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Abstract: An overview of solvent replacement strategies shows that there is great progress in green
chemistry for replacing hazardous di-polar aprotic solvents, such as N,N-dimethylformamide (DMF),
1-methyl-2-pyrrolidinone (NMP), and 1,4-dioxane (DI), used in processing active industrial ingredi-
ents (APIs). In synthetic chemistry, alcohols, carbonates, ethers, eucalyptol, glycols, furans, ketones,
cycloalkanones, lactones, pyrrolidinone or solvent mixtures, 2-methyl tetrahydrofuran in methanol,
HCl in cyclopentyl methyl ether, or trifluoroacetic acid in propylene carbonate or surfactant water
(no organic solvents) are suggested replacement solvents. For the replacement of dichloromethane
(DCM) used in chromatography, ethyl acetate ethanol or 2-propanol in heptanes, with or without
acetic acid or ammonium hydroxide additives, are suggested, along with methanol acetic acid in
ethyl acetate or methyl tert-butyl ether, ethyl acetate in ethanol in cyclohexane, CO2-ethyl acetate,
CO2-methanol, CO2-acetone, and CO2-isopropanol. Supercritical CO2 (scCO2) can be used to re-
place many organic solvents used in processing materials from natural sources. Vegetable, drupe,
legume, and seed oils used as co-extractants (mixed with substrate before extraction) can be used to
replace the typical organic co-solvents (ethanol, acetone) used in scCO2 extraction. Mixed solvents
consisting of a hydrogen bond donor (HBD) solvent and a hydrogen bond acceptor (HBA) are not
addressed in GSK or CHEM21 solvent replacement guides. Published data for 100 water-soluble
and water-insoluble APIs in mono-solvents show polarity ranges appropriate for the processing
of APIs with mixed solvents. When water is used, possible HBA candidate solvents are acetone,
acetic acid, acetonitrile, ethanol, methanol, 2-methyl tetrahydrofuran, 2,2,5,5-tetramethyloxolane,
dimethylisosorbide, Cyrene, Cygnet 0.0, or diformylxylose. When alcohol is used, possible HBA
candidates are cyclopentanone, esters, lactone, eucalytol, MeSesamol, or diformylxylose. HBA—HBA
mixed solvents, such as Cyrene—Cygnet 0.0, could provide interesting new combinations. Solubility
parameters, Reichardt polarity, Kamlet—Taft parameters, and linear solvation energy relationships
provide practical ways for identifying mixed solvents applicable to API systems.

Keywords: Reichardt polarity; Kamlet—Taft parameters; green chemistry; solvent substitution;
pharmaceuticals

1. Introduction

Solvents are commonly viewed as being polar or nonpolar, depending on whether
their molecular structure contains highly electronegative (N, O, S, Cl, Br, I) elements or only
(C, H) elements. However, for a molecule to be polar, it must contain a polar bond and
have asymmetry in its structure that causes an imbalance in charge separation between two
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(+ and −) poles referred to as dipoles. The presence of an asymmetrically arranged polar
bond, such as C-Cl in chloromethane (CH3C1), causes the molecule to be polar, whereas
the presence of four symmetrically arranged C-Cl bonds in carbon tetrachloride (CCl4)
cause the molecule to be nonpolar. For two solvents to be miscible, similarity in molecular
polarity is required, as given by the well-known adage, “like dissolves like”, which in other
words means that, for the solvation of polar molecules to occur, dipole—dipole interactions
must exist, and conversely, for the solvation of nonpolar molecules to occur, dipole—dipole
interactions must be absent. There are many exceptions to this adage, and certainly, system
conditions (temperature, pressure) and van der Waals-London forces (dispersion) play
important roles in solvation processes. Moreover, for solvent mixtures as discussed in this
review, composition and interactions between hydrogen bond donor (HBD) and hydrogen
bond acceptor (HBA) molecules are important.

Physical properties such as dipole moment (µD), dielectric constant (ε), octanol-water
partition coefficient (logKow or logP), normal boiling point (Tb), melting temperature
(Tm), entropy of fusion (∆fusS), Hildebrand solubility parameter, and Hansen solubility
parameter help to characterize the macroscopic polarity of a molecule. On the other
hand, empirical polarity scales based on solvatochromic probes (dyes), such as Reichardt
ET(30) [1] and normalized ET

N values [2], Kamlet—Taft (KT) acidity (α), basicity (β) and
dipolar/polarizability (π*) values [3,4], and Catalán parameters [5], help to characterize
the microscopic polarity of a solvent [6]. In solvent selection guides developed by the in-
dustry [7,8] and chemical societies [9–12], pure component solvent properties are analyzed
in detail for developing solvent replacement strategies; however, as a focus of this review,
considerable opportunities exist if mixtures of two kinds of polar solvents are used to create
environments of microscopic polarity. For example, mixing an HBD solvent with an HBA
solvent causes complex molecules (e.g., HBD—HBA pairs) to form, such that heterogeneity
(local composition) is observed for simple alcohol—water mixtures [13,14] or ethylene
glycol-water mixtures [15]. In this review, the emphasis is placed on taking advantage of
the local composition and microscopic polarity of a solvent mixture as opposed to the bulk
properties of a pure solvent, even though temperature and pressure can also be used to
vary the properties of a pure solvent.

Solutes, in the context of this review, are active pharmaceutical ingredients (APIs) and
bio-related molecules that can have multiple functional groups and can contain both polar
(hydrophilic) and nonpolar (hydrophobic) regions in their structure. Functional groups
in the solute can interact within the molecule (intramolecular) or between neighboring
molecules (intermolecular) to form associated, cyclic, complex, network, or tertiary struc-
tures, and thus, the dissolution of an API into a solvent can be the result of many different
molecular interactions. The composition of a solvent mixture can be used to fine-tune
dipole—dipole interactions that sometimes lead to the solubility enhancement of the API
in solution that is higher than that in either of the pure mono-solvents, which is known as
synergistic behavior.

