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Abstract: Background: This research goes into in deep learning technologies within the realm of
medical imaging, with a specific focus on the detection of anomalies in medical pathology, emphasiz-
ing breast cancer. It underscores the critical importance of segmentation techniques in identifying
diseases and addresses the challenges of scarce labelled data in Whole Slide Images. Additionally,
the paper provides a review, cataloguing 61 deep learning architectures identified during the study.
Objectives: The aim of this study is to present and assess a novel quantitative approach utilizing
specific deep learning architectures, namely the Feature Pyramid Net-work and the Linknet model,
both of which integrate a ResNet34 layer encoder to enhance performance. The paper also seeks
to examine the efficiency of a semi-supervised training regimen using a dual model architecture,
consisting of ‘Teacher’ and ‘Student’ models, in addressing the issue of limited labelled datasets.
Methods: Employing a semi-supervised training methodology, this research enables the ‘Student’
model to learn from the ‘Teacher’ model’s outputs. The study methodically evaluates the models’
stability, accuracy, and segmentation capabilities, employing metrics such as the Dice Coefficient
and the Jaccard Index for comprehensive assessment. Results: The investigation reveals that the
Linknet model exhibits good performance, achieving an accuracy rate of 94% in the detection of
breast cancer tissues utilizing a 21-seed parameter for the initialization of model weights. It further
excels in generating annotations for the ‘Student’ model, which then achieves a 91% accuracy with
minimal computational demands. Conversely, the Feature Pyramid Network model demonstrates
a slightly lower accuracy of 93% in the Teacher model but exhibits improved and more consistent
results in the ‘Student’ model, reaching 95% accuracy with a 42-seed parameter. Conclusions: This
study underscores the efficacy and potential of the Feature Pyra-mid Network and Linknet models in
the domain of medical image analysis, particularly in the detection of breast cancer, and suggests
their broader applicability in various medical segmentation tasks related to other pathology disor-
ders. Furthermore, the research enhances the understanding of the pivotal role that deep learning
technologies play in advancing diagnostic methods within the field of medical imaging.

Keywords: deep learning; segmentation; breast cancer; feature pyramid network; linknet; student
and teacher architecture

1. Introduction

As technology increases, humans are becoming more capable of finding and diagnos-
ing anomalies found in the body and the material world of things, particularly in cancerous
tissues like breast cancer. These progressions in technology have brought forth mathemati-
cal equations like the perception introduced by Frank Rosenblatt et al., 1958 [1]. Although
this formula shows simplicity, it is the foundation for more complex deep learning models
such as Multilayer Perceptrons (MLPs) models as well as Convolutional Neural Networks
(CNNs) which can further be seen in the well-known paper ImageNet classification with
deep CNNs [2], which will be discussed further in this paper. These models have been the
starting block to the deep learning world of artificial intelligence, and have allowed for the
intelligence on medical images containing pathology anomalies through CNN architectures
and segmentation.
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Humanity faces many medical problems, one of which is that very prominent ‘breast
cancer’ is detected through various imaging techniques, whether it be from Magnetic
Resonance Imaging (MRI), computed tomography (CT) scans, or others. Humans have
reached a point where they can detect medical disorders more effectively than before.
The main part of this research will introduce breast cancer as one of the diseases that
can be detected via segmentation and deep learning models. However, to do this, an
understanding of cancer as well as training models are needed, to use the intelligence to
further improve disease detection in the medical field.

To distinguish between healthy bodily tissues and those prone to disease or other
abnormalities, segmentation can be used. Segmentation involves taking tiles of images
from high-definition scans, as well as using masks or, rather, labeled data that identify
regions of disease, to train the model to recognize what constitutes a disease or irregular
tissue. This training is conducted via a deep learning model that performs millions of
calculations to classify data points within a complex network of neurons.

2. Literature Review

In this section, the focus is on deep learning models and their understanding, specifi-
cally CNN and its influence on artificial intelligence. The methods these neural networks
use to learn, including backpropagation and gradient descent, are explored. Additionally,
the applications of CNNs in imaging, such as analyzing Whole Slide Images and segment-
ing images, are discussed. Lastly, the complexities involved in interpreting data using these
models are addressed. However, as this paper is on breast cancer, some information should
be more explored on this issue.

2.1. Global Disparities in Breast Cancer

Breast cancer poses a significant threat to women’s health globally. In 2020, it afflicted
approximately 2.3 million women worldwide and claimed 685,000 lives. Incidence rates
are highest in developed regions such as Australia/New Zealand, Western Europe, and
North America (>80 per 100,000 females), while the lowest rates are seen in parts of Africa,
Asia, and Central America (<40 per 100,000). Sadly, some of the highest mortality rates (>20
per 100,000) occur in Melanesia, Western Africa, and Micronesia/Polynesia. These stark
disparities highlight the urgent need for continued research into breast cancer [3]. Early
detection offers the best chance of survival, and this is where tools like ultrasound (US)
imaging come into play. Ultrasound is a painless and widely used technique that plays
a crucial role in the early identification of breast cancer [4]. Please refer to Table 1 for the
impact of breast cancer on a global scale.

Table 1. Breast cancer incidence (new cases) and mortality (deaths) in 2020 by world region and
Human Development Index level [3].

New Cases Deaths

Country N ASR Cum. Risk N ASR Cum. Risk

Eastern Africa 45,709 33 3.6 24,047 17.9 2
Middle Africa 17,896 32.7 3.4 9500 18 1.9

Northern Africa 57,128 49.6 5.1 21,524 18.8 1.9
Southern Africa 16,526 50.4 5.4 5090 15.7 1.7
Western Africa 49,339 41.5 4.5 25,626 22.3 2.5

Caribbean 14,712 51 5.5 5874 18.9 2
Central America 38,916 39.5 4.2 10,429 10.4 1.2
South America 156,472 56.4 6.1 41,681 14 1.5

Northern America 281,591 89.4 9.7 48,407 12.5 1.4
Eastern Asia 551,636 43.3 4.6 141,421 9.8 1.1
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Table 1. Cont.

