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Abstract: Introduction: Air pollution has numerous impacts on human health on a variety of time
scales. Pollutants such as particulate matter—PM1 and PM2.5, carbon dioxide (CO2), nitrogen dioxide
(NO2), and nitric oxide (NO) are exemplars of the wider human exposome. In this study, we adopted
a unique approach by utilizing the responses of human autonomic systems to gauge the abundance
of pollutants in inhaled air. Objective: To investigate how the human body autonomically responds
to inhaled pollutants in microenvironments, including PM1, PM2.5, CO2, NO2, and NO, on small
temporal and spatial scales by making use of biometric observations of the human autonomic
response. To test the accuracy in predicting the concentrations of these pollutants using biological
measurements of the participants. Methodology: Two experimental approaches having a similar
methodology that employs a biometric suite to capture the physiological responses of cyclists were
compared, and multiple sensors were used to measure the pollutants in the air surrounding them.
Machine learning algorithms were used to estimate the levels of these pollutants and decipher
the body’s automatic reactions to them. Results: We observed high precision in predicting PM1,
PM2.5, and CO2 using a limited set of biometrics measured from the participants, as indicated with
the coefficient of determination (R2) between the estimated and true values of these pollutants of
0.99, 0.96, and 0.98, respectively. Although the predictions for NO2 and NO were reliable at lower
concentrations, which was observed qualitatively, the precision varied throughout the data range.
Skin temperature, heart rate, and respiration rate were the common physiological responses that
were the most influential in predicting the concentration of these pollutants. Conclusion: Biometric
measurements can be used to estimate air quality components such as PM1, PM2.5, and CO2 with high
degrees of accuracy and can also be used to decipher the effect of these pollutants on the human body
using machine learning techniques. The results for NO2 and NO suggest a requirement to improve
our models with more comprehensive data collection or advanced machine learning techniques to
improve the results for these two pollutants.

Keywords: autonomic response; exposome; microenvironment; air pollution; biometric observations;
machine learning; particulate matter; CO2; NO2; NO

1. Introduction

This study employed a novel approach to gauge the levels of pollutants found in
inhaled air using autonomic human responses as discerned using a suite of biometric
sensors. The environmental and social context has a significant impact on human well-
being. The issue of air pollution is of particular concern, as reported by the World Health
Organization’s findings that both outdoor and indoor pollution contribute to more than
7 million premature deaths each year [1]. Air pollution can come from various sources,
including natural events such as wildfires and volcanic eruptions, as well as human
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activities such as vehicle emissions, industrial processes, and the operation of coal-fueled
power plants.

The air quality standards established by the U.S. Environmental Protection Agency
under the Clean Air Act include six pollutants. These include particulate matter (PM),
carbon monoxide (CO), ground-level ozone, nitrogen dioxide (NO2), sulfur dioxide (SO2),
and lead [2]. Some of the other pollutants include carbon dioxide (CO2) and volatile organic
compounds. Particulate matter refers to minuscule solid or liquid particles that are present
in the air and are categorized on the basis of their aerodynamic diameter. They include
PM1.0, PM2.5, and PM10 with an aerodynamic diameter of less than 1 µm, 2.5 µm, and
10 µm, respectively. With the small size of PM2.5, these particulates can penetrate deeply
into the lungs and bloodstream, creating adverse health effects related to the respiratory
system [3], increased mortality [4], heart disease [5], inflammatory responses, and adverse
birth-related effects [6]. The pollutants we considered are exemplars of the wider human
exposome [7–9], which refers to the comprehensive accumulation of all environmental
exposures that an individual encounters throughout their lifetime, including chemicals and
biological agents. The exposome encompasses exposures to both gases and particulates,
and appropriate care should be taken to include the often ignored ultrafine particulates [10].

Guidelines on the recommended levels of exposure to pollutants provided by the World
Health Organization (WHO) [11] and the Environmental Protection Agency (EPA) [12] contain
only two designations: short-term exposures (an average of over 24 h) and long-term
exposures (a 1-year average). Brief daily encounters, such as passing a construction site,
walking on a busy road, or even working in poorly ventilated indoor spaces, can expose
individuals to levels higher than the recommended guidelines. The size of airborne PM
has a major influence on how far it can penetrate the lungs, which in turn affects human
health. The WHO acknowledges that PM with diameters below 2.5 µm (PM2.5) has a
significant disease burden on human health [11,13], while larger particles, although less
likely to reach the alveoli, can still cause health problems by irritating the eyes, nose, and
throat [11]. Therefore, research efforts focused on prolonged exposure to poor air quality,
including airborne particles of varying sizes, are of particular importance when considering
long-term health.

The area of respiratory health receives significant attention due to the high incidence
of poor air quality caused by factors such as smoke, vehicle emissions, and dust. Prolonged
exposure to these sources, all of which produce PM of varying sizes, can affect long-term
health, including physiological, psychological, and neurological functioning. For example,
consider the following.

• Inflammation: Exposure to air pollution can cause inflammation in the brain, which
can cause cognitive impairment [14,15].

• Oxidative stress: Exposure to air pollution can increase oxidative stress, leading to cell
damage and cognitive impairment [14,16].

• Reduced oxygen supply: Air pollution can reduce the amount of oxygen available
to the body, which can lead to fatigue, decreased endurance, and impaired cognitive
function [17–20].

• Increased respiratory effort: Air pollution can increase the effort required to breathe,
leading to reduced exercise capacity and decreased performance [18,21,22].

• Neurotransmitter disruption: Exposure to environmental pollutants such as lead,
mercury, and polychlorinated biphenyls (PCBs) can alter neurotransmitter function
and cause cognitive problems [23,24].

• Epigenetic modifications: Exposure to environmental pollutants can lead to changes
in DNA methylation and other epigenetic changes, which can contribute to cognitive
problems [25–28].

• The breakdown of the blood–brain barrier: Exposure to air pollution can disrupt the
blood–brain barrier, allowing pollutants to enter the brain and cause neurological
damage [16].
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• Neurotoxicity: Exposure to certain environmental pollutants, such as lead, mercury,
and polychlorinated biphenyls (PCBs), can be neurotoxic and affect the nervous
system [24,29].

CO2 exposure has been associated with cognitive problems [30–32] and physiological
changes in lung and cardiovascular function [33]. Long-term exposure to NO2, which is
a gaseous pollutant, has been associated with cardiovascular disease, lung cancer, and
respiratory problems, modifying the severity of asthma [34–37]. The inhalation of regulated
nitric oxide (NO) under controlled conditions and medications that produce nitric oxide
have a wide range of therapeutic uses, such as cardiopulmonary conditions [38,39]. On the
other hand, NO, when inhaled in excess amounts, can react with oxygen to form NO2 in
the lungs, creating lung problems [39,40]. A higher concentration of NO is considered toxic,
although limited studies have been performed on the direct effects of NO inhalation.