2. Substances of Very High Concern (SVHC)

In the synthesis and processing of APIs, polar protic (water, alcohols, carboxylic
acids), dipolar aprotic (ketones, lactones, esters, ethers), or nonpolar aprotic (hydrocarbons)
solvents are used. Notably, hazardous and unsafe dipolar aprotic chemicals (e.g., N,N-
dimethylformamide (DMF), 1-methyl-2-pyrrolidinone (NMP), 1,4-dioxane (DI)) account for
over 40% of total solvents used in synthetic, medicine-related, and process chemistry [16],
and these solvents and more than 480 others are on the candidate list of substances of very
high concern (SVHC), as designated under the European Chemicals Agency (ECHA), as
the European Union Registration, Evaluation Authorization and Restriction of Chemicals
(REACH) guidelines limit or prohibit the use of chemicals, especially those having repro-
ductive toxicity, carcinogenicity, or explosive decomposition properties (Table 1). Thus, the
key motivation of employing mixed solvents instead of mono-solvents, new solvents, or
newly developed solvents is based on environmental health and safety (EHS) guidelines
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for compounds with known chemical properties and conformity with the “International
Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human
Use” (ICH). Namely, EHS and ICH should be primary factors in solvent replacement,
rather than apparent greenness or economic or sustainability factors, because few newly
developed solvents or solvent systems have had sufficient time for scrutiny in all areas
highlighted by governmental agencies and in the solvent guides discussed below. In this
review, solvent replacement strategies are analyzed with the aim of highlighting a method
for identifying safe solvent mixtures for the research development and chemical processing
of organic compounds.

Table 1. Selected chemicals from candidate list of substances of very high concern (SVHC) for
authorization by the European Chemicals Agency (ECHA) as of 2023. Chemicals shown in various
categories are for educational purposes only. Specific hazards, detailed information, case decisions,
or discussion should be accessed from ECHA website [17]. LD50 values from PubChem or online
sources based on rat/mouse oral or dermal (d) studies.

Chemical (CAS No.) LD50 (mg/kg) Chemical (CAS No.) LD50 (mg/kg)

Carcinogenic Respiratory Sensitizing
1,2,3-trichloropropane (96-18-4) 120 cis-cyclohexane-1,2-dicarboxylic anhydride (13149-00-3) -

1,2-dichloroethane (107-06-2) 670 Cyclohexane-1,2-dicarboxylic anhydride (85-42-7) 958
1,4-dioxane (123-91-1) (DI) 1550 Glutaral (111-30-8) 134

2,4-dinitrotoluene (121-14-2) 268 Toxic to Reproduction
4,4′-Diaminodiphenylmethane (101-77-9) 120 1-Methyl-2-pyrrolidone (NMP) (872-50-4) 3914

4-aminoazobenzene (60-09-3) 200 1-vinylimidazole (1072-63-5) 180
Acrylamide (79-06-1) 170 2-ethoxyethanol (110-80-5) 2125

Anthracene oil (90640-80-5) 2000 d 2-ethoxyethyl acetate (111-15-9) 2700
Biphenyl-4-ylamine (92-67-1) 205 2-methoxyethanol (109-86-4) 2370

Chrysene (218-01-9) 320 2-methoxyethyl acetate (110-49-6) 2900
Furan (110-00-9) 5.2 2-methylimidazole (693-98-1) 1400

Propylene oxide (75-56-9) 1245 d 4,4′-sulphonyldiphenol (80-09-1) 4556
N-(hydroxymethyl)acrylamide (924-42-5) 474 Dibutyl phthalate (84-74-2) (DBP) 7499

o-aminoazotoluene (97-56-3) 300 (dog) Dicyclohexyl phthalate (84-61-7) 30
o-toluidine (95-53-4) 670 Dihexyl phthalate (84-75-3) 29,600

Phenolphthalein (77-09-8) >1 Diisobutyl phthalate (84-69-5) 15
Potassium dichromate (7778-50-9) 25 Diisohexyl phthalate (71850-09-4) -

Trichloroethylene (79-01-6) 1282 Diisopentyl phthalate (605-50-5) 2000
Endocrine disruptor Dioctyltin dilaurate (3648-18-8) 6450

2-(isononylphenoxy)ethanol (85005-55-6) - Formamide (75-12-7) 5577
4-(1-ethyl-1-methylhexyl)phenol (52427-13-1) - Methoxyacetic acid (625-45-6) 1000
4,4′-(1-methylpropylidene)bisphenol (77-40-7) 500.1 N,N-dimethylformamide (68-12-2) (DMF) 2800

4-tert-butylphenol (98-54-4) 2951 Nitrobenzene (98-95-3) 349
Isobutyl 4-hydroxybenzoate (4247-02-3) 2600 N-methylacetamide (79-16-3) 5

Nonylphenol (25154-52-3) 1200 n-pentyl-isopentyl phthalate (776297-69-9) -
Nonylphenol, ethoxylated (9016-45-9) 1300 Perfluoroheptanoic acid (375-85-9) 500

Human health effects Phenol, 4-dodecyl, branched (210555-94-5) 2000
Melamine (108-78-1) 3161 Phenol, tetrapropylene- (57427-55-1) 2000

Persistent, Bioaccumulative and Toxic (PBT) Very Persistent, Very Bioaccumulative (vPvB)
Alkanes, C14-16, chloro (1372804-76-6) 23 Phenanthrene (85-01-8) 700

Anthracene (120-12-7) >17 Terphenyl, hydrogenated (61788-32-7) 17,500
Dodecamethylcyclohexasiloxane (540-97-6) >50

Octamethylcyclotetrasiloxane (556-67-2) 1540
Pyrene (129-00-0) 2700

3. Solvent Guides

To address the issue of the overuse of hazardous dipolar aprotic chemicals in API
synthesis and processing and to improve the awareness of chemical professionals who
perform solvent selection on a day-to-day basis, pharmaceutical industries have developed
solvent guides with ranking systems. Chemical agencies have developed lists for solvents
evaluated as hazardous that require formal authorization for use in chemical processes.