New Cases Deaths

Country N ASR Cum. Risk N ASR Cum. Risk

All but China 135,265 66.9 7 24,247 9.4 1
China 416,371 39.1 4.2 117,174 10 1.2

South-Eastern Asia 158,939 41.2 4.5 58,670 15 1.7
South-Central Asia 254,881 26.2 2.9 124,975 13.1 1.5

All but India 76,520 27.5 3.1 34,567 12.9 1.5
India 178,361 25.8 2.8 90,408 13.2 1.5

Western Asia 60,715 46.6 5 20,943 16 1.7
Central-Eastern Europe 158,708 57.1 6.3 51,488 15.3 1.8

Northern Europe 83,177 86.4 9.4 17,964 13.7 1.5
Southern Europe 120,185 79.6 8.5 28,607 13.3 1.4
Western Europe 169,016 90.7 9.7 43,706 15.6 1.7

Australia/New Zealand 23,277 95.5 10.4 3792 12.1 1.3
Melanesia 2215 50.5 5.4 1121 27.5 2.9

Micronesia/Polynesia 381 58.2 6 131 19.6 2.1
Low HDI 109,572 36.1 3.9 58,586 20.1 2.2

Medium HDI 307,658 27.8 3 147,427 13.6 1.5
High HDI 825,438 42.7 4.6 247,486 12.1 1.4

Very high HDI 75.7 8.2 231,093 13.4 1.5
World 47.8 5.2 684,996 13.6 1.5

Female population; ASR = age-standardized rate per 100,000; Cum. Risk = cumulative risk, ages 0–74 years;
HDI = Human Development Index.

These statistics underscore the critical importance of breast cancer and the necessity of
adopting any possible measures to combat this disease. Early detection can significantly
improve survival rates, highlighting the potential of deep learning models as a vital solution
in this fight.

2.2. Deep Learning Models: Convolutional Neurol Network (CNN)

Deep learning models have made strides in the field of intelligence. They are a type of
machine learning model that focuses on representation learning and uses neural networks.
Unlike classical/traditional machine learning techniques, deep learning models excel at
detecting and understanding patterns within large datasets by leveraging multiple layers of
nonlinear processing. This ability has revolutionized how computers analyze and process
data leading to possibilities in AI research and applications, and from the medical field to
3D objects in the metaverse [5–7].

One key aspect of learning models is their architecture, which consists of layers such
as input, hidden, and output layers. Each layer performs operations on the input data,
gradually transforming it. The ‘deep’ part refers to the presence of layers that enable the
model to learn increasingly intricate features at each stage. The depth and breadth of these
layers greatly impact the model’s capacity to learn and adapt [8].

To enhance understanding of deep learning models and their various architectures,
this research examined 61 deep learning models briefly, and they have been listed to help
with the research in cancer and other pathologies (Table A1). Among them, two models
emerged, LinkNet as well as FPN. To further comprehend the workings of these deep
learning models, an exploration of backpropagation and gradient descent is essential.

2.3. Deep Learning Models, Backpropagation, and Gradient Descent

The learning process in deep learning models hinges on backpropagation and gradient
descent. Backpropagation adjusts network weights based on output errors by applying
the chain rule to compute the gradient of the loss function with respect to each weight,
effectively propagating errors backward through the network [9]. Gradient descent, an iter-
ative optimization algorithm, then minimizes the loss function by adjusting these weights
based on the computed gradients [10]. Together, these mechanisms enable continuous
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improvement of the model’s predictions by minimizing the error between the predicted
and actual outcomes.

2.4. Algorithm and Equations

(I) Initialization: Start by selecting values, for the weights typically chosen randomly.
(II) Compute Gradient: Employ backpropagation to calculate the gradient of the loss
function concerning each weight. (III) Update Weights: Adjust the weights in the opposite
direction to the gradient:

Weightnew = Weightold − η × Gradient (1)

where η is referenced to the learning rate, as well as a small positive scalar determining
the step size. (IV) Iterate: Repeat steps (II) and (III) until the loss function reaches its point
indicating convergence [11].

2.5. Combining Backpropagation and Gradient Descent

In the context of neural networks, backpropagation and gradient descent (Figure 1C)
work together. Backpropagation and gradient descent are two components in the field of
neural networks. They collaborate to allow the model to learn from its mistakes effectively.
Backpropagation calculates the gradients, providing the direction in which the weights
need to be modified to minimize the loss. Subsequently, gradient descent utilizes these
gradients to update the weights throughout iterations or epochs until the desired level of
accuracy is reached [10].
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2.6. Whole Slide Images (WSIs)

A lot of medical research is conducted using Visual Computing, and other similar
types of research use WSIs. WSIs are high-resolution images that have been extracted from
glass slides. WSIs become essential in the research used in pathology. WSIs are used in
medical research, disease diagnosis, and education. One of the reasons for this is that WSIs
allow for the entire tissue samples, which give pathologists the capability to examine and
cross-reference the whole tissue, much like an improved version of microscopy [12,13].

WSIs are extensively used in CNN deep learning models. In this context, WSI has been
used a lot in segmentation, classification, and detection. The reason for this is due to the size
to which WSIs can extend, that being over gigabytes per image with a high level of specific
details found in the image. This can bring challenges in computation and dealing with this
large-size data effectively. Additionally, annotations of the data are time-consuming due to
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their size and variability due to differences in staining slide preparation and the scanning
across different labs [14–16].

An illustration of the WSI images is formed in a medical context. The image outlines
the steps, from preparing the tissue sample to scanning and the creation of the digital image.

2.7. Segmentation

By definition, segmentation is defined as “the act of dividing something into different
parts” [17]. Image segmentation, by definition, involves dividing images into segments
or ‘tiles’ that are considered to be similarly related. Although the segmentation process
depends on a low-level representation of data, which could relate to lighting, layer weight,
and texture, segmentation cannot explicitly identify regions that may or may not belong to
certain categories [18].

Semantic segmentation is distinct in that it classifies each pixel within an image, which
is relevant because it allows for a more precise understanding of individual objects rather
than just regions or segments. This method enables objects to be distinguished based
on consistent patterns associated with them [18]. Semantic segmentation offers superior
analysis compared to traditional segmentation methods. The patterns discerned in the
images can provide insights into various problems encountered in the physical world.

2.8. Common Deep Learning Models Used for Cancer Detection

In the realm of breast cancer detection and diagnosis, the advent of deep learning
models has marked a significant shift, particularly transforming medical imaging technolo-
gies. Notably, models such as U-Net, Mask R-CNN, and Generative Adversarial Networks
(GANs) have emerged as landmarks, establishing new standards in the field. U-Net is cele-
brated for its precision in tumor detection and segmentation, demonstrating notable success
in segmenting lung cancer lesions in PET/CT scans. Its convolutional encoding–decoding
framework is particularly effective for intricate segmentation and improved classification
accuracy, benefiting greatly from approaches like few-shot learning. This model’s utility is
not just confined to lung cancer but extends to breast cancer and various other diagnostic
realms [19–21].