In this study, we combined data sets obtained from two different experimental paradigms
and provided an overview of our previous work in which biometric data from participants
were used to estimate and understand the effects of inhaled ambient PM2.5 [41], CO2 [42],
and NO2 [43] on the human body using machine learning models and now including PM1
and NO in the study as well. While long-term exposure to air pollution can result in plenty
of health-related effects, as mentioned before, short-term exposure to air pollution also has
immediate effects on the human body, bringing physiological changes immediately. In this
study, we examined the autonomous responses on small temporal (∼2 s) and spatial (∼2 m)
scales of the five mentioned pollutants within microenvironments. To comprehensively
capture cognitive and physiological changes brought upon by air pollution, we made use of
several sensors to measure as many biological measurements as possible, which included
skin temperature, respiration rate, blood oxygen saturation (SpO2), heart rate, the galvanic
skin response (GSR), the pupil diameter of the left eye, the pupil diameter of the right eye,
the distance between the pupils, and the measurement of electrical activity in the brain and
heart using electroencephalography (EEG) and electrocardiogram (ECG), respectively.

Since the relations between and among variables are not always linear or functional,
we made use of machine learning algorithms to perform regression for nonlinear, non-
parametric, multidimensional data. The use of machine learning models has been shown
to estimate ambient PM with high degrees of precision, especially PM2.5 [44–46]. By
simultaneously measuring biological parameters and air quality components, we examined
the interaction between the body and the environment while also testing the accuracy of
estimating pollutants using machine learning techniques.

2. Materials and Methods

The core methodology in the study of these pollutants from two different experimental
paradigms was essentially the same; in it, several biometric data (or biometric variables,
predictor variables, or cognitive and physiological changes) of participants were collected
simultaneously using a biometric suite when a participant was cycling, while other sensors
simultaneously measured the ambient air pollutants (or target variable).

2.1. Experimental Paradigms

Figure 1 shows the two experimental setup scenarios for the simultaneous measure-
ment of biometric variables and ambient air pollutants. Figure 1a shows the scenario in
which a participant wore a biometric suite to capture autonomous changes in the body
when cycling a static bike indoors, while sensors placed nearby measured ambient PM2.5
and PM1. Similarly, Figure 1b shows the procedure for data collection in which a partici-
pant, equipped with the same biometric suite to measure biometric variables, was cycling
outdoors with an electric car behind them that was equipped with several different sensors
measuring ambient CO2, NO2, NO, PM1, and PM2.5 simultaneously. An electric car was
used so that the sensors placed in the trunk of the car did not measure the pollutants
produced by the car but only those of the ambient air.
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(a) (b)

Figure 1. Two of the experimental paradigms for biometric and environmental data collection in
which a participant is wearing the same biometric suite for biometric data collection. (a) Each of
the participants rode a static bike with sensors placed nearby to measure ambient PM2.5 and PM1.
(b) The participants in the study rode a bicycle followed by an electric car measuring environmental
CO2, NO2, and NO among other environmental variables. Source: Figure 4 from [46].

Two of the experimental paradigms in this study shared some similarities and differences
as well. Table 1 shows some of the similarities between the two experimental paradigms.

Table 1. Similarities between the two experimental paradigms.

Similarities

Use of the same biometric suite to measure biometric variables.

Pollutants were measured using sensors that were in close proximity to the participant.

Machine learning models were used to estimate the inhaled pollutants and examine the
autonomous responses in the human body.

The differences between the two experimental paradigms are shown in Table 2.

Table 2. Differences between the two experimental paradigms.

Bike in Motion Static Bike Ride

A single participant for data collection. Multiple participants for data collection.

The participants rode a bike on multiple tracks. The participants rode a stationary bike.

The location of the data collection was
outdoors in Breckenridge Park in Richardson.

The location of the data collection was indoors
inside the WSTC building at the University of

Texas at Dallas, Richardson.

In this study, the measurement of ambient CO2,
NO2, and NO as an environmental variable

was considered.

The measurement of PM1 and PM2.5 as an
environmental variable was considered.

Data collection was carried out in 2021. Data collection took place in 2021 and 2022.

All of the 64 electrodes on the EEG headset
were working.

The T7 electrode of the EEG headset was
not working.

2.2. Data Collection

The process of data collection for both of the experimental paradigms involved the
simultaneous measurement of biometric data using the same biometric suite and environ-
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mental data (or the target variable or pollutant). Several biometric variables were measured,
among which the ones that were considered for the study are presented in Table 3.

The EEG data were collected using a Cognionics EEG headset consisting of 64 electrodes
following the 10–10 nomenclature system [47] (https://www.cgxsystems.com/mobile-128,
accessed on 16 January 2024) with a sampling rate of 500 Hz. Among the rest of the
physiological responses (or non-EEG variables) the ECG, GSR, SpO2, respiration rate, skin
temperature, and heart rate were measured using a Cognionics AIM Generation 2 device
(https://www.cgxsystems.com/auxiliary-input-module-gen2, accessed on 16 January 2024)
with a sampling rate of 500 Hz. The Tobii Pro Glasses 2 (https://www.tobii.com/products/
discontinued/tobii-pro-glasses-2, accessed 16 January 2024) provided several pupillometric
measurements at a sampling rate of 100 Hz, but the ones that were considered were the
pupil diameter of the left eye, the pupil diameter of the right eye, and the distance between
the pupils.

Table 3. List of biometrics measured in both experiments.

Biometric Variable Units Location of the Sensor

Electroencephalography (EEG) Volt (V) A headset

Electrocardiography (ECG) Volt (V) Upper part of chest

Galvanic Skin Response (GSR) MicroSiemens (µSiemens) Upper back

Oxygen Saturation (SpO2) Percentage (%) Left ear

Respiration rate Breathing rate per minute (brpm) Same device used to measure GSR

Skin temperature oC Right temple

Heart rate Beats per minute (bpm) Same device used to measure SpO2

Pupil diameter of both eyes Millimeter (mm) Eye tracking glasses

Distance between pupils Millimeter (mm) The same eye tracking glasses

The data obtained from each of the 64 electrodes (or channels) of the EEG headset
were received as a time series of voltages. These voltages were measured with respect to a
virtual reference that was averaged from all the channels. The voltage time series could be
transformed from the time domain to the frequency domain. One of the ways to do so is
the Welch method [48], which was implemented using scipy [49]. The transformation thus
identified a power spectrum density (V2/Hz) in the Y-axis and frequency in the X-axis. The
frequency could be divided into five frequency bands named delta, theta, alpha, beta, and
gamma, each representing a different brain state. With the data obtained from each of the
64 electrodes, transforming each into a frequency domain and dividing each frequency into
five frequency bands provided a total of 320 biometric variables from the EEG headset.