The GlaxoSmithKline (GSK) solvent guide [7,18,19] contains detailed analyses of a
total of 154 small molecules (e.g., alcohols, aromatics, carbonates, chlorinated, dipolar
aprotics, esters, ethers, hydrocarbons, ketones, organic acids, water) commonly used in
pharmaceutical industries. The GSK solvent guide has the following categories: (i) waste
(incineration, recycling, biotreatment, VOC emissions), (ii) environment (aquatic impact, air
impact), (iii) human health (health hazard, exposure potential), and (iv) safety (flammability
and explosion, reactivity). The GSK solvent guide allows for the quick evaluation and
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qualitative comparison of replacement solvents based on four primary categories that
include life-cycle assessment (LCA), and it ranks solvents in their categories on a scale from
1 (major issues) to 10 (few known issues).

The European consortium and Innovative Medicines Initiative (IMI) produced
CHEM21 [8], which contains guidelines and metrics for solvent usage. Byrne et al. reported
environmental, health, and safety (EHS) tools and guidelines for solvents and highlighted
key points in available guidelines [11]. The CHEM21 solvent guide ranks solvents in EHS
categories on a scale from 1 (recommended) to 10 (hazardous), which is contrary (and
opposite in order) to the scale of the GSK solvent guide. Both solvent guides provide
extremely useful evaluations of solvent risks and issues and provide solvent replacement
recommendations.

The American Chemical Society (ACS) Green Chemistry Institute (CGI) and phar-
maceutical roundtable produced a solvent selection website (Figure 1) [10,12] dedicated
to solvent usage in pharmaceutical and chemical industries and a solvent guideline [9].
Figure 1 shows a sample screen of a solvent selection tool developed for the ACS GCI Phar-
maceutical Roundtable (GCIPR) that uses principle component analysis (PCA) to identify
potential solvent replacements. PCA combines many physical properties, characteristics
(presence of functional groups), and environmental data to generate correlations and scores
according to user constraints. The solvent selection tool (Figure 1) was described by Dio-
razio et al. [20] and was originally designed by AstraZeneca in Spotfire, and a version was
donated to GCIPR. The GCIPR solvent selection tool is useful for identifying replacement
solvents based on both quantitative and qualitative characteristics (Figure 1).
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4. Replacement Solvents in Synthetic Chemistry

Syntheses of APIs are commonly performed in multistep batch processes that use haz-
ardous or unsafe dipolar aprotic solvents in some of the key steps. Replacement strategies
for non-green dipolar aprotic solvents used in reactions were suggested by Gao et al. [21].

Table 2 summarizes replacement solvents for 15 classes of synthetic reactions identified
by Jordan et al. [16]. Possible replacement solvents for dipolar aprotics (Table 2) include
novel water-surfactant (PS-750-M) systems that eliminate organic solvents [22], dipolar
aprotic solvents with improved safety and sustainability, namely N-butyl-2-pyrrolidinone
(NBP), propylene carbonate (PC), dimethylisosorbide (DMI) [23], dihydrolevoglucosenone
(Cyrene) [24], eucalyptol [25], or dimethylcarbonate (DMC), or the use of mixed solvents,
such as 2-methyltetrahydrofuran (2-MeTHF) with methanol (Table 2). Besides THF or
DMF in Sonogashira cross-coupling reactions (Table 2), eucalyptol can possibly replace
solvents such as anisole, bromobenzene, chlorobenzene, chloroform, diethyl ether (DE),
N,N-dimethylacetamide (DMA), dimethyl ether (DME), DI, ethyl acetate, ethyl benzoate,
and toluene [25].

Table 2. Possible replacement solvents for dipolar aprotic solvents used in synthetic chemistry
transformations. Content was summarized and adapted from Unified solvent selection guide for
replacement of common dipolar aprotic solvents in synthetically useful transformations contained in ref. [16].
Copyright ACS, 2022.

Reaction Unsafe Dipolar Aprotics Replacement Solvents

Amide formation DCM; DMF Cyrene; surfactant-water
Boc deprotection DI HCl in CPME; TFA in PC
Borylation chemistry DI 2-MeTHF:MeOH (1:1); CPME; MTBE; CH
Buchwald—Hartwig amination DI 2-MeTHF; tBuOH
Carbonylation THF; DE DMC
Carboxylation THF; DE 2-MeTHF; DMI; DMC
C-H activation THF; DMF; DI 2-MeTHF; CH
Mizoroki—Heck cross-coupling DI; THF; DMF NBP; DMI; PC
Nucleophilic aromatic substitution THF; DMF; DI 2-MeTHF; PEG-400
Organometallic reaction R-MgX; R-Li; hydrides 2-MeTHF; CPME
Solid-phase peptide synthesis DMF; DMAc; NMP NBP; GVL
Sonogashira cross-coupling THF; DMF Cyrene; NBP; DMI; Eucalyptol
Steglich Esterification DMF DMC
Suzuki-Miyaura cross-coupling DI; THF; DMF Cyrene; NBP; DMI; 2-MeTHF
Urea synthesis DMF; THF Cyrene

In the synthesis of APIs with solvents, the type of process employed is an important
point that deserves attention. A less obvious way to lower risks associated with solvent
usage in API synthesis is through continuous manufacturing (CM) [26], as opposed to batch
processing. In a CM process, systems can be automated, quality can be improved, waste
can be reduced, and, most importantly, solvent volumes can be greatly lowered over those
quantities used in batch systems by lowering the total system volumes and by eliminating
the storage of API reaction intermediates, such that overall safety of the synthesis can be
improved. The number of papers published on the continuous manufacturing of APIs has
roughly tripled in the past 5 years, making it a highly active research area. In CM processes,
solvent selection and solvent additives play key roles in flow chemistry, product quality,
system operability, economics, and sustainability. Furthermore, there are some recent new
approaches for CM processes; amidation by reactive extrusion has been developed as a
solventless synthesis method and has been used for the preparation of teriflunomide and
moclobemide APIs [27].

5. Solubility Parameters

Solubility parameters (SP) are used to characterize substances in solvent replacement
strategies. The Hildebrand SP (δ) has the basis of regular solution theory [28], and its
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development in solubility theory relates the cohesive energy density defined by Equation (1)
to the activity coefficient [29].