Following U-Net, Mask R-CNN has made substantial contributions by enhancing
image analysis capabilities, especially in isolating and segmenting specific regions within
medical imagery. This model’s ability to perform pixel-perfect segmentation is particularly
crucial for the complex visuals associated with breast cancer diagnostics, offering insights
far beyond conventional methods. The precise demarcation of anatomical structures that
Mask R-CNN facilitates is invaluable in the medical imaging sphere [22–24].

Generative Adversarial Networks (GANs) introduce a unique benefit by producing
synthetic images to enlarge datasets, thereby addressing the dual challenges of data scarcity
and privacy. This enhancement in data availability improves the training and performance
of models without risking sensitive information. Additionally, GANs boost the robustness
and precision of medical imaging models, significantly aiding the creation of more effective
diagnostic tools [24,25].

This study further introduces the Feature Pyramid Network (FPN) and LinkNet
models, selected for their specialized abilities to navigate the intricacies of different cancers
detection. By examining these models in conjunction with the foundational progress made
by U-Net, Mask R-CNN, and GANs, we undertake an analysis, shedding light on FPN and
LinkNet.

Addressing the ongoing challenges, this research advocates for the integration of
LinkNet and the Feature Pyramid Network (FPN). These models are distinguished by
their effectiveness in managing the complex demands of medical image segmentation in
different cancers detection. LinkNet, with its efficient segmentation process and lightweight
architecture, promises to enhance the speed of tissue identification in high-resolution
images without sacrificing accuracy, an attribute particularly beneficial for typical imaging
datasets [26]. Conversely, FPN is recognized for its layered approach, significantly boosting
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the model’s capacity to detect breast cancer at various sizes, a feature crucial for identifying
smaller, previously overlooked lesions, thereby advancing early detection efforts [27].

The selection of the LinkNet and Feature Pyramid Network (FPN) models designs
is based on their ability to go beyond the limitations of current approaches. This allows
for efficiency and flexibility. These models excel in handling variations in lesion sizes,
which helps in creating thorough methods for detecting breast cancer. Moreover, this
research aims to utilize a teaching strategy known as teacher–student learning to enhance
the training process of these models.

In this teaching framework, a sophisticated ‘teacher’ model imparts knowledge to
a simpler ‘Student’ model as discussed in this paper. The Student model then learns to
imitate the performance of the Teacher model improving its capabilities with computational
requirements. This method is especially useful when using complex models that are
not feasible due to resource limitations. Through this approach, the Student model can
efficiently and accurately detect breast cancer while maintaining effectiveness.

This study focuses on assessing how well the LinkNet and FPN models perform in
terms of efficiency when using the teacher–student approach compared to established
models. By exploring this teaching technique, we hope to discover strategies for enhancing
detection methods and advancing breast cancer imaging further.

The combination of LinkNet and FPN, along with the teaching method using a teacher–
student, approach shows potential for bringing insights and significant benefits which
could accelerate advancements in identifying and treating breast cancer.

3. Methodology

In this section, the focus is on a training approach for segmentation models that handle
data annotations. A dual-model architecture is employed, consisting of a ‘Teacher’ model
(TM) and a ‘Student’ model (SM). The TM undergoes training on annotated WSIs using
binary cross entropy and dice loss metrics to optimize performance. This model then
generates soft pseudo annotations for WSIs to enhance the dataset. Subsequently, the SM is
trained using both authentic and pseudo annotations, with a process that continues until
maximum stability or convergence is achieved. Furthermore, the importance of evaluating
the accuracy and overlap between the model’s predictions and actual data is highlighted,
using metrics such as the Dice Coefficient and Jaccard Index. These metrics are crucial in
ensuring precision in medical imaging segmentation by aiming for similarity and complete
overlap between predicted results and ground truth data.

3.1. Segmentation Model Training Strategy

Segmentation performed in machine learning, or without the means of segmentation,
the semi-supervised training scheme offers an efficient strategy for images that have
incomplete annotated data. The model used has a dual-model architect (Figure 2) which is
the ‘Teacher’ model (TM) and a ‘Student’ model (SM). This process of training begins with
the TM, where all the whole slide images (WSIs) in the dataset have annotated data or the
equivalent masked data. This is then used to optimize the Binary Cross Entropy (BCE) as
well as the Dice loss (DICE) as performance metrics [28].

The best performing model in validation is then selected as the best Teacher model
(Figure 2). This model will then generate ‘soft’ pseudo annotations for the unlabeled WSI
image data. It should be noted that although this method is not as trustworthy as true
annotations, it enriches the dataset by a huge means [30].

The next step in this process is building on this expanded dataset. SM is then trained
adding both authentic and pseudo annotations into its learning paths. The validation
set again serves as the benchmark for selecting the better Student model, which, upon
surpassing its teacher counterpart in performance, assumes the role of the teacher in
subsequent iterations [31]. This iterative cycle is then cycled until the model’s accuracy
finds its highest stability, also known as a state of convergence. This iterative refinement
takes advantage of the predictive accuracy of the TM to improve the SM, which overcomes
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the problem of the lack of labeled data and increasingly improves the model’s performance
with each iteration [32].
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In this approach, the validation procedure plays a crucial role in ensuring the efficiency
and dependability of segmentation models. After the training phase, each model—both TM
and SM—undergoes a validation stage using a set of images not utilized during training.
Throughout this stage, the models’ performance is assessed on their capability to accurately
segment images, which is vital for evaluating their ability to generalize. Performance is
measured using the Dice Coefficient and Jaccard Index, which gauge the overlap between
the models’ predictions and the actual annotations. These validation metrics are essential
as they offer an assessment of how the models’ predicted segmentation aligns with ground
truth data. A higher score signifies a close match between the models’ output and the
real data, which is critical in medical imaging where precision is key. The validation
stage aids not only in choosing the best-performing models, but also in adjusting their
parameters for optimal performance. By tracking these metrics, we can identify when
a Student model has outperformed its teacher in terms of accuracy and generalization,
guiding the training process towards generating more refined and accurate segmentation
models. This methodical validation process guarantees that the ultimate model put into use
is robust, trustworthy, and suitable for real-world use in diagnosis and treatment planning.