From the three measured pupillometric variables, other variables such as the average
pupil diameter of the two pupils, the difference between pupil diameters of the left and
right eyes, and the absolute value of the difference between the pupil diameters were
calculated, providing extra features that were considered.

Before data collection for the study began, in each of the experiments, baseline biomet-
ric measurements were made for two minutes with the participants’ eyes closed and their
eyes open. The biometric suite was placed on the participants so that it had little effect on
their physiological responses.

CO2 measurement was performed using the LI-COR LI-850 device (https://www.licor.
com/env/support/LI-850/topics/description.html#Onlineresources, accessed 21 January
2024) with a sampling rate of 0.5 Hz (twice every second). The measurement of NO2 and
NO was carried out using the Model 405 nm NO2/NO/NOx Monitor from 2B technologies
(https://2btech.io/items/other-monitors/model-405-nm-no2-no-nox-monitor/, accessed
21 January 2024) with a sampling rate of 0.2 Hz (once every 5 s), and the measurement
of PM1 and PM2.5 was carried out using the Fidas Frog device (https://www.palas.de/

https://www.cgxsystems.com/mobile-128
https://www.cgxsystems.com/auxiliary-input-module-gen2
https://www.tobii.com/products/discontinued/tobii-pro-glasses-2
https://www.tobii.com/products/discontinued/tobii-pro-glasses-2
 https://www.licor.com/env/support/LI-850/topics/description.html#Onlineresources
 https://www.licor.com/env/support/LI-850/topics/description.html#Onlineresources
https://2btech.io/items/other-monitors/model-405-nm-no2-no-nox-monitor/
https://www.palas.de/en/product/fidasfrog
https://www.palas.de/en/product/fidasfrog
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en/product/fidasfrog, accessed 21 January 2024) with a sampling of 1 Hz (once every 1 s).
The measurement of biometric data was stopped when cycling was stopped and collected
again when cycling was resumed.

At times, the precision of the data captured via biometric sensors can be compromised
due to their movement, resulting in the possibility of no values being recorded. Further-
more, the devices also have different sampling rates. Therefore, the data were cleaned and
down-sampled to 1 s for CO2, 5 s for NO2, 5 s for NO, and 1 s for PM2.5. The total number
of biometric variables used and the number of data records collected for each pollutant are
shown in Table 4.

Table 4. Collection of data for five pollutants.

Pollutant Total Number of
Biometrics

Days of Data
Collection Number of Trials Data Records in

Each Trial
Total Number of

Data Records

CO2 329 2 4 710, 696, 673, 238 2317

PM2.5 322 4 4 298, 239, 528, 318 1383

PM1 322 4 4 298, 239, 528, 318 1383

NO2 329 3 6 136, 23, 126, 120,
132, 45 582

NO 329 3 6 81, 15, 96, 88, 98, 32 410

The data collection for CO2, NO2, and NO was carried out on three separate days: Of
26 May, 9 June, and 10 June 2021, accurate data for CO2 readings were collected only on
9 June 2021 and 10 June 2021 with 2 trials on each day. Accurate data for NO2 and NO
were received on all 3 days with 2 trials on each day. Data collection for PM1 and PM2.5
took place on October 21 2021, January 14 2022, January 27 2022, and February 9 2022 with
different participants on each day.

The data obtained for NO2 and NO from the measuring device were filtered to include
only records that passed multiple quality criteria. These quality criteria included (a) the cell
flow rate of the sample gas between (1400 to 1600) cc/min, (b) the ozone flow rate between
(60 to 80) cc/min, (c) the cell photodiode voltage (PDV) of at least 0.6 Volts, and (d) the
PDV ozone generator of at least 0.1 Volts.

2.3. Data Analysis and Developing a Machine Learning Model

After the construction of the four datasets, each consisting of biometric variables as the
input features and one output target variable, we sought to estimate the inhaled pollutant
concentrations. Each target variable was estimated separately using random forests [50]
for multidimensional, nonlinear regression using the ensemble Random Forest Regressor
package from scikit-learn (version 1.0.2) [51] in Python (version 3.11.1). All models were
trained using 80% of the data, and the remaining 20% were used as an independent test set.
The determination coefficient (R2) and the root mean square error (RMSE) were calculated
between the true values of the pollutant and the estimated values of the pollutant to
quantify the goodness of fit. Scatter plots, quantile–quantile plots, and time series plots of
the actual and estimated pollutant values were also plotted for a qualitative analysis of the
goodness of fit.

Each of the scatter diagrams was overlaid with a 1:1 black line to indicate how far
the prediction was from the true values with data points with an exact prediction lying on
the 1:1 line. A quantile–quantile plot for each of the four machine learning models was
drawn and overlaid with percentiles to indicate where in the distribution the data points
deviated from the actual values with data points that had an exact prediction lying on the
red 1:1 line.

To identify the effectiveness of biometric variables in predicting the target variable, the
SHAP values (SHapley Additive exPlanations) [52,53] of the SHAP library (version 0.41.0)

https://www.palas.de/en/product/fidasfrog
https://www.palas.de/en/product/fidasfrog
https://www.palas.de/en/product/fidasfrog
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were used to rank the predictor variables in descending order. The SHAP values for
variables below the ninth order were found to be small and, thus, less effective in making
the prediction. Since the data were mostly nonlinear, the top 9 of those variables in the
predictor ranking were then used, and a 10 × 10 mutual information matrix including the
pollutant to be estimated was calculated using a package from scikit-learn [51] to identify
the nonlinear relationship between the variables. These mutual information values were
greater than zero, with higher values indicating a stronger relationship and zero values
indicating that the two variables were independent of each other.

3. Results

Among the several biometric variables that were measured in this study, some of the
readings were not easily measurable, and the devices were expensive as well, for example,
the EEG and Tobii Pro glasses 2. Other variables, such as skin temperature, SpO2, heart
rate, respiration rate, GSR, and ECG, could be measured relatively easily and were also
inexpensive. Therefore, the study was classified into two parts; first, we considered all
the biometric features that were either measured or calculated, and second, we considered
biometric variables that could be easily measured and were accessible.

3.1. Using all Features

Table 5 shows the coefficient of determination (R2) and RMSE between the true values
of the pollutant and the estimated values of the pollutant in the training set and the
testing set for each pollutant using the Ensemble Random Forest Regressor package from
scikit-learn and considering all biometric variables with default hyperparameters.