δ ≡ (∆Uvap/V)1/2 (1)

In Equation (1), U and V are the molar internal energy of vaporization and molar
volume of the substance in its liquid state, respectively. The definition of the Hildebrand
SP is typically simplified by replacing U with (H − PV) and assuming ideal gas behavior:

δ = ((∆Hvap − RT)/V)1/2 (2)

Hansen [30] divided the total cohesive energy given in Equation (1) into three parts:
(i) dispersion (van der Waals (London) forces) interactions (δd), hydrogen bonding inter-
actions (δh), and polar (or dipole-dipole) interactions (δp). Hansen solubility parameters
(HSPs) are used to determine a solubility parameter distance (Ra) between two substances
“1” and “2” as follows:

(Ra)2 = 4 · (δd1 − δd2)
2 + (δh1 − δh2)

2 + (δp1 − δp2)
2 (3)

where the sphere provides a region of favorable solvation for a solute “1” and solvent
“2”, i.e., as values of Ra become closer to zero according to a chosen solvent with given
HSP values, affinity becomes higher, and the solubility of the solute in the solvent should
increase. The factor of four in Equation (3) is empirical and adds statistical weighting to
dispersion interactions as being most important in solvation. By taking a substance such
as a polymer or biomolecule and seeing whether it dissolves into solvents with known
HSP values, the radius of interaction (Ro) can be determined for that compound. Then, a
relative energy difference can be defined as follows:

RED = Ra/Ro (4)

and solvents or solvent mixtures that have RED < 1 are candidates that dissolve the
compound. It is possible, for example, for two solvents outside of the solvation sphere to be
mixed, such that they form a good solvent as mixture for a polymer. HSP theory has been
used to estimate the solubilities of anti-inflammatory drugs in pure and mixed solvents [31].
Fractional HSP values, which can be plotted on ternary diagrams to facilitate the assessment
of interactions, have been used to identify green extraction solvents for alkaloids [32] and to
screen solvent mixtures for pharmaceutical cocrystal formation [33]. HSP is a powerful tool
used for solvent screening and is especially useful for large molecules, such as polymers or
biomolecules, as highlighted by Abbott [34].

In comparing the Hildebrand solubility parameter theory with that of the Hansen
solubility theory, the Hildebrand solubility parameter theory has some notable failures in
predicting miscibility between materials [30]. However, in a critical comparison of solvent
selection for 75 polymers, both theories gave similar results in predicting polymer—solvent
miscibility [35]. Namely, Hildebrand SP had a prediction accuracy of 60% for solvents and
76% for non-solvents, whereas HSP had a prediction accuracy of 67% for solvents and 76%
for non-solvents [35]. On the other hand, for polar polymers, the Hildebrand SP theory gave
a prediction accuracy of only 57% [35]. Both Hildebrand solubility parameters and Hansen
solubility parameters are useful screening tools for solvent replacement. Hildebrand SP
theory is simple and provides qualitative estimation of solvent interactions for nonpolar
molecules or slightly polar molecules; Hansen SP theory accounts for detailed molecular
interactions and is applicable to both nonpolar and polar molecules. HSP can be applied to
complex molecules, such as lignin [36] or phytochemicals [37]; however, HSP is qualitative
when hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) molecular systems
are considered [38].
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6. Empirical Polarity Scales

Reichardt ET(30) parameters are based on the solvatochromic properties of Betaine 30
dye and provide the sensitive characterization of solvent polarity. Reichardt ET

N values
are normalized based on the ET(30) values of water and tetramethylsilane. Reichardt
parameters are firmly established in the chemical literature and form the basis of a widely
used polarity scale for organic chemicals [6].

Kamlet—Taft (KT) parameters are based on the solvatochromism of dyes specific to
Lewis acidity (α), Lewis basicity (β), and dipolarity/polarizability (π*) and have indepen-
dent scales that depend on reference solvents [39]. The Kamlet—Taft polarity scales are
meant to have values of α, β, and π* that are between zero and one; however, when a
solvent has a Lewis acidity, Lewis basicity, or dipolarity/polarizability that is outside of
the range of reference compounds, (π* = 0 (cyclohexane) and π* = 1 (dimethylsulfoxide))
values of KT parameters can be greater than unity or less than zero.

Catalán parameters improved the KT parameter approach by using specific dyes for
solvent polarizability (SP), solvent dipolarity (SdP), solvent acidity (SA), and solvent basic-
ity (SB) parameters rather than by average values, as in the KT approach. Catalán parame-
ters separate the polarizability (SP) and dipolarity (SdP) contributions of the KT parameter
approach. All three scales have wide use in the chemical literature, although there are issues
in data reduction methods and parameter values, as pointed out by Spange et al. [40], who
reanalyzed polarity scales considering molar concentrations of the solvent (N), and Spange
and Weiß [41], who proposed a method to unify the acid—based (pKa) and density effects
of hydrogen bond donor solvents.

According to Reichardt and Welton [6], common molecular solvents (Figure 2) can be
roughly divided into three groupings: (i) dipolar protic (HBD), ET

N > 0.5; (ii) dipolar aprotic
(HBA), 0.3 < ET

N < 0.5; and (iii) apolar (non-HBD or nonpolar), ET
N < 0.3. Examination

of the KT dipolarity/polarizability parameters (Figure 2) shows that longer chain hydro-
carbons have π* values less than zero, and water has a π* greater than unity, which is due
to the choice of reference solvents in the KT method. Most solvent replacement strategies
consider Reichardt, Kamlet—Taft or Catalán parameters in their analysis. For example,
dipolar aprotic solvents generally have high KT basicity and low KT acidity (Figure 3).
Direct replacement solvents for dipolar aprotics could be N-butyl-2-pyrrolidinone (NBP),
CyreneTM (Cyr), γ-valerolactone (GVL), γ-butyrolactone (GBL), eucalyptol (Eupt), tetram-
ethyloxolane (TMO), dimethyl isosorbide (DMI), or cyclopentyl methyl ether (CPME).
However, many solvents have ET

N polarity values that are much lower than that of dipolar
aprotics (Figure 2) and KT acidities that are either too high or KT basicities that are too
low (Figure 3) to allow direct replacement of dipolar aprotics. Nevertheless, the range of
Kamlet—Taft parameters of dipolar aprotics provide valuable information for considering
mixed solvents and mixed solvent composition.
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7. Opportunities with Mixed Solvents