3.1.1. Dice Coefficient (Sørensen–Dice Index)

The Dice coefficient, which is also known as the Sørensen Dice index or Dice Similarity
Coefficient (DSC), is a tool used in statistics. It is used to measure the commonness
between two sets of data. In this research, this DSC is used to find the commonness
of WSI segmentation. This is performed by DSC comparing the pixel-wise agreement
between the ground truth segmentation and the segmentation shown by the deep learning
model [33,34].

This is the formula used to prudence the dice coefficient:

DSC = |X| + |Y|2 × |X∩Y| (2)

X is the predicted group of pixels that belong to the class of cancer; for example, Y,
being the ground truth [34]. To iterate, an increased number in the DSC indicated an in-
creased similarity between the prediction and ground truth. In this research, measurement
is in the range of 0 to 1 [34].

3.1.2. Jaccard Index (Intersection over Union)

The Jaccard index, which is also known as the Intersection over Union (IoU), is, like
the above, another tool used to measure the commonness in evaluating the performance of
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the segmentation models. The formula is fairly simple, and is put together as the size of
the intersection divided by the size of the union of the given sets:

JI = |X∪Y||X∩Y| (3)

In this research, the Jaccard index has been used to quantify the percent overlap
between WSIs given mask and the prediction output of these models. The range that is
given in this research is again from 0 to 1, with 0 presenting no overlap and 1 presenting
complete overlap. Complete overlap is the goal [35,36].

3.2. About the Dataset

The data used in this study, which is explained by the Kexin et al. [37] publication,
consists of a collection of breast ultrasound images, formatted in .png (Figure 3) and the
masked images in .mat format (Figure 4). These images are focused on breast cancer only
and the images were approved by the institutional review board of Changhua Christian
Hospital, in Taiwan. This retrospective and cross-sectional study includes 20,000 image
tiles and 1,448,522 annotated nuclei. The total storage space required for this dataset is
6.8 GB. It is licensed under the CC BY license.
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The imaging process involved uses a GE Voluson 700 machine (manufactured by GE
Healthcare based in Zipf, Austria). This machine ensured high-resolution captures with
dimensions of 960 × 720 pixels in RGB mode (Figure 3). Each participant included in the
study was between the ages of 35 and 75 and had been diagnosed with a malignant tumor
through biopsy techniques. Each participant contributed two images taken from different
scan plane angles [37].
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In addition to the images themselves, this dataset also contains information about
treatments including therapy methods using histology reports and radiography results.
Furthermore, corresponding masks (Figure 4) are provided in. mat format.

To facilitate ease of access, for research purposes, and to enable studying breast tumor
characteristics through imaging techniques effectively, all images and masks have been
organized into a single folder. Furthermore, to enable this research to be more affective
with the algorithms and code used in the research, the .mat files have been converted into
.png files and reduced in size.

3.3. Deep Learning Models Being Compared

In this section, we will compare both deep learning models. To begin with, the layers
of both models have been positioned side by side for an overall view. The model on the left
is LinkNet (Figure 5A), and the model on right is FPN (Figure 5B).
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3.3.1. LinkNet

The introduction of the model known as LinkNet (Figure 5A) represents a significant
advancement in the field of deep learning, specifically in efficiently segmenting images
based on their semantic content. LinkNet is highly regarded for its ability to strike a
balance between accuracy and computational requirements, making it an excellent choice
for tasks that demand real-time performance. This efficiency can be attributed to its
architecture, which utilizes trained encoders for extracting features and a decoder module
for classification [26].

A noteworthy aspect of LinkNet is its design, which maintains a connection between
the encoder and decoder modules. This connection plays a crucial role in mitigating the
loss of resolution during down-sampling, enabling LinkNet to preserve information across
the network with fewer parameters, leading to faster training without compromising
performance [39].

LinkNet finds applications in various fields, such as medical imaging, where it aids
in segmenting organs or lesions in radiographic images. It also excels at identifying road
networks in aerial images. However, despite its versatility, LinkNet does have limitations.
For instance, it may not perform as well as more complex models in handling fine details—
especially critical in medical image segmentation where precision is paramount. Moreover,
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the effectiveness of LinkNet heavily relies on the quality and diversity of the training dataset,
which is a common limitation in machine learning models. Another challenge arises from
the transferability of pre-trained models to medical images from non-medical domains,
due to significant variations in image characteristics. Furthermore, although LinkNet
is designed for real-time segmentation, it might encounter challenges when processing
high-resolution imaging, which is typically found in this field [39].

3.3.2. Feature Pyramid Network

The Feature Pyramid Network (FPN) (Figure 5B) has emerged as a game-changing
model in the field of image processing and analysis. Designed with sophistication, the
FPN constructs a scale feature pyramid from a single input image. This complex design
facilitates a top-down approach, where lateral connections enable the model to detect
objects at various levels of the pyramid. This multifaceted detection process, as described
by Lin [38], greatly enhances the model’s ability to accurately segment and diagnose
medical images.

FPNs have shown significant advancements in applications, particularly in object
detection and segmentation. The pyramid structure of the network plays a crucial role in
operating across scales, enabling the precise detection of fine details in medical images, as
well as the identification of larger patterns. This capability was further explored in He’s [22]
study on Mask R-CNN, which utilized FPN for instance segmentation.

In terms of efficiency, FPNs offer an advantage over traditional methods used for
multi-scale detection, as they process images much faster. The speed of real-time medical
image analysis is pivotal, as discussed by Huang [40], who explore the trade-offs between
speed and accuracy in convolutional object detectors. FPNs are incredibly valuable in
time-sensitive settings due to their ability to quickly analyze complex images.

However, the FPN architecture does have its limitations. The added complexity and
computational demands can be challenging in resource-constrained environments. Creating
feature hierarchies, an aspect of FPN’s design as explained by Kirillov [41], introduces
inherent complexity. Furthermore, training an FPN can be difficult because it requires
optimizing features across scales, a concept further explored by Guo [42] in their study on
the SSD model, which serves as an alternative to FPN.

Another critical factor that impacts the effectiveness of FPNs is the quality of annota-
tions used during training. The accuracy and reliability of medical image segmentation
heavily rely on these annotations and are crucial for model deployment.