Table 5. Quantification of the estimation of the pollutant using all features with default hyperparame-
ters of the random forest algorithm.

Pollutant Train R2 Test R2 Train RMSE Test RMSE Number of Biometrics Inputs

PM1 0.99 0.99 0.03 µg/m3 0.07 µg/m3 322
CO2 0.99 0.97 9.89 ppm 21.63 ppm 329

PM2.5 0.99 0.97 0.14 µg/m3 0.37 µg/m3 322
NO 0.96 0.45 5.27 ppb 11.50 ppb 329
NO2 0.91 0.12 2.95 ppb 8.93 ppb 329

Table 5 shows that the train R2 for all pollutants was nearly 1, and the train RMSE
was also low, which was expected since this part of the data set was used in the machine
learning model for learning. The independent test R2 for PM1, CO2, and PM2.5 was also
almost 1, and the RMSE was also small, indicating that the performance and generalization
of the machine learning model in estimating PM1, CO2, and PM2.5 was very good. For
pollutants such as NO2 and NO, for which we had far fewer data records, the performance
was not as good, with low test R2 values. One possible explanation for the result is that
there were not enough training examples, explained detailly in Sections 3.1.2 and 3.1.3 for
NO2 and NO respectively. The R2 values and the RMSE values for all these pollutants can
change according to the way the data are shuffled. For PM1, PM2.5, and CO2, these values
remained close to each other because there was an abundance of data points over a range
of values. However, for NO2 and NO, these values changed to some extent, depending on
how the data were shuffled, especially considering the large number of predictor variables
for a relatively small data set. When the algorithm was run five times, the average R2

between true and estimated values of NO2 in the training set and the test set was 0.91 and
0.12, respectively, and the average RMSE between the true and estimated values of NO2 was
3.11 ppb and 8.56 ppb in the training set and test set, respectively. Similarly, for NO, when
the algorithm was run five times, the average R2 value in the training and testing set was
0.93 and 0.21, respectively, and the average RMSE was 5.23 ppb and 11.62 ppb, respectively.
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To test whether the precision of the estimation could be improved further, we optimized
the hyperparameters of the random forest algorithm. Two of the hyperparameters were opti-
mized, including (a) n_estimators (the total number of trees), and (b) max_features (the number
of features considered at each split). To find the best combination of these two parameters,
scikit-Learn’s GridSearchCV was used. A set of integers of these two parameters was provided
as an input to the GridSearchCV function, which then ran all the possible combinations with
K-fold cross-validation. With the provided set of n_estimators (say m), a set of max_estimators
(say n), and K- fold cross-validation, the model was trained a total of m × n × k times, and
GridSearchCV returned the best possible combination that had the lowest mean squared
error. Since the default value of the n_estimators parameter is 100, we provided n_estimators
with a set of values that were either less than 100 or greater than or equal to 100. Also,
the default value of max_features=1.0, and it considered features equal to the total num-
ber of features when considering the best split. Thus, a set of integers less than the total
number of features was provided to the max_features parameter. The number of features
considered at each split was then equal to the number in the set of values provided to the
max_features parameter.

Table 6 shows the best combination of the n_estimators and the max_features parameter
for each of the pollutants. Since the best value of the parameter was between the set of
values provided to the GridSearchCV function, other values did not need to be tested.

Table 6. Set of hyperparameters provided as inputs to GridSearchCV and the best possible parameter
when considering all available features.

Pollutant Set of n_estimators Set of max_features Folds for
Cross-Validation

Total Number of
Training

Optimized
Parameter

PM1 80, 90, 100, 110, 120 250, 275, 300 3 45 110, 275

CO2 80, 90, 100, 110, 120 250, 275, 300, 325 3 60 110, 300

PM2.5 100, 110, 120, 140 150, 180, 200, 250, 275 3 60 120, 200

NO 80, 90, 100, 110, 120 250, 275, 300, 325 3 60 110, 275

NO2 80, 90, 100, 110, 120 180, 200, 240, 250 3 60 90, 200

After the hyperparameters of the random forest algorithm were optimized, the model
was then used to test the accuracy of the prediction. Table 7 shows the quantification of the
estimation of the pollutants with optimized hyperparameters.

Table 7. Quantification of the estimation of the pollutants using all features with optimized hyperpa-
rameters of the random forest algorithm.

Pollutant Train R2 Test R2 Train RMSE Test RMSE Number of Biometrics Inputs

PM1 0.99 0.99 0.03 µg/m3 0.07 µg/m3 322
CO2 0.99 0.98 10.37 ppm 21.61 ppm 329

PM2.5 0.99 0.97 0.15 µg/m3 0.37 µg/m3 322
NO 0.96 0.37 5.33 ppb 9.29 ppb 329
NO2 0.91 0.11 2.95 ppb 10.08 ppb 329

When comparing Tables 6 and 7, we observe that the results were almost similar when
the hyperparameters were optimized. For NO, the results seem to have decreased. Since
Pearson’s correlation coefficient is highly susceptible to outliers, and the data are shuffled
each time the algorithm is run, this disparity was expected. We ran the algorithm five
times for NO2 and NO. The average RMSE between the true and estimated values of NO2
was found to be 3.26 ppb and 6.45 ppb in the training and testing set, respectively, while
the R2 was found to be 0.92 and 0.19. Similarly, the average RMSE between the true and
estimated values of NO was found to be 5.01 ppb and 12.83 ppb in the training and testing
set, respectively, while the R2 was found to be 0.93 and 0.15.
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3.1.1. Carbon Dioxide

For the study of CO2, a total of 329 biometric input variables were taken into account,
including the 320 variables from the EEG data, and the remaining variables included the
following: ECG, respiration rate, SpO2, heart rate, GSR, skin temperature, pupil distance,
the average pupil diameter, and the absolute value of the difference between pupil diame-
ters. Figure 2a shows a SHAP value beeswarm plot of the top nine features in descending
order to indicate the biometric variables that were the most influential in estimating CO2.
Figure 2b shows a mutual information matrix consisting of the nine variables with the nine
highest SHAP values and CO2.

(a) (b)

Figure 2. (a) A SHAP value beeswarm plot of the top nine features in descending order for estimating
the inhaled CO2. (b) A mutual information matrix consisting of the top nine biometric variables that
were the most influential in the prediction of CO2 and the target variable, CO2.

These SHAP values for CO2 on the X-axis are expressed in ppm units. As indicated by
the SHAP values, the average diameter of the pupil, the GSR, and skin temperature were
among the top physiological responses that were the most effective in predicting CO2. The
order of these variables can change, depending on how the data are shuffled, especially
when the SHAP values are close to each other—for example, for features in order numbers
5, 6, and 7. The plot also indicates that higher values of the average pupil diameter tend to
decrease the prediction, while lower values tend to increase the prediction, as large portions
of SHAP values for the average pupil diameter are negative and positive, respectively.