Mixtures of solvents (mixed solvents) allow one to vary the chemical properties of the
solution in a unique number of ways. For example, when an HBD solvent is mixed with an
HBA solvent, KT parameters vary continuously with composition (Figure 4). KT parameters
of mixed solvents can show synergistic behavior, which means that their β or π* values can
be higher than the KT parameters of the pure solvents (Figure 4), especially when water
is the HBD solvent. Duereh et al. [42] showed that there is a clear relationship between
microscopic (local) polarity, complex molecule (HBD—HBA solvent pairs) interactions, and
synergistic behavior in thermodynamic properties (Figure 5).
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mixed solvents, such as ethyl acetate (EtAc)-ethanol (EtOH) in heptanes being demon-
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Thus, solvent composition of mixed solvents allows one to vary microscopic polarity
(local composition) and the concentration of HBD—HBA complex molecules that can be
used advantageously in solvent replacement schemes.

In this section, strategies for using mixed solvents to replace hazardous chemicals
are highlighted for chromatography solvents, CO2 expanded liquids, supercritical fluids,
low-transition temperature mixtures, switchable solvents, and HBD—HBA mixtures of
molecular solvents.

7.1. Chromatography Solvents

In chromatographic methods, great progress has been made with the introduction of
mixed solvents, such as ethyl acetate (EtAc)-ethanol (EtOH) in heptanes being demonstrated
as a superior replacement for dichloromethane (DCM) [43]. Mixed solvent stock solutions
are marketed by leading chemical suppliers for HPLC, TLC, and flash chromatography
(FC) methods [44], confirming the success of the EtAc—ethanol mixtures.

The reason why EtAc—EtOH in a heptane mixed solvent system can replace DCM can
be understood by examining the variation in KT parameters of the mixture compared with
the KT parameters of the DCM—MeOH system. In this case, EtOH is the HBD solvent,
EtAc is the HBA solvent, and the heptanes have low overall KT acidity for the mobile phase.
Composition variation of EtAc–EtOH mixtures allows for the fine control of the basicity
and dipolarity/polarizability that transverse methanol KT parameters (Figure 4).

To replace hexane, CO2–EtAc has been suggested to be applicable to thin-layer chro-
matography (Table 3), and CO2–MeOH has been demonstrated to be applicable to flash
chromatography [45]. The entire corporate chemistry division of Syngenta (Table 3) re-
duced the overall volume of seven hazardous dipolar aprotic solvents (DCM, CHCl3, DCE,
DI, DME, DMF, DE) by 75% over a period of two years by using solvent replacement
(e.g., EtAc–EtOH mixtures for DCM) and by emphasizing reverse phase chromatogra-
phy for the separation of polar compounds [46] (Table 3); however, DMF usage increased
during that period. Solvent pairs, such as cyclohexanone–MeOH, cyclohexanone–EtOH,
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cyclopentanone–MeOH, cyclopentanone–EtOH, GBL–MeOH, GBL–EtOH, GBL–water,
GVL–MeOH, GVL–EtOH, and GVL–water, have been demonstrated as replacements for
NMP or DMF in polyamide synthesis and, thus, have possibilities as solvent replacements
in analytical method development [47].

Improvements in high-pressure liquid chromatography (HPLC) have been made with
the introduction of ultra-high-pressure liquid chromatography (UHPLC), supercritical
fluid chromatography (SFC), and ultra-high-pressure supercritical fluid chromatography
(UHPSFC), which reduce the amount of solvents necessary in analyses while improving
resolution [48]. When UHPSFC—tandem mass spectroscopy is employed, the determina-
tion of plant hormones (cytokinins) can be analyzed in 9 min at detection limits close to 0.03
fmol [49]. ACS has introduced the analytical method greenness score (AMGS) calculator
developed by Hicks et al. [48] that ranks chromatography methods according to instrument
energy, solvent energy, and solvent EHS scores [10].

Table 3. Replacement solvents for dichloromethane (DCM) in high-performance liquid (HPLC),
thin-layer chromatography (TLC) and flash chromatography (FC) methods. Analytes consist of
neutral, basic, acidic, and polar API.

Mixed Solvent a Analyte b System Ref.

EtAc:EtOH (3:1) in heptanes Neutral LC [43]
EtAc:EtOH in heptanes Neutral LC [43]
iPrOH in heptanes Neutral LC [43]
EtAc:EtOH (3:1) in MTBE Neutral LC [43]
MeOH in MTBE Neutral LC [43]
EtAc:EtOH (3:1) (2% NH4OH) in heptanes Basic LC [43]
MeOH: NH4OH (10:1) in EtAc Basic LC [43]
MeOH: NH4OH (10:1) in MTBE Basic LC [43]
EtAc:EtOH (3:1) (2% AcOH) in heptanes Acidic LC [43]
MeOH:AcOH (10:1) in EtAc Acidic LC [43]
MeOH:AcOH (10:1) in MTBE Acidic LC [43]
EtAc:EtOH (3:1) in cyclohexane n.s. LC [46]
acetonitrile:water Polar LC [46]
tert-butyl acetate All LC [50]
sec-butyl acetate All LC [50]
ethyl isobutyrate All LC [50]
methyl pivalate All LC [50]
CO2:EtAc n.s. TLC [51]
EtAc in heptanes n.s. TLC [51]
iPrOH in heptanes n.s. TLC [51]
Ace in heptanes n.s. TLC [51]
CO2:MeOH Neutral FC [45]
CO2:EtAc n.s. FC [51]
CO2:Ace n.s. FC [51]
CO2:iPrOH n.s. FC [51]

a AcOH: acetic acid; EtAc: ethyl acetate; MTBE: methyl tert-butyl ether; b n.s. not specified.