In summary, while FPNs bring groundbreaking advancements to object detection
and segmentation in medical imaging, their complexity and dependence on high-quality
annotations present challenges. It is crucial to grasp these subtleties to fully utilize the
capabilities of FPNs in various applications. The studies mentioned above provide an
understanding of FPNs’ capabilities and the obstacles they face, offering valuable insights
into the continuously advancing field of image processing technologies.

3.3.3. ResNet34 Layer Encoder Used in Both Models

The ResNet34 architecture is a variant of the Residual Network (ResNet) models,
which are designed to enable the training of very deep neural networks. The ‘34’ in
ResNet34 denotes the use of 34 layers in the network, which includes convolutional layers,
batch normalization layers, ReLU activations, and pooling layers. The encoder part of a
ResNet34 model refers to the initial layers that are responsible for feature extraction from
input images [43].

The ResNet34 encoder (Figure 6) has several limitations: (I) Computational Resources;
the depth of the model necessitates computational resources, especially during training,
which might not be feasible in all research or clinical environments. (II) Risk of overfitting;
deeper models like ResNet34 can potentially overfit to the training data if proper regular-
ization or data augmentation techniques are not implemented, particularly when dealing
with less diverse datasets. (III) Challenges in optimization; while skip connections help
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address the vanishing gradient problem, optimizing deep networks still poses difficulties.
(IV) Adaptation to new tasks; although pre-trained ResNet34 encoders are readily available,
customizing them for novel or highly specialized medical imaging tasks often requires
fine-tuning efforts [19,40,43].
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3.4. Summary

In this section, the focus is on the research methodology that revolves around the
training strategy for segmentation models, specifically handling images that have incom-
plete data. Our approach involves a semi-supervised training scheme using a dual-model
architecture, consisting of a ‘Teacher’ model (TM) and a ‘Student’ model (SM). Initially, the
TM is trained using WSIs that have annotated data, optimizing binary cross-entropy (BCE)
and Dice loss (DICE) as performance metrics. The high-performing TM then generates soft
pseudo annotations for the unlabeled WSI data, complementing the dataset even though
these pseudo annotations are not as reliable as true annotations. Subsequently, the SM is
trained using both authentic and pseudo annotations, with the validation set determining
the better-performing Student model. This iterative process continues until our model
reaches its highest stability or state of convergence, effectively addressing the challenge of
limited labeled data while continuously enhancing our model’s performance.

Moreover, in the research, two evaluation metrics are employed to assess the perfor-
mance of our segmentation models: the Dice coefficient and the Jaccard index. The Dice
coefficient measures the similarity between the predicted segmentation and the ground
truth on a scale from 0 to 1, with a higher value indicating greater similarity. Similarly,
the Jaccard index quantifies the extent of overlap between the provided mask and the
model’s output prediction. The goal is to achieve complete overlap for optimal perfor-
mance. These statistical techniques are crucial in evaluating the precision and efficiency of
the segmentation models when it comes to processing and analyzing WSIs.

4. Results Analysis

In this section, the focus is on meticulously comparing the performance of deep
learning models such as the LinkNet and Feature Pyramid Network (FPN), all built on
the ResNet34 framework. The analysis thoroughly assesses both Teacher and Student
models under each architecture, evaluating their stability, accuracy, and image segmentation
capabilities. This examination includes an exploration of seed values, training loss levels,
validation Dice coefficients, and Jaccard indices. Through this evaluation, an understanding
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of the strengths and limitations of these architectures in the field of medical image analysis
is gained.

It should be highlighted that out of the 20,000 images, 5%, which corresponds to 1000
images, has been exclusively allocated for validation. Consequently, these 1000 images are
excluded from the training dataset of the model. Despite the possibility of increasing this
number, it was considered superfluous. This applies to both the LinkNet and FPN deep
learning models. Additionally, both models were trained and validated on the same data,
to keep a fair comparison.

4.1. Experiment with Linknet Architecture and Resent34 Base
4.1.1. Teacher Model Findings

The Teacher model of the LinkNet architecture using the ResNet34 base displayed
different levels of training loss (Table 2, Figure 7) as well as validation metrics across three
different seed values, 21, 42, 84. The research shows that the training loss ranges from
0.0098 to 0.0114, with an average of 0.9437. This would suggest that, despite the different
seeds, the model’s training was stable. Further looking into the validation Dice coefficient,
the accuracy of the model in terms of perfectly overfitting the predicted image on the root
image shows a 0.9425 and 0.9454 overlap rate, presenting strong accuracy.

Table 2. Linknet Architecture with ResNet34 Base: Teacher Findings.

Seed Training
Loss

Validation
Dice

Validation
Jaccard

Optimum
Epoch

Figure
Illustration

21 0.0102 0.9432 0.8930 92 N/A
42 0.0098 0.9425 0.8926 98 N/A
84 0.0114 0.9454 0.8972 85 Figure 7
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However, further evaluating the Validation Jaccard index (Intersection over Union
(IoU)), scores of 0.8926 to 0.8972 were produced. IoU presents an insight into the segmen-
tation performance as well as indicating the accuracy of the predicted against the actual
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segmentations. Although the scores are high, 89% would not necessarily be firm enough
for real-world scenarios.

Further, the findings showed that the optimum epoch for the Teacher model is as
follows. For a seed of 21, the model optimum epoch on 100 epochs was 92, seed 42 at 98
and finally 85 peaked at epoch 84.

4.1.2. Student Model Findings

The Student model is also based on LinkNet architecture with ResNet34, trained with
the same seeds as the Teacher model. The Student model showed markedly lower loss than
the Teacher model at 0.0004 to 0.0066 (Table 3, Figure 8); this suggests that the learning
process was much more efficient or that there is potentially overfitting involved.

Table 3. Linknet Architecture with ResNet34 Base: Student Findings.

Seed Training
Loss

Validation
Dice

Validation
Jaccard

Optimum
Epoch

Figure
Illustration

21 0.0061 0.8938 0.8081 8 N/A
42 0.0066 0.8084 0.6784 9 N/A
84 0.0043 0.9529 0.9100 9 Figure 8
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The Validation Dice coefficient for the Student model shows a significant range from
0.8084 to 0.9529, with the highest score being achieved with seed 84. Similarly, the Validation
Jaccard index varied from 0.6784 to 0.9100 with an average of 0.7988 as well as the highest
score also associated with seed 84. This suggests that the initialization with seed 84 may
have been particularly effective for the Student model. However, the Student model did
not exhibit the same level of stability as the Teacher model, as evidenced by the fluctuation
in the Validation Jaccard. This inconsistency could be attributed to initialization variance,
wherein the initial weights may have converged to a less optimal region. This phenomenon
is known to occur due to the initialization process or data shuffling, which are influenced by
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the random seed assigned. These factors affect the learning process of the model, including
the random sampling of data points or mini-batches.

