00 0.00 0.00 0.00

Producer′s agreement of true category (%) 39.20 40.08 40.08 39.20

Producer′s agreement of false category (%) 0.00 0.00 0.00 0.00

Overall agreement (%) 24.38 25.06 25.06 24.38

Pattern-based similarity

S∅rensen 0.39 0.40 0.40 0.39

Soergel 0.25 0.25 0.25 0.25

Intersection 0.39 0.40 0.40 0.39

Ruzicka 0.25 0.25 0.25 0.25

Tanimoto 0.25 0.25 0.25 0.25

Cosine 0.58 0.58 0.58 0.58

Jaccard 0.35 0.35 0.35 0.35

Dice 0.51 0.52 0.52 0.51

Fidelity 0.63 0.65 0.65 0.63

Ruzicka–Fidelity 0.44 0.45 0.45 0.44
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Table A3. Comparison between omission/commission disagreement approach and pattern-similarity-based approach to
measure pairs of a hypothetical circular shape and their displacements in cardinal directions that touch at the perimeter.

Approach Metric

Pair of Hypothetical Circular Shapes

Omission/commission
disagreement based
on confusion matrix

User′s agreement of true category (%) 0.00 0.14 0.14 0.00

User′s agreement of false category (%) 0.00 0.00 0.00 0.00

Producer′s agreement of true category (%) 0.00 0.14 0.14 0.00

Producer′s agreement of false category (%) 0.00 0.00 0.00 0.00

Overall agreement (%) 0.00 0.07 0.07 0.00

Pattern-based similarity

S∅rensen 0.08 0.09 0.09 0.09

Soergel 0.05 0.05 0.05 0.05

Intersection 0.08 0.09 0.09 0.09

Ruzicka 0.05 0.05 0.05 0.05

Tanimoto 0.05 0.05 0.05 0.05

Cosine 0.20 0.20 0.20 0.20

Jaccard 0.08 0.08 0.08 0.08

Dice 0.13 0.13 0.13 0.13

Fidelity 0.21 0.21 0.21 0.21

Ruzicka–Fidelity 0.13 0.13 0.13 0.13

Table A4. Comparison between omission/commission disagreement approach and pattern-similarity based approach to
measure pairs of a hypothetical circular shape and their displacements in cardinal directions that are disconnected.

Approach Metric

Pair of Hypothetical Circular Shapes

Omission/commission
disagreement based on

confusion matrix

User′s agreement of true category (%) 0.00 0.00 0.00 0.00

User′s agreement of false category (%) 0.00 0.00 0.00 0.00

Producer′s agreement of true category (%) 0.00 0.00 0.00 0.00

Producer′s agreement of false category (%) 0.00 0.00 0.00 0.00

Overall agreement (%) 0.00 0.00 0.00 0.00

Pattern-based similarity

S∅rensen 0.07 0.07 0.07 0.07

Soergel 0.04 0.04 0.04 0.04

Intersection 0.07 0.07 0.07 0.07

Ruzicka 0.04 0.04 0.04 0.04

Tanimoto 0.04 0.04 0.04 0.04

Cosine 0.17 0.17 0.17 0.17

Jaccard 0.06 0.06 0.06 0.06

Dice 0.11 0.11 0.11 0.11

Fidelity 0.18 0.18 0.18 0.18

Ruzicka–Fidelity 0.11 0.11 0.11 0.11
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