7.2. Expanded Liquids and Supercritical Fluids

Chemists and chemical engineers have introduced many new types of solvents through
major research initiatives. CO2-expanded bio-based liquids (CXL) have been demonstrated
to be favorable for enantioselective biocatalysis [52], and supercritical fluids have been
shown to be able to replace the hazardous solvents used in processing APIs [53]. Super-
critical carbon dioxide (scCO2) has been shown to have a wide application in processing
bioactive lipids [54] and bioactive-related food ingredients [55]. A comprehensive review
is available on the supercritical extraction of bioactive molecules from plant matrices [56].
A less-studied methodology in the supercritical extraction of bioactive molecules from
natural sources is to eliminate organic co-solvents, such as ethanol or acetone, by replacing
them with co-extractants that are typically oils from plant materials (Table 4).
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Table 4. Co-extractant methodology for obtaining bio-products from supercritical CO2 extraction
of natural sources. Co-extractants: vegetable, drupe, legume, or seed oils or triacylglycerols (TAGs,
triglycerides). Bio-product yields shown are maximum values normalized to 100%.

Natural Source Co-Extractant Bio-Product T (◦C) P (MPa) %Yield Ref.

Algae Soybean oil astaxanthin 70 40 36 [57]
Brown seaweed Sunflower oil carotenoids 50 30 99 [58]
Carrots Canola oil carotenoids 70 55 92 [59]
Mangosteen Virgin coconut oil xanthonoids 70 43 31 [60]
Mangosteen Virgin coconut oil α-mangostin 60 35 76 [61]
Marigold Medium-chain TAGs lutein esters 65 43 98 [62]
Marigold Soybean oil lutein esters 53 30 93 [63]
Propolis Virgin coconut oil flavonoids 50 15 25 [64]
Pumpkin Olive oil carotenoid 50 25 41 [65]
Red sage Peanut oil diterpenoids 50 38 90 [66]
Tomato Canola oil lycopene 40 40 86 [67]
Tomato Hazelnut oil lycopene 66 45 40 [68]
Tomato skin Olive oil lycopene 75 35 58 [69]

In co-extractant methodology (Table 4), natural source substrates (petals, pericarp,
etc.) are mixed with a natural oil (co-extractant) from a vegetable, drupe, legume, or
seed (or fruit) before extraction with pure scCO2. The co-extractant serves to increase
the mass transfer of active components from the natural source to the supercritical phase
by solubilization and polarity matching, and the co-extractant properties are enhanced
due to scCO2 dissolution into the co-extractant phase that causes the reduction of both
surface tension and viscosity while enhancing heat transfer and related properties. Thus,
with co-extractant methodology (Table 4), organic co-solvents are completely eliminated
in scCO2 extraction such that the contamination of extracts with organic compounds is
not an issue. Furthermore, with co-extractant methodology, a final product is realized
directly, the cultural processing of many types of food is possible, and food safety is strictly
enhanced [70].

Related to developments in supercritical fluid theory, entropy based solubility parame-
ters have been proposed that allow the extension of traditional solubility parameter theory
to chemical systems containing supercritical fluids and ethanol [71] or systems at high tem-
peratures or high pressures [72]. Experimental systems for measuring the KT parameters
of methanol, ethanol, 2-propanol, and 1,1,1,2-tetrafluoroethane (HFC134a) co-solvents in
CO2 have been developed for assessing the HBD alcohol interactions with the HBA Lewis
acidity of CO2 in the supercritical state for quantifying polarity enhancements [73].

7.3. Low Transition Temperature Mixtures

Low transition temperature mixtures (LTTMs) are special combinations of mixed
solvents made up of a hydrogen bond donor (HBD) molecule and a hydrogen bond
acceptor (HBA) molecule for the purpose of liquefying the mixture [74]. Ionic liquids (ILs)
are combinations of discrete organic moiety containing cations and anions that are in the
liquid state at room temperature. Deep eutectic solvents (DESs) are mixtures of Lewis or
Brønsted acids and bases that are in the liquid state at room temperature.

The possibility of using either ILs or DESs as solvent replacements or for processing
APIs allows them to have many potential innovative applications due to their solvation and
tailorable properties [75]. Issues with ILs are their cost, recyclability, and relatively higher
viscosity compared to molecular solvents. While DESs are inexpensive, they share some
of the same issues as ILs, and in addition, their separation from chemical products may
be problematic due to the formation of strong HBD—HBA complexes with the API. One
innovative approach that addresses some of these issues is to incorporate the IL chemical
structure into the API to improve the bioavailability in drug delivery systems [76,77].
Reviews in the area of combining HBD- or HBA-containing APIs into the structure of ILs
for drug delivery systems and other purposes show that there is much activity in this
research area [78,79].
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7.4. Switchable Solvents

Switchable polarity solvents (SPS) [80], switchable hydrophilicity solvents (SHS) [81],
switchable water (SW) [82], solvent-assisted switchable water (SASW) [83], and high-
pressure switchable water (HPSW) [84] are new types of mixed solvents that can change
their polarity, hydrophilicity, or characteristics through the introduction or removal of CO2.
Switchable solvent systems would seem to have many applications in processing API, and
furthermore, it could be highly advantageous if APIs with an existing or added amidine
group could have modified hydrophilicity with CO2 [85] for the purposes of separation,
purification, or analysis.

7.5. HBD—HBA Mixtures of Molecular Solvents

The attractiveness of using molecular solvents to form HBD—HBA mixtures is that
their EHS data are available, making it possible to assess their safety. With the EHS safety
of the solvents assessed, it becomes possible to focus on the technical issue of solubilizing
the API in the mixed solvent for processing operations.

Duereh et al. [86] developed a methodology for replacing dipolar aprotic solvents with
safe HBD—HBA solvent pairs based on solubility and Kamlet—Taft windows (Figure 6).
In the methodology [86], solvent pairs are evaluated from a database with user-defined
solubility parameter and KT parameter windows of an API to determine working compo-
sitions and a prioritized list of mixed solvents according to a composite GSK score. The
open-access software given in ref. [86] can be extended with activity coefficient models or
quantum chemistry methods to broaden the scope of the methodology.

Liquids 2024, 4, FOR PEER REVIEW 14 
 

 

 
Figure 6. Concept of solubility parameter and Kamlet—Taft windows for identifying replacement 
solvents of an API (paracetamol): (a) window for solubility parameter, (b) window for API acidity, 
(c) window for API basicity, (d) window for API dipolarity/polarizability. (left): Range of solubility 
and Kamlet—Taft parameters for dissolution of API in known solvents, including hazardous ones. 
(right): Range of solubility and Kamlet—Taft parameters superimposed onto theoretical calcula-
tions and available literature data to determine working composition ranges for a given mixed sol-
vent pair (acetone—water). Reprinted with permission from ref. [86]. Copyright American Chemical 
Society, 2016. 