Further looking into the optimum epoch for the Student model, the finding showed
that the model reached much earlier than the teacher model, at epoch 9 for all seeds. This
could imply that the Student model learned the necessary patterns more quickly than that
of the Teacher model or that it may have begun to overfit after this point.

In summary, both the Teacher and Student models demonstrated strong performance
on the given tasks (Table 4), with the Teacher model showing consistency across metrics
and the Student model exhibiting rapid learning but with more variability in performance,
displaying a lack of consistency in the Jaccard index. However, the use of different seed
values also provided insights into the stability of the model’s training process, with seed
84 yielding the best results for the Student model.

Table 4. Linknet Architecture with ResNet34 Base Comparison.

Teacher Student

Seeds TL VD VJ TL VD VJ

21 0.0102 0.9430 0.893 0.0061 0.893 0.8081
42 0.0098 0.9425 0.8926 0.0066 0.8084 0.6784
84 0.0114 0.9450 0.8972 0.004 0.9529 0.9100

Average 0.0104 0.9435 0.8942 0.0055 0.8847 0.7988
Total Loss (TL), Validation Dice (VD), Validation Jaccard (VJ).

To better understand the results of the LinkNet architecture with ResNet34 encoder,
Table 4 is presented comparing the Teacher and Student model results side by side. It is
noticeable that the VD of the Teacher model is quite consistent, whereas the Student model
shows some inconsistency, with seed 84 demonstrating the most promising accuracy.

4.2. Experiment with FPN Architecture and Resent34 Base
4.2.1. Teacher Model Findings

The Teacher model employing the Feature Pyramid Network (FPN) architecture with
a ResNet34 base demonstrated varying training losses and validation metrics across three
distinct seed values, 21, 42, and 84. The research indicated that the training loss fluctuated
between 0.0173 and 0.0160 (Table 5, Figure 9), suggesting a relatively stable training process
across different seeds. The validation Dice coefficient, which measures the accuracy of the
model in terms of its overlap with the root image, ranged from 0.9326 to 0.9345. These rates
indicate a strong accuracy in the model’s predictions.

Examining the Validation Jaccard index, which offers insights into the segmentation
performance, scores ranged from 0.8760 to 0.8795. Although these scores are high, they
might not be sufficient for certain real-world applications. Regarding the optimum epoch,
for seed 21, the best performance was achieved at epoch 78, for seed 42 at epoch 100, and
for seed 84 at epoch 94.

Table 5. FPN Architecture with ResNet34 Base: Teacher Findings.

Seed Training
Loss

Validation
Dice

Validation
Jaccard

Optimum
Epoch

Figure
Illustration

21 0.0173 0.9331 0.8760 78 N/A
42 0.0154 0.9345 0.8780 100 Figure 9
84 0.0160 0.9326 0.8795 94 N/A
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4.2.2. Student Model Findings

The Student model, also based on the FPN architecture with a ResNet34 encoder
layer, trained with the same seed values as the Teacher model, showed varying degrees
of training loss from 0.0183 to 0.0227 (Table 6, Figure 10). This indicates a variation in the
learning efficiency, possibly hinting at overfitting in certain scenarios.
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Table 6. FPN Architecture with ResNet34 Base: Student Findings.

Seed Training
Loss

Validation
Dice

Validation
Jaccard

Optimum
Epoch

Figure
Illustration

21 0.0183 0.8956 0.8109 2 N/A
42 0.0113 0.9544 0.9128 83 Figure 10
84 0.0227 0.9378 0.8830 2 N/A

The Validation Dice coefficient varied significantly, ranging from 0.8956 to 0.9544, with
the highest accuracy achieved with seed 42. Similarly, the Validation Jaccard index ranged
from 0.8109 to 0.9128, again showing a notable range in segmentation performance. The
most effective seed for the Student model appeared to be 42, based on these metrics.

In terms of optimum epoch, the Student model reached its peak performance much
earlier than the Teacher model, at epoch 2 for seeds 21 and 84, and epoch 83 for seed 42.
This suggests a quicker learning curve for the Student model, although it may also indicate
a tendency to overfit beyond these points.

In summary, both the Teacher and Student models under the FPN architecture with a
ResNet34 base encoder layer demonstrated robust performance, with the Teacher model
showing more consistency across metrics and the Student model exhibiting rapid learning,
albeit with greater variability in its performance. The different seed values provided
valuable insights into the stability and efficiency of the model’s training process.

To better understand the results of the FPN architecture with ResNet34, Table 7 is
presented, comparing the Teacher and Student model results side by side. It is noticeable
that the VD of the Teacher model is consistent at 93%, whereas the Student model shows
some inconsistency between 84 and 43 to 21, with seed 42 demonstrating the most promising
accuracy.

Table 7. FPN Architecture with ResNet34 Base Comparison.

Teacher Student

Seeds TL VD VJ TL VD VJ

21 0.0173 0.9331 0.0173 0.0183 0.8956 0.8109
42 0.0154 0.9345 0.0154 0.0113 0.9544 0.9128
84 0.0160 0.9326 0.0160 0.0227 0.9378 0.8830

Average 0.0162 0.9334 0.0162 0.0174 0.9292 0.8689
Total Loss (TL), Validation Dice (VD), Validation Jaccard (VJ).

4.3. Discussion

The primary objective of this study was to evaluate and compare the performance
of two distinct deep learning architectures in analyzing Whole Slide Images (WSIs) with
a focus on breast cancer segmentation. The results indicated that all models performed
commendably overall. However, there were noticeable variations in terms of effectiveness
and accuracy. Some models appeared to be overfitting the data, potentially limiting their
generalizability. In contrast, Teacher models were generally more stable and accurate, while
Student models learned quickly but exhibited more variation, resulting in a slightly lower
quality compared to Teacher models.