In addition to the fact that the diameter of the pupil changes, depending on the light
entering it, the diameter of the pupil has been associated with cognitive ability [54]; as
mentioned before, CO2 intake is linked to cognitive issues [30–32] as well. The GSR sensor
measures the response to sweat, and sweating can be caused by physical tasks such as
cycling. CO2 inhalation can cause sweating when the concentration is 6 to 10% [55]. Other
biometric variables include the respiration rate, heart rate, and skin temperature, and con-
sidering that exposure to CO2 can cause physiological changes in lung and cardiovascular
function [33], it was expected that these variables would be affected by CO2 intake.

Similarly, the EEG variables included T7, FT10, and AF8 electrodes with frequency band
delta, beta, and delta bands, respectively. According to the 10–10 system of nomenclature [47],
electrodes with odd numbers are on the left side, and those with even numbers are on the
right side. The T7 electrode is above the temporal lobe, which is associated with speech and
short-term memory [56]. The FT10 electrode is located between the frontal and temporal
lobes. The SHAP value of the AF8 electrode was very low, and therefore, all variables below
the order had a smaller SHAP value and provided a small contribution to CO2 prediction.
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The mutual information matrix shows that inhaling CO2 has a high nonlinear rela-
tionship with the GSR, skin temperature, ECG, respiration rate, and heart rate, indicating
the several changes brought about via CO2 intake. Similarly, these biometrics are also
mutually related to each other, as GSR has high mutual information with the average pupil
diameter, skin temperature, ECG, and heart rate, while skin temperature has high mutual
information with ECG, the ECG with the respiration rate, and the respiration rate with the
heart rate.

The scatter diagram and the quantile–quantile plot for CO2 are shown in Figure 3. The
scatter diagram in Figure 3a shows that not only most of the data points in the training
set but also, more importantly, those in the testing set lie very close to the black 1:1 line,
indicating that the predictions are close to each other for a large portion of the dataset.

(a) (b)

Figure 3. (a) Scatter diagram of the true values of CO2 against the estimated values of CO2 with a
black 1:1 line overlaid. (b) Quantile–quantile plot of the true values of CO2 against the estimated
values of CO2 with a red 1:1 line overlaid.

The quantile–quantile plot in Figure 3b also shows that, for most of the distribution,
the data points lie close to the red 1:1 line. The quantiles in the distribution deviate for
values between 700 and 800 ppm, and one of the possible reasons could be the scarcity of
data points in this range of value, which is also depicted in the scatter diagram.

3.1.2. Nitrogen Dioxide

The 329 variables that were considered for the study of NO2 include the 320 EEG
variables, ECG, respiration rate, SpO2, heart rate, GSR, skin temperature, average pupil
diameter, pupil distance, and difference in pupil diameter.

In the case of NO2, the estimate was not as good, as indicated by the value of R2

and RMSE between the true and estimated values of NO2 in Table 5. However, Figure 4a
shows the SHAP value beeswarm plot of the top nine biometric features that were the most
influential in estimating NO2. Figure 4b shows the mutual information matrix of the top
nine features chosen by SHAP values and NO2.
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(a) (b)

Figure 4. (a) A SHAP value beeswarm plot of the top nine features in descending order that were
useful in estimating NO2. (b) Mutual information matrix consisting of the top nine biometric variables
that were the most influential in predicting NO2 and the target variable, NO2.

The SHAP values, in this case on the X-axis, are in units of ppb. The SHAP value
of the ECG and skin temperature is relatively higher than the other variables, so these
variables do not tend to change order. However, the ordering of the rest of the variables
can change, depending on how the data are shuffled, as the SHAP values are close to each
other, especially at the lower end of the order. The plot also shows that lower values of
skin temperature tend to decrease the prediction, while higher values tend to increase the
prediction. As long and short-term exposure to NO2 is associated with cardiovascular
disease [57], it is likely that the ECG is one of the main variables. Since the inhalation of a
higher concentration of NO2 causes inflammation of the airways, changes in the respiration
rate, skin temperature, and sweating are also likely to affect the GSR sensor.

Other variables include EEG ones. The F7 electrode is one of the main EEG vari-
ables. The SHAP value of the F7-gamma variable and the following two variables are low
compared to the rest of the variables, indicating their low effectiveness in estimating NO2.

The mutual information matrix in Figure 4b shows that NO2 has high mutual informa-
tion with the ECG, skin temperature, heart rate, and GSR, which was again to be expected,
as the SHAP values for these variables were high. The matrix also shows that the ECG has
higher mutual information with skin temperature, respiration rate, heart rate, and GSR,
while skin temperature has higher mutual information with the respiration rate, heart rate,
and GSR, the respiration rate has higher mutual information with the heart rate and GSR,
and the heart rate has higher mutual information with the GSR. This is similar to what
is seen in the mutual information matrix in Figure 2b, indicating that the variables are
mutually related to each other.

The scatter plot and the quantile–quantile plot for NO2 are shown in Figures 5a and 5b,
respectively. The scatter diagram in Figure 5a shows that the lower values of the data points
lie close to the black 1:1 line, where there is an abundance of data. The quantile–quantile
graph in Figure 5b shows that around 90% of the data are less than 20 ppb, where the
quantile–quantile graph is close to the red 1:1 line. As the values of NO2 increase, the
number of data points is low; this could possibly have caused the number of data points
to deviate from the 1:1 black and red line for higher NO2 values, as there is a very small
number of data points from which the machine learning model can learn.
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(a) (b)

Figure 5. (a) Scatter diagram of the true values of NO2 against the estimated values of NO2 with a
black 1:1 line overlaid. (b) Quantile–quantile plot of the true values of NO2 against the estimated
values of NO2 with a red 1:1 line overlaid.

3.1.3. Nitric Oxide

In the NO study, the same 329 variables used in NO2 were considered. Similar to the
case of NO2, the estimation of NO using biometrics did not appear to be very accurate,
as indicated by R2 and the RMSE values between the true and estimated values of NO in
Table 5.

The SHAP value beeswarm plot in Figure 6a shows that physiological responses such
as skin temperature, average pupil diameter, and ECG are among the main biometric
variables in estimating NO. The unit of the SHAP value on the X-axis here is ppb. The
plot also shows that higher skin temperature values tend to lower the prediction, while
lower values tend to increase the prediction. Since the inhalation of NO when reacted
with oxygen can create NO2, skin temperature and ECG were possibly affected, and they
were also common variables in NO2. There appears to be a large number of EEG variables
as well. The PO7 electrode is located between the parietal and occipital lobes on the
left side of the brain. The gamma band that seems common is dominant in tasks that
involve concentration [58]. Other biometric variables, such as Fp2-gamma, Fpz-beta, and
those below them, have low SHAP values and, thus, provide less of a contribution to
NO estimation.