In developing solvent replacement methodologies, physical properties can be im-
portant attributes for solvent selection. Jouyban and Acree [87] developed a single func-
tional form for the correlation of viscosity, density, dielectric constant, surface tension, 
speed of sound, Reichardt ETN, molar volume, and isentropic compressibility of binary 
mixed solvents. Nazemieh et al. [88] reported data for a new set of mixed solvents, namely 
p-cymene with α-pinene, limonene, and citral correlated with the Jouyban—Acree model 
for physico-chemical properties (PCPs). Lee et al. [89] developed a local composition reg-
ular solution theory model for the correlation and prediction of API solubility in mixed 
solvents that had a single functional form for all compounds studied. The advantage of 
similar functional forms in correlative and predictive schemes for PCPs and activity coef-
ficients is that machine learning techniques can be applied as the size of the database in-
creases. 

  

Figure 6. Concept of solubility parameter and Kamlet—Taft windows for identifying replacement
solvents of an API (paracetamol): (a) window for solubility parameter, (b) window for API acidity,



Liquids 2024, 4 364

(c) window for API basicity, (d) window for API dipolarity/polarizability. (left): Range of solubility
and Kamlet—Taft parameters for dissolution of API in known solvents, including hazardous ones.
(right): Range of solubility and Kamlet—Taft parameters superimposed onto theoretical calculations
and available literature data to determine working composition ranges for a given mixed solvent
pair (acetone—water). Reprinted with permission from ref. [86]. Copyright American Chemical
Society, 2016.

In developing solvent replacement methodologies, physical properties can be impor-
tant attributes for solvent selection. Jouyban and Acree [87] developed a single functional
form for the correlation of viscosity, density, dielectric constant, surface tension, speed
of sound, Reichardt ET

N, molar volume, and isentropic compressibility of binary mixed
solvents. Nazemieh et al. [88] reported data for a new set of mixed solvents, namely p-
cymene with α-pinene, limonene, and citral correlated with the Jouyban—Acree model for
physico-chemical properties (PCPs). Lee et al. [89] developed a local composition regular
solution theory model for the correlation and prediction of API solubility in mixed solvents
that had a single functional form for all compounds studied. The advantage of similar
functional forms in correlative and predictive schemes for PCPs and activity coefficients is
that machine learning techniques can be applied as the size of the database increases.

8. Kamlet—Taft Parameter Windows for APIs

APIs are commonly designated as being water soluble or non-water soluble. When
the Reichardt ET

N and KT parameters are plotted for mono-solvents that solvate 45 water-
soluble APIs (Figure 7) and 47 water-insoluble APIs (Figure 8), the range of ET

N and KT
parameter values becomes visible, which characterizes the apparent polarity of the API.
Although many water-soluble APIs are solvated by dipolar protic solvents (ET

N > 0.5)
and dipolar aprotic solvents (0.3 < ET

N < 0.5) over a wide range of KT acidities (α),
there are minimum values of π* and β required for solvation (Figure 7). On the other
hand, water-insoluble APIs are solvated by a relatively narrow range of solvent polari-
ties (0.2 < ET

N < 0.75) and KT acidities (α), in which there are maximum values of π* and
minimum values of β required for solvation (Figure 8).

When an API is dipolar protic, it interacts with basic dipolar aprotic solvents by
forming hydrogen bonds with the solvent that must be stronger than those in the solid
phase for solvation to occur. If the dipolar aprotic solvent is not basic or if it has insufficient
basicity, then the dipolar protic API will have low solubility in the solvent, because dipole-
dipole interactions generally do not have sufficient strength to break hydrogen bonds in
the solid phase. On the other hand, when an API is dipolar aprotic, it interacts with dipolar
aprotic solvents through dipole—dipole interactions that must be stronger than those in
the solid phase for solvation to occur.

Conversely, if a solvent is dipolar protic, then the API must have sufficient basicity to
accept hydrogen bonds that must be stronger than those in the solvent phase. Thus, scales
for molecular basicity are extremely important in identifying potential new solvents and
solvent systems. However, note that all KT α, β, and π* parameters influence API solubility
in a mixed solvent and that they depend on the mixed solvent local composition, frequently
in a non-linear or synergistic way [90,91].
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Consider the HBD—HBA mixed-solvent systems shown in Figure 9. When water is
used as the HBD solvent (Figure 9a–c), the HBA solvent addition (increasing x2) lowers
the KT α and generally lowers π* values depending on the HBA polarity and causes
KT β values to initially sharply increase, during which the microscopic polarity changes
greatly due to the formation of complex molecules [91]. For example, water—lactone mixed
solvents have been shown to exhibit synergy in KT basicity [91]. For an alcohol as the HBD
solvent, the addition of an HBA solvent lowers the KT α, and it causes the KT π* and KT β

values to linearly increase or decrease with bulk composition depending on whether the
pure alcohol KT π* or KT β values are less than, equal to, or greater than those of the HBA
solvent alcohol KT π* or KT β values (Figure 9d–i). Duereh et al. showed examples of the
case of ethanol (HBD) –cyclopentanone (HBA), in which mixed solvent composition can be
used to favorably solvate an API (paracetamol), and they also showed a case of methanol
(HBD) –cyclopentanone (HBA), in which mixed solvent composition failed to provide any
solvation benefit, along with examples of 12 APIs [90].
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Figure 9. Kamlet—Taft acidity, basicity, and polarity for selected mixed solvents versus HBA solvent
mole fraction: (a,d,g) water—HBA; (b,e,h) methanol—HBA; (c,f,i) ethanol—HBA. Trends shown are
based on estimations (dashed lines) and actual data (solid lines) [51,86,90,91].