The findings suggest that the LinkNet model shows strong performance in breast
cancer detection, with its results being particularly notable with the seed 21 parameter.
Although the FPN (Feature Pyramid Network) model did not match the performance of
LinkNet, it still demonstrated sufficient utility in breast cancer detection as well as a more
stable Jaccard index. This study highlights the potential of using different deep learning
architectures for medical imaging tasks, with a focus on the effectiveness and efficiency of
these models in detecting and analyzing breast cancer tissues.

It should be emphasized that these models have been developed using a teacher–
student framework. In scenarios where ample data are available, the Teacher model
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suffices, eliminating the necessity for a Student model. However, in cases of data scarcity,
employing a Student model is recommended. According to the findings of this research,
the Student model based on FPN performed satisfactorily. However, despite the varying
outcomes where seeds 21 and 84 were tested, seed 42 exhibited inferior results, as previously
discussed. This indicates that a Student model utilizing FPN can be effectively paired with
the LinkNet teacher model. Nonetheless, it is important to consider that testing additional
seed parameters could potentially modify the average performance metrics for a LinkNet-
based Student model.

As seen in the images (Figures 11 and 12), the detection of breast cancer by each of
the models was notably effective, demonstrating their capability to detect breast cancer in
unseen data. This suggests that each model could be effectively utilized in detecting breast
cancer and potentially in segmenting other pathological disorders in WSIs.
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Finally, the use of Teacher and Student models demonstrated a strong approach to
further train models on annotated data derived from the teacher model. This effectiveness
was evident through the segmentation tools and the performance of the Jaccard and Dice
evaluations.

4.4. Implications of the Study

In summary, this research emphasizes the significance of selecting and training models
in deep learning tasks, setting important benchmarks for future advancements in image
analysis technologies. Both individuals and organizations can greatly benefit from the
increased accuracy and efficiency of these models, particularly in fields like medical imaging
where precise image analysis is essential. These findings offer valuable guidance for
organizations utilizing AI-based image analysis, aiding them in choosing and training
models more effectively. On a broader scale, enhanced image analysis capabilities have
significant implications for public safety, environmental monitoring, and policymaking,
where accurate data interpretation is crucial. This study contributes to the existing body of
literature on deep learning architectures in image segmentation by offering a perspective
that can shape future research directions, particularly with a focus on optimizing model
performance. Additionally, professionals working in AI and machine learning can utilize
these insights to select and train models tailored to specific applications, thereby enhancing
the practical usefulness of AI systems that rely on image analysis.

5. Conclusions

This research explores the performance of LinkNet and FPN architectures, all based on
ResNet34, in image segmentation tasks for detecting breast cancer in Whole Slide Images
(WSIs). The study provides critical insights into the stability of the training, accuracy levels,
and segmentation capabilities of these models, making a significant contribution to the
field of deep learning in medical image analysis.

The study highlights the Importance of selecting the appropriate model and seed
value to optimize performance while addressing the challenges associated with overfit-
ting, particularly in student models. These aspects are especially crucial in applications
requiring precise image analysis, such as in the diagnosis of diseases like breast cancer or
in environmental monitoring.

From a practical standpoint, these findings are invaluable in guiding model selection
and refining training methodologies. Consequently, they have the potential to enhance the
accuracy and efficiency of AI systems in healthcare, offering more effective tools for breast
cancer detection and other medical imaging tasks.

Furthermore, this research demonstrates that deep learning architectures like LinkNet
and FPN (Feature Pyramid Network) can accurately detect breast cancer in Whole Slide
Imaging (WSI). Among these, LinkNet is highlighted as a recommended model due to its
superior performance in this specific application. This investigation not only improves our
understanding of deep learning models in image segmentation, but also underscores their
potential to enhance diagnostic procedures in medical practice.

In summary, this study marks a significant advancement in the use of deep learning
models for image analysis, particularly within the vital healthcare sector. It paves the way
for more precise and reliable AI-powered diagnostic tools.
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Appendix A

This table presents a compilation of deep learning models reviewed during the course
of this study. It is included to assist future researchers exploring deep learning models for
image-based pathology detection.

Table A1. Table with 61 different deep learning model architectures.

No. Year Model
(Architecture) Description

1 2014 CRF Deep Learning
Combines a basic Convolutional Neural Network (CNN) with a Conditional
Random Field (CRF) for improved image segmentation, enhancing boundary
delineation by refining the CNN’s output with the CRF [44].

2 2014 Fully Convolutional
Networks (FCN)

Pioneering architecture in semantic segmentation that uses convolutional layers to
process images of any size and outputs segmentation maps [45].

3 2015 U-Net A highly effective network for medical image segmentation, featuring a U-shaped
architecture that excels in tasks where data are limited [19].

4 2015 ReSeg
A model based on Recurrent Neural Networks (RNNs) and FCN, designed for
semantic image segmentation, leveraging the sequential nature of RNNs for
improved segmentation [46].

5 2015 Deconvolution Network Uses deconvolutional layers to perform up-sampling of feature maps, enabling
precise localization in semantic segmentation tasks [47].

6 2015 Dilated ConvNet
Incorporates dilated convolutions to expand the receptive field without reducing
resolution, enhancing performance in dense prediction tasks like semantic
segmentation [48].

7 2015 ParseNet Enhances FCNs by adding global context to improve segmentation accuracy,
focusing on understanding the whole scene context [49].

8 2015 SegNet SegNet was designed for road scene understanding in the context of autonomous
driving [50].

9 2016 DeepLab
DeepLabv1 and its successive versions (v2, v3, v3+, and v4) made significant
contributions in semantic segmentation, incorporating dilated convolutions,
atrous spatial pyramid pooling, and encoder–decoder structures [51].

10 2016 PSPNet Proposed Pyramid Scene Parsing Network for scene parsing tasks [52].

11 2016 Instance-Aware
Segmentaiton

This approach to segmentation is designed to not only classify pixels but also
differentiate between separate instances of the same class in the image. It is
commonly used in scenarios where identifying individual objects (instances) is
crucial, such as in instance segmentation tasks [53].

12 2016 V-Net

An adaptation of the U-Net model for volumetric (3D) medical image
segmentation. It is particularly effective for tasks like organ segmentation in 3D
medical scans, using a similar architecture to U-Net but extended to three
dimensions [54].

13 2016 ENet

A lightweight and efficient network designed for real-time semantic segmentation,
particularly in mobile or low-power devices. It achieves a good balance between
accuracy and speed, making it suitable for applications where computational
resources are limited [55].