The mutual information matrix in Figure 6b shows that, among the predictor variables,
NO has high mutual information with skin temperature and ECG. Skin temperature and
ECG also have high mutual information with each other.
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(a) (b)

Figure 6. (a) A SHAP value beeswarm plot of the top nine features in descending order that were
useful in estimating NO. (b) Mutual information matrix consisting of the top nine biometric variables
that were the most influential in predicting NO and the target variable, NO.

Figure 7 shows the scatter plot and the quantile–quantile plot of the true values of NO
compared to the estimated values of NO.

(a) (b)

Figure 7. (a) Scatter diagram of the true values of NO against the estimated values of NO with a
black 1:1 line overlaid. (b) Quantile–quantile graph of the true values of NO against the estimated
values of NO with a red 1:1 line overlaid.

The overall structure of the scatter diagram and the quantile–quantile graph for NO
looks similar to that of NO2, with smaller values of NO lying close to the corresponding
1:1 line, where there is an abundance of data points. The quantile–quantile plot in Figure 7b
shows that more than 90% of the data are below around 20 ppb. As the values of NO get
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larger, these data points tend to deviate from the 1:1 line; one of the possible reasons could
be the scarcity of data points in the region.

3.1.4. PM1

Since, in the static bike ride experimental setup in which the measurement of PM1 and
PM2.5 was performed, the T7 electrode of the EEG headset did not give any readings, the
number of biometric variables was reduced to 322. These biometric variables include the
315 variables of the EEG headset, respiration rate, SpO2, heart rate, skin temperature, the
average pupil diameter, pupil distance, and the difference in pupil diameter. As shown
in Table 5, the PM1 performance was the highest with an R2 value of 0.99 and the lowest
RMSE of 0.07 µg/m3 in the test set.

The SHAP value beeswarm plot in Figure 8a shows that skin temperature, pupil
distance, and heart rate were among the main features that were the most influential
in estimating PM1. Skin temperature and the distance of the pupil were also important
variables in the estimation of PM1 when a single participant was used for the study [46].
The distance of the pupils, which indicates the vergence of the eyes, has been associated
with the attention load [59]. A series of EEG variables were amongst the top variables in
which the SHAP value of the Cz-delta variable was low, and all the variables below it were
even lower, very close to zero. Thus, removing these features from the study would have
little effect in estimating PM1.

(a) (b)

Figure 8. (a) A SHAP value beeswarm plot of the top nine features in descending order that are useful
in estimating PM1. (b) Mutual information matrix consisting of the top nine biometric variables that
were the most influential in predicting PM1 and the target variable, PM1.

The mutual information matrix in Figure 8b shows that PM1 has high mutual infor-
mation with physiological responses such as pupil distance, heart rate, and respiration
rate, and it also shows that the physiological responses are indeed mutually related to
each other.

The scatter diagram and quantile–quantile graph with true PM1 values on the X-axis
and estimated PM1 values on the Y-axis are shown in Figure 9a and b, respectively.

Both the scatter plot and the quantile–quantile plot show that the data points are very
close to the 1:1 line of the corresponding graph, indicating that the prediction is the most
accurate and precise among all the pollutants.
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(a) (b)

Figure 9. (a) Scatter diagram of the true values of PM1 against the estimated values of PM1 with a
black 1:1 line overlaid. (b) Quantile–quantile plot of the true values of PM1 against the estimated
values of PM1 with a red 1:1 line overlaid.

3.1.5. PM2.5

The biometric variables that were considered in the study of PM2.5 were the same as
those of PM1. As shown in Table 5, the estimation of PM2.5 was highly accurate, as indicated
by an R2 value between the true and estimated values of PM2.5 in both the training and the
test set, which was almost 1. The RMSE is also one of the lowest among all the pollutants.

The SHAP value beeswarm plot in Figure 10a shows that the physiological responses
that were the most effective in estimating PM2.5 included skin temperature, pupil distance,
average pupil diameter, and heart rate, three of which are common to that of PM1. The
SHAP values in the X-axis here are in µg/m3. The inflammatory response created via the
higher concentration of PM2.5 can possibly cause changes in skin temperature and heart
rate. Furthermore, PM2.5 also causes adverse health effects on the respiratory system [3],
and heart problems [5] could be the reason why the heart rate is one of the most important
variables. The size of the pupils has been associated with cognitive ability [54].

Several EEG variables are on the list of the top nine variables. The FT8 electrode is lo-
cated on the right side of the brain between the frontal and temporal lobes. The CP4-gamma
variable has a low SHAP value with variables below the order of even lower SHAP values,
indicating that the elimination of these variables will have little effect on the prediction
of PM2.5.

The mutual information matrix in Figure 10b shows that there is some sort of non-
linear relationship between PM2.5 and skin temperature, pupil distance, and heart rate,
which was again to be expected, as the SHAP values for these variables were also high.
Just as in the case of other pollutants for which physiological changes were related to each
other, such was the case here with skin temperature, pupil distance, and heart rate mutually
being related to each other.
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(a) (b)

Figure 10. (a) A SHAP value beeswarm plot of the top nine features in descending order that were
useful in estimating PM2.5. (b) Mutual information matrix consisting of the top nine biometric
variables that were the most influential in predicting PM2.5 and the target variable, PM2.5.

Figure 11a,b show the scatter plot and the quantile–quantile plot of the true values of
PM2.5 versus the estimated values of PM2.5. The scatter plot and the quantile–quantile plot
in Figure 11a and b, respectively, show that most of the data points lie in the 1:1 line of the
corresponding graph. This shows that, for most of the data set, the estimate was close to
the true PM2.5 values.

(a) (b)

Figure 11. (a) Scatter diagram of the true values of PM2.5 against the estimated values of PM2.5 with
a black 1:1 line overlaid. (b) Quantile-quantile plot of the true values of PM2.5 against the estimated
values of PM2.5 with a red 1:1 line overlaid.
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A time series graph of the three gaseous pollutants is shown in Figure 12. The background
of the time series plot is shaded with different colors, depending on different trials, and the
trials have been separated with vertical black lines.

Figure 13 shows the time series plot of the true values of PM1 and PM2.5 overlaid with
the estimated values of PM1 and PM2.5, respectively. Figures 12 and 13 show that the true
values of the pollutant were close to the estimated values of the pollutant for most of the
data set.