There are a number of HBD—HBA solvent combinations that could be replacements
for hazardous solvents (Figure 9). For possible HBD solvents, water, methanol, and ethanol
are good candidates. When water is the HBD solvent, possible candidate HBA solvents are
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acetone, acetic acid, acetonitrile, EtOH, MeOH, 2-MeTHF, water-2,2,5,5-tetramethyloxolane
(TMO), DMI, Cyrene, Cygnet 0.0, or possibly diformylxylose. Safety and conditions must
be considered carefully. For example, 2-MeTHF forms peroxides more rapidly than IPE,
THF, or CPME when inhibitors are not present; ethereal solvents form peroxides [7]. Cygnet
0.0 is solid at room temperature [303], and 2-MeTHF in water has inverse temperature
behavior up until temperatures of 340 K [304], meaning that its solubility in water decreases
with increasing temperature.

When alcohols are used as the HBD solvent, cyclohexanone (CHN), cyclopentanone
(CPN), many kinds of esters, GBL, GVL, eucalytol (water insoluble), or possibly MeSesamol
(water insoluble) [305] or diformylxylose [306] are candidates. Furthermore, interesting
HBA—HBA combinations, such as Cyrene—Cygnet 0.0, are being suggested for poly-
mer syntheses [303] to replace hazardous dipolar aprotic solvents, and these types of
HBA—HBA mixed solvents could have advantages in processing APIs.

9. Linear Solvation Energy Relationships (LSER)

Polarity parameters originally reported by Kamlet, Abboud, Abraham, and Taft were
intended for use in linear solvation energy relationships (LSER) [307], expressed as follows:

XYZ = XYZ0 + s(π∗+dδ)+aα+bβ+hδH + eξ (5)

where XYZ is a chemical phenomenon, XYZ0 is a reference phenomenon, and s, a, b, h, and
e are descriptors that are used to correlate polarity parameters to XYZ. Many adaptations
have been made of Equation (5), and a well-known one is due to Abraham [308], which
expressed water—octanol partition coefficients (log P) and gas—solvent partition coefficient
(log K) as follows [309]:

log (P) = c + eE + sS+ aA + bB + vV (6)

log (K) = c + eE + sS+ aA + bB + vL (7)

Where the bold symbols are properties of the solute related to excess molar refraction
(E), dipolarity/polarizability (S), hydrogen bond acidity (A), Lewis basicity (B), McGowan’s
molecular volume (V), and gas-to-hexadecane partition coefficient (L). LSER models are
directly applicable to predict the solubility of APIs in solvents [309]. LSER models are
widely used in the field of chromatography for characterizing columns and estimating
retention times [310,311] or in the analysis of petroleum distillate conditions with group
contribution activity coefficient models such as UNIFAC [312], but they do not appear to
have been used more broadly (in reverse) in mixed solvent replacement schemes, although
environmentally related partition coefficients are incorporated into life-cycle assessment
tools, such as EPA’s CompTox chemical dashboard system [313] or machine learning studies
for solvent characterization factors [314].

10. Conclusions

In this work, several strategies were highlighted for the replacement of hazardous
dipolar aprotic solvents related to pharmaceutical and bio-related compounds. Solvent
guides form the basis of solvent replacement and consider categories of safety, human
health, environment, waste, and sustainability. Linking online solvent selection sites with
GSK, CHEM21, ECHA, and other guidelines would allow for the efficient dissemination of
solvent replacements.

An example of drop-in replacement solvents and several mixed solvent combinations
for synthesizing APIs is one strategy that shows it is possible for academia and the industry
to replace hazardous dipolar aprotic solvents by adopting new chemical systems that are
both efficient and safe. The universal guide for the replacement of hazardous dipolar
aprotic solvents in synthetic chemistry is one of the key strategies.
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Mixed solvents can be used in many ways to replace hazardous solvents, often with a
performance benefit. Dichloromethane can be replaced by ethanol (HBD) and ethyl acetate
(HBA) mixed solvents, as is evident from marketed stock solutions by chemical companies.
The use of CO2 with esters or alcohols instead of hexane or chlorinated hydrocarbons is
seen to be effective for thin-layer, flash, and supercritical chromatography, and with the
introduction of marketed industrial analytical equipment, it is clear that the new technology
will become established.

Expanded liquids, supercritical fluids, low-transition temperature (HBD—HBA) mix-
tures, and switchable solvents all offer safer chemical systems that have low energy, perfor-
mance, and sustainability benefits. Chemical systems based on HBD—HBA mixtures of
molecular solvents for processing APIs offer a simple way to replace hazardous solvents by
considering the range of solubility parameters, Reichardt polarity, and Kamlet—Taft pa-
rameters of the pure components. Reichardt polarity and Kamlet—Taft parameters of pure
components are necessary physical properties for the development of solvent replacement
strategies. By using the available solubility data of APIs in mono-solvents, new mixed
solvent combinations can be seen.

11. Future Outlook

Presently, there are many measurements of Reichardt polarity and Kamlet—Taft
parameters of pure compounds, but far fewer measurements have been made for mixed
solvent systems that can potentially replace hazardous dipolar aprotic solvents. Many new
measurements are needed of Reichardt polarity and Kamlet—Taft parameters of HBD—
HBA and HBA—HBA mixed solvents, especially those systems such as ethanol—ethyl
acetate, to understand fundamental interactions of complex molecules with APIs.

Theoretical methods applied to HBD—HBA systems could greatly accelerate the
identification of new chemical systems for processing APIs. COSMO-RS is able to quan-
titatively predict Kamlet—Taft parameters for both molecular solvents and deep eutectic
solvents [315]. COSMO-RS gives qualitative predictions of Hansen solubility parame-
ters [316], which is encouraging because the values of APIs could lead to a great reduction
in experimental effort.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/liquids4020018/s1, Table S1. Water-soluble APIs solvated by
monosolvents and their solvent polarity (ET

N), Kamlet-Taft acidity (α), basicity (β) window, dipo-
larity/polarizability (π*) and corresponding literature. Solvents listed as hazardous in GSK solvent
guide are highlighted in red. Table S2. Water-insoluble APIs solvated by monosolvents and their
solvent polarity (ET

N), Kamlet-Taft acidity (α), basicity (β) window, dipolarity/polarizability (π*)
and corresponding literature. Solvents listed as hazardous in GSK solvent guide are highlighted
in red.
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