14 2016 RefineNet Utilizes a multi-path refinement network for high-resolution semantic
segmentation [56].

https://camelyon17.grand-challenge.org/
https://camelyon17.grand-challenge.org/
https://zenodo.org/records/6633721
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Table A1. Cont.

No. Year Model
(Architecture) Description

15 2017 Tiramisu This is also known as The One Hundred Layers Tiramisu; it utilizes DenseNets for
semantic segmentation [57].

16 2017 Mask R-CNN An extension of Faster R-CNN, Mask R-CNN is effective for instance
segmentation tasks [22].

17 2017 FC-DenseNet
Combines the principles of DenseNets (densely connected convolutional
networks) with FCNs, leading to efficient and accurate semantic segmentation,
especially in medical imaging [57].

18 2017 Global Convolutional Net
Designed for semantic segmentation, this network uses large kernels and global
convolutional layers to handle both classification and localization tasks
effectively [58].

19 DeepLab V3 An advanced version of DeepLab, it employs atrous convolutions and spatial
pyramid pooling to effectively segment objects at multiple scales [59].

20 2017 FPN—Feature Pyramid
Network

A versatile architecture used in both object detection and segmentation, it builds a
multi-scale feature pyramid from a single input image for efficient and accurate
detection at multiple scales [38].

21 2017 LinkNet Utilizes an encoder–decoder architecture for fast and accurate semantic
segmentation [26].

22 2018 ICNet Designed for real-time semantic segmentation tasks [60].

23 2018 Attention U-Net Incorporates attention mechanisms into the U-Net architecture [61].

24 2018 Nested U-Net A U-Net architecture with nested and dense skip pathways [60].

25 2018 Panoptic Segmentation A unified model that simultaneously performs semantic segmentation [62].

26 2018 Mask-Lab A deep learning model that combines semantic segmentation, direction prediction,
and instance center prediction for instance segmentation tasks [63].

27 2018 Path Aggregation
Network

Enhances feature hierarchy and representation capability for object detection by
enabling efficient multi-scale feature aggregation [64].

28 2018 Dense-ASSP A network that integrates dense connections and atrous spatial pyramid pooling
for robust semantic image segmentation [65].

29 2018 Excuse A model that fuses semantic and boundary information at multiple levels to
enhance feature representation and segmentation accuracy [63].

30 2018 Context Encoding
Network

Focuses on capturing global context information for semantic segmentation, often
using a context encoding module to improve performance [66].

31 2019 Panoptic FPN
A framework that combines the Feature Pyramid Network (FPN) with panoptic
segmentation, effectively handling both object detection and segmentation
tasks [41].

32 2019 Gated-SCNN A semantic segmentation network with a gated shape stream that focuses on
capturing shape information alongside the usual texture features [67].

33 2019 UPS-Net A unified panoptic segmentation network that effectively combines instance and
semantic segmentation tasks into a single, coherent framework [68].

34 2019 TensorMask A dense prediction model for instance segmentation that uses structured 4D
tensors to represent masks, enabling precise spatial understanding [69].

35 2019 HRNet Maintains high-resolution representations through the network, enhancing
performance in tasks like semantic segmentation and object detection [70].

36 2019 CC-Net: CrissCross
Attention

Employs criss-cross attention to capture long-range contextual information in a
computationally efficient manner for semantic segmentation [71].

37 2017 Dual Attention Network Integrates position and channel attention mechanisms to capture rich contextual
dependencies for improved scene segmentation [72].

38 2019 Fast-SCNN A fast and efficient network design for semantic segmentation on road scenes [73].
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Table A1. Cont.

No. Year Model
(Architecture) Description

39 2020 DPT Vision transformer-based architecture for segmentation tasks [74].

40 2020 SETR Another Vision Transformer-based method for segmentation shows the
effectiveness of transformers in dense prediction tasks [75].

41 2020 PointRend Aims at rendering fine-grained detail in segmentation through iterative
subdivision [74].

42 2020 EfficientPS Combines semantic segmentation and object detection efficiently [76].

43 2019 FasterSeg An architecture search-based approach for real-time semantic segmentation [77].

44 2018 MAnet Utilizes multi-head attention mechanisms for semantic segmentation [60].

45 2020 FasterSeg
FasterSeg is an AI-designed segmentation network that outperforms traditional
models in speed and accuracy by using advanced neural architecture search and
collaborative frameworks [78].

46 2020 PolarMask, A novel single-shot instance segmentation method that represents object masks in
a polar co-ordinate system; simplifies the instance segmentation process [79].

47 2020 CenterMask An efficient anchor-free instance segmentation model that extends the CenterNet
object detector by adding a spatial attention-guided mask branch [80].

48 2020 SC-NAS
Stands for “Semantic-Context Neural Architecture Search”. It is a network
architecture search method designed to optimize semantic segmentation networks
by considering the semantic context of the task [81].

49 2020 EffientNet + NAS-FPN

This combines EfficientNet, a scalable and efficient network architecture, with
NAS-FPN (Neural Architecture Search Feature Pyramid Network), a method for
automatically designing feature pyramid architectures for object detection tasks.
This combination aims to optimize both efficiency and accuracy in detection
models [82].

50 2020 Multi-scale Adaptive
Feature Fusion Network

Multi-scale Adaptive Feature Fusion Network for Semantic Segmentation in
Remote Sensing Images [83].

51 2021 TUNet TransUNet [84].

52 2021 SUnet Swin-Unet, Swin-Transformer [85].

53 2021 Segm Segmenter [86].

54 2021 MedT Medical Transformer [87].

55 2021 BEiT BERT Image Transformers [88].

56 2023 CrossFormer A Hybrid Transformer Architecture for Semantic Segmentation [89]

57 2022 MLP-Mixer Semantic Segmentation with Transformer and MLP-Mixer [90].

58 2022 Transformer-Powered
Semantic Segmentation

Transformer-Powered Semantic Segmentation with Large-Scale Instance
Discrimination [91].

59 2023 Adaptive Context Fusion Semantic Segmentation with Adaptive Context Fusion [89].

60 2023 Multi-Scale Vision
Transformers Semantic Segmentation with Multi-Scale Vision Transformers [92]

61 2023 Hiformer: Hierarchical
multi-scale Semantic Segmentation with Hierarchical Vision Transformers [93]
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