(a)

(b)

(c)

Figure 12. Time series plot of the true values of gaseous pollutants overlaid with estimated values of
the pollutants for (a) CO2, (b) NO2, and (c) NO.
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(a)

(b)

Figure 13. Time series plot of the true values of the pollutant overlaid with estimated values of the
pollutant for (a) PM1 and (b) PM2.5.

3.2. Using Easily Measurable Variables

Now, let us focus on just the subset of biometric variables that can be easily measured
using affordable sensors, for example, the respiration rate, SpO2, heart rate, GSR, and skin
temperature. All models using the reduced number of input features were trained with
the same ensemble random forest regression algorithm from scikit-learn with optimized
hyperparameters. Two of the hyperparameters that were optimized are max_features and
n_estimators, and the best combination was found using GridSearchCV.

Table 8 shows the set of n_estimators and max_features provided to the GridSearchCV
function and the best optimized parameters as well after the model was trained with 3-fold
cross-validation.

Table 9 shows the results of R2 and RMSE between the true values and the estimated
values of the pollutant with the corresponding number of biometric variables used to
estimate the pollutant.

The comparison of Table 9 with Table 5 shows that the test R2 and RMSE for PM1,
PM2.5, and CO2 were very close to each other. Similar results can be seen for NO2 and NO as
well, for which the test R2 was better, and the test RMSEs were very close to each other. The
numbers for NO2 and NO can change to some extent based on how the data are shuffled
but with little disparity since the number of dimensions has now been significantly reduced.
When the algorithm was run five times, the average R2 between the actual and estimated val-
ues of NO2 in the training and the test was 0.92 and 0.30, respectively, while that of NO was
0.95 and 0.55, respectively. Similarly, when the algorithm was run five times, the average
RMSE between the true and estimated values of NO in the training and test set was 2.65 ppb
and 7.81 ppb, while that of NO was 3.92 ppb and 9.23 ppb, respectively. The mentioned



BioMedInformatics 2024, 4 1037

values clearly indicate that the performance when the number of variables was reduced
had increased for NO2 and NO.

Table 8. Set of hyperparameters provided as inputs to GridSearchCV and the best possible parameter
when considering reduced number of features.

Pollutant Set of
n_estimators

Set of
max_features

Folds for
Cross-Validation

Total Number of
Training

Optimized
Parameter

PM1
80, 90, 100, 110,

120, 150 2,3,4 3 54 120, 3

CO2
80, 90, 100, 110,

120, 150 2, 4, 5 3 54 100, 4

PM2.5
80, 90, 100, 110,

120, 150, 180 2, 3, 4 3 63 150, 3

NO 60, 70, 80, 90, 100,
110, 120 2, 4, 5 3 63 90, 4

NO2
80, 90, 100, 110,

120, 150 2, 3, 4 3 54 110, 2

Table 9. Quantification of the estimation of the pollutant using reduced number of variables with
optimized hyperparameters of the random forest algorithm.

Pollutant Train R2 Test R2 Train RMSE Test RMSE Number of Biometrics Used

PM1 0.99 0.99 0.03 µg/m3 0.07 µg/m3 4
CO2 0.99 0.98 7.62 ppm 18.55 ppm 5

PM2.5 0.99 0.96 0.16 µg/m3 0.39 µg/m3 4
NO 0.98 0.53 3.38 ppb 12.70 ppb 5
NO2 0.93 0.24 2.39 ppb 10.38 ppb 5

The biometric variables that have been considered for CO2, NO2, and NO now include
the GSR, skin temperature, respiration rate, heart rate, and SpO2, while those for PM1 and
PM2.5 include skin temperature, heart rate, respiration rate, and SpO2. A SHAP value
beeswarm plot, scatter plot, and quantile–quantile plot of the gaseous pollutants estimated
using the reduced number of variables is shown in Figure 14.

The orderings of the variables in the SHAP value were similar to each other for all
gaseous pollutants. SpO2 seems to be the lowest among all pollutants, and the elimination
of this variable could have a small effect on the results. Since the number of dimensions
has now been significantly reduced, the ordering will remain almost similar when the data
are shuffled.

The scatter plot of CO2 is similar to that when all variables were considered. As the
R2 value has increased for NO2 and NO, the data points in the scatter plot are closer to
the 1:1 line. Similarly, the structure of each quantile–quantile plot is similar for all gaseous
pollutants when compared to the process in which all variables were considered.

Figure 15 shows the SHAP value beeswarm plot, scatter plot, and quantile–quantile
plot when estimating PM1 and PM2.5 using only four biometric variables. The beeswarm
plot in Figure 15a,d shows that skin temperature remains the main variable for estimating
PM1 and PM2.5 with a very high SHAP value compared to the other variables. The overall
structure of the scatter plot and the quantile–quantile plot of PM1 and PM2.5 also remains
similar with a large portion of the data set close to the 1:1 black line and the 1:1 red
line, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14. Top features and performance graphs using a reduced number of features: (a–c) to estimate
inhaled CO2, (d–f) to estimate inhaled NO2, and (g–i) to estimate inhaled NO.

The time series plot with the reduced number of biometric variables to estimate CO2,
NO2, and NO is shown in Figure 16. The time series plot with a reduced number of features
to estimate PM1 and PM2.5 is shown in Figure 17.

Figure 16a shows that the difference between the true values and the estimated values
of CO2 is now smaller, as the true values and estimated values are much closer to each
other compared to the time series when all features were considered. Similarly, the time
series plot for NO2 and NO is also similar to that when all variables were considered.
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(a) (b) (c)

(d) (e) (f)

Figure 15. Top features and performance graphs using a reduced number of features: (a–c) to estimate
inhaled PM1 and (d–f) to estimate inhaled PM2.5

The time series plot of PM1 and PM2.5 in Figure 17 shows that the true values and
estimated values are close and similar to those when all features were considered.

(a)

Figure 16. Cont.
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(b)

(c)

Figure 16. Time series plot of the true values of pollutants overlaid with the estimated values of
pollutants using a reduced number of variables for (a) CO2, (b) NO2, and (c) NO.

(a)

Figure 17. Cont.
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(b)

Figure 17. Time series plot of the true values of the pollutant overlaid with estimated values of the
pollutant using a reduced number of variables for (a) PM1 and (b) PM2.5.

4. Discussion

The human body is a sensing system in itself, and it reacts to environmental variables
and changes in them such as temperature, humidity, and air quality. It was previously
shown that autonomous physiological and cognitive responses that result from the inhala-
tion of particulate matter on a small temporal and spatial scale can be used to estimate PM1
and PM2.5 using machine learning models with very high accuracy [46] in a study that was
limited to a single participant. The inclusion of multiple participants in the experimental
static bike ride paradigm in which the measurement of PM1 and PM2.5 was performed
shows that the methodology that was implemented on a single participant can be extended
to multiple participants as well, producing even better results for PM1 and PM2.5 with an
R2 value of nearly 1 and a very low RMSE, as shown in Table 9. In fact, the results show that
a few biometric variables are good enough to estimate PM1 and PM2.5 with similar results.

The time series plot of PM1 and PM2.5 in Figure 17a,b shows that their true values are
very close to the estimated values for the majority of the data set without any significant
differences, which explains their smallest RMSE among all pollutants. This supports the
conclusion made previously [46] that two of the possible reasons why these estimates
are highly accurate and precise could be (a) that these particulate matter are abundant
and mix well with the ambient environment, thus having a higher probability of being
inhaled by the participant and entering the sensors placed nearby and (b), with the minute
size of PM2.5, that these particulates, when inhaled, can reach deep into the lungs and
bloodstream, creating many negative health effects [3,5,6], thereby impacting the human
body to a large extent.

Air quality components include not only particulate matter but also gaseous pollutants
such as CO2, NO2, and NO, which were included in this study. The methodology that was
implemented to estimate and understand autonomous responses in the human body can be
used for gaseous pollutants such as CO2 as well. The R2 value, which is nearly 1, between
the true and estimated values of CO2 in the test set using a small number of biometrics
supports this claim, as shown in Table 9. Making the model simpler by considering a
small number of biometrics also appears to have reduced the RMSE between the true
and estimated values of CO2, which can be seen clearly by comparing the time series in
Figures 12a and 16a. Given the several physiological changes brought about by inhaling
CO2, such as changes in lung and cardiovascular function [33], cognitive issues [54],
sweating [55], and the inflammation of airways, these autonomous responses can indeed
be used to predict the concentration of CO2 with high accuracy.

The results of estimating NO2 and NO for the entire range of data were not very
accurate, as indicated by the value of R2 and RMSE between the true and estimated values
of the corresponding gas shown in Table 9. However, the scatter diagram of these two gases
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in Figure 14e,h and the quantile–quantile plot of both of these gases in Figure 14f,i indicate
that the prediction is reliable to some extent for lower values of the gas when there is a
higher concentration of data, as the data points in the plot are close to their corresponding
1:1 line, respectively. As the number of data points decreases for higher values of these
two gases, the data points in the scatter plot and the quantile–quantile plot deviate from
their corresponding 1:1 line, with one possible reason being the very small number of
data points for the machine learning model to learn from in this region of data. Moreover,
Pearson’s correlation coefficient (R) is highly susceptible to outliers when few data points
deviate from the 1:1 line can largely affect the value of R. This could have possibly reduced
the precision when the entire data set was considered for study. This claim is supported
by the scatter diagram in Figure 14b and the quantile–quantile plot in Figure 14c of CO2,
where the data points deviate from the corresponding 1:1 line between 700 ppm and
800 ppm, one possible reason being the scarcity of data points in that region of data for
the machine learning model to learn from and then to be tested on an independent test
set. Improvements to the result in future work can possibly be made with either more
expansive data collection or better machine learning models that can learn with a limited
set of data to better minimize the error and then be tested in an independent test set.

Another possible reason for the results concerning NO and NO2 not being highly
accurate could also be that the autonomous responses during the process of data collection
were dominated by PM1 particles. As shown in the time series graph in Figure 16b,c, the
concentration of NO2 and NO was under 80 ppb and 90 ppb, respectively, with occasional
high concentration. The concentration of PM1 particles during these trials was between
0.708 and 7.655 µg/m3. As mentioned before, since these minute particles, when inhaled,
can pass through the nose and reach deep into the lungs and bloodstream, the immediate
changes in the body were, thus, most likely dominated by these PM1 particles for which
the estimation of PM1 using biometric variables was very high with the R2 between the
true and estimated values being 0.91 [46].

The result for all these air quality components shows that a small number of biometric
variables used to estimate these pollutants provide similar and, in some cases, better results.
In fact, the results are significantly better for NO and NO2. Reducing the number of dimen-
sions in a small data set, thus, seems to be more efficient in predicting the concentration,
rather than a large number of input features. This aligns with Occam’s razor principle
suggesting that a simpler model usually generalizes well. Moreover, the reduction of the
number of variables, that is, reducing the number of dimensions, was a necessity, given the
small number of data sets compared to the large number of biometric variables for which
data were collected.

There were a few limitations to this study that can possibly be removed in future
work. One of them was the collection of data from a single participant for CO2, NO2, and
NO. Multiple trials have been conducted to mitigate the issue. Future work can include
more extensive data collection from multiple participants to provide further confirmation.
However, the data collection in this experimental paradigm was performed on multiple
days, with multiple trials under different environmental conditions; the results are, thus,
likely to hold in a variety of environmental situations, probably except for situations with
extreme weather. Moreover, due to the experimental paradigm involving a static bike ride,
in which the study was conducted using multiple participants, and measurements of PM1
and PM2.5 were obtained, the results will also likely hold over a variety of populations.
The other limitation of the study involved readings from some of the electrodes in the
EEG headset that could be distorted due to activities such as blinking, head movement,
swallowing, jaw clenching, neck movement, and tongue movement, which are frequent
when a participant is cycling. This results in a lot of noise in the data that can be removed,
but these activities are frequent, and the procedure can significantly reduce the number
of data records. However, the results show that the removal of EEG data as biometric
variables also yields similar results.



BioMedInformatics 2024, 4 1043

The methodology used in this study presents a unique application of machine learning.
The use of biological measurements as input features for machine learning models can
predict the concentration of air quality components such as PM1, PM2.5, and CO2 with
high degrees of accuracy. We can, thus, know the quality of air in microenvironments just
by using a small set of biological measurements. Furthermore, with the use of predictor
ranking, we can observe which biological parameter is most affected by these air quality
components. Since the study was conducted outdoors, the participants were inhaling
a mixture of varying pollutants. In order to study the direct effects of these pollutants,
participants could be placed in a closed chamber with autonomous responses examined
by artificially varying just one of the pollutants. A study can be conducted using just an
EEG headset and observing how different areas of the brain can be affected when various
components of air quality are inhaled. Future work can also conduct studies concerning
other pollutants, such as lead, carbon monoxide, and volatile organic compounds.

Since this study was conducted on different days under different environmental con-
ditions, confounding variables in the experimental setup were expected. For example, the
ambient temperature can affect skin temperature and the GSR sensor as well. Future work
can measure these environmental variables and identify these variables via causal analysis.
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