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Abstract: In order to operate a gait rehabilitation device, it is necessary to accurately classify the
states appearing in activities of daily living (ADLs). In the case of force sensing resistors (FSRs),
which are often used as pressure sensors in gait analysis, it is desirable to replace them with other
sensors because of their low durability. In the present study, capacitive-type pressure sensors, as an
alternative to FSRs, were developed, and their performance was evaluated. In addition, the timed
up and go test was performed to measure the ground reaction force in healthy individuals, and a
machine learning technique was applied to the calculated biosignal parameters for the classification
of five types of ADLs. The performance evaluation results showed that a sensor with thermoplastic
polyurethane (substrate and dielectric layer material) and multiwall carbon nanotubes (conductive
layer) has sufficient sensitivity and durability for use as a gait analysis pressure sensor. Moreover,
when an overlapping filter was applied to the four-layer long short-term memory (LSTM) or the five-
layer LSTM model developed for motion classification, the precision was greater or equal to 95%, and
unstable errors did not occur. Therefore, when the pressure sensor and ADLs classification algorithm
developed in this study are applied, it is expected that motion classification can be completed within
a time range that does not affect the control of the gait rehabilitation device.

Keywords: capacitive-type pressure sensor; force sensing resistors (FSRs); activities of daily living
(ADLs); ground reaction force (GRF); center of pressure (COP); insole device; machine learning; long
short-term memory (LSTM)

1. Introduction

Activities of daily living (ADLs) refer to bodily movements performed in human
daily life, including sitting, standing, walking, climbing stairs, and lifting objects. If the
motor function of the human body becomes impaired, then an ADL performance becomes
difficult, which can degrade quality of life owing to the reduced levels of activities and
shrinking life boundaries [1,2]. Therefore, the early detection of motor impairment and
appropriate treatment of patients with gait disturbance are crucial for improving the quality
of daily life through enhanced motor ability [3].

The methods for the detection and assessment of human ADLs reported in previous
studies have included the direct inspection method [4], use of fixed sensors [5], and use
of wearable sensors [6]. Wearable sensors, such as inertial measurement unit (IMU) and
miniature pressure sensor, can be used to measure acceleration of the human body [7–10]
and the ground reaction force (GRF) generated during gait [10–17].

Studies using IMUs have demonstrated high motion classification sensitivity and
ease of implementation because commercial mobile phones or smartwatches can be used
or IMUs can be handled directly [8]. However, in studies using IMU sensors, changing
the number of used sensors and their attachment position requires the development of a
new detection algorithm that can alter the motion classification sensitivity [9]. Moreover,
another major disadvantage is that IMU devices should be attached to the body, which can
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be burdensome when the study population consists of the elderly or patients with health
problems [10].

In contrast, using a pressure sensor attached to an insole device has the advantages of
allowing for the standardization of GRF measurement methods and avoiding burden in its
application, unlike using IMUs, as the insole is placed inside a shoe. Accordingly, it has
been widely used in studies on gait phase classification [10–12], abnormal gait analysis [13],
and ADL classification [14]. Force sensing resistors (FSRs) that are thin and capable of
low-voltage operation are often used as pressure sensors in insole devices [15]. The load in
FSRs is measured based on resistance changes. Overall, FSRs are easy to implement, but
they require an amplification circuit because of a small signal size, can be easily damaged
by external load [16], and have hysteresis 10 times as large as that of the load cell [17].

To overcome the aforementioned disadvantages of FSRs, many researchers have con-
ducted studies on the development of capacitive-type pressure sensors. In a capacitive-type
pressure sensor, the load magnitude is evaluated by measuring the change in permittivity
resulting from the dielectric layer thinning caused by load application on the sensor [18].
Pressure sensor implementation based on this method has the advantages of increasing the
lifespan of sensors and reducing the production cost [17,19]. In addition, such a sensor can
be designed in any desired shape using 3D printing. Moreover, capacitive-type pressure
sensors can be used as pressure sensors for measuring GRF owing to lower linear errors
and higher sensitivity than those of FSRs [20]. In this regard, insoles with capacitive-type
pressure sensors have already been produced, and their performance was tested [21–23].

In a previous study by the authors [24], FSRs were used to measure the ground reaction
force, and ADLs were classified into standing and walking. However, for reliable gait
rehabilitation, it is necessary to classify the ADLs states in more detail. There is also a need
to replace low-durability FSRs with capacitive-type sensors. In this study, a capacitive-
type pressure sensor was manufactured and applied to the insole device. In addition, we
developed a new algorithm with the ability to classify sitting, sit-to-stand transition, and
turning motions, as well as the existing standing and walking motions.

2. Methods
2.1. Sensor Development

As shown in Figure 1a, the capacitive-type pressure sensor consisted of four layers: a
bottommost substrate, two electrodes stacked on its top, and a dielectric layer in between
the two electrodes. Polydimethylsiloxane (PDMS) and thermoplastic polyurethane (TPU)
were used as the materials for the substrate and dielectric layers, respectively. PDMS has
excellent flexibility and is easy to fabricate [25], whereas TPU has higher permittivity than
PDMS [26]. Multiwall carbon nanotubes (MWCNTs) and silver nanoparticles (AgNPs)
were used as conductive powder materials for electrode fabrication. These materials have
excellent electrical conductivity and a small particle size, allowing them to be uniformly
dispersed in a polymer material.

For the sensor manufactured using PDMS (hereinafter, PDMS sensor), the substrate
layer was fabricated by mixing PDMS (Dow Inc., Michan, MI, USA) and 10 wt% N-hexane
(Dow Inc., Michan, MI, USA). A mold was used to fabricate the substrate layer as follows:
PDMS in a liquid state was mixed with N-hexane, after which the mixture was poured
into a circular mold (20 mm in diameter) and hardened in a 50 ◦C oven for 30 min. For
the electrode layers, 50 wt% of MWCNTs (CM-100, Hanwha, Incheon, Republic of Korea)
or AgNPs (APS 0.7–1.3 µm, Alfa Aesar, MA, USA) was uniformly dispersed on the same
material as the substrate layer, after which the mixture was molded in a round shape
(15 mm in diameter) on top of the hardened substrate layer and hardened in a 50 ◦C oven
for 30 min. The dielectric layer was molded and hardened on top of the electrode layer
in the same way as the substrate layer, whereas the final electrode layer was molded and
hardened on top of the dielectric layer in the same way as the first electrode layer.
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Figure 1. Structure of the developed capacitive sensor and the sensor test setup: (a) schematic
illustration of the capacitive sensor; (b) photo image of the manufactured sensor layers (from left:
substrate/dielectric layer with PDMS and TPU; electric layer with MWCNTs; electric layer with
AgNPs); (c) data acquisition system using Arduino; (d) sensor durability test rig.

For the sensor manufactured using TPU (hereinafter, TPU sensor), hardened TPU
was dissolved with a solvent, unlike PDMS. The solvent used was prepared by mixing
N,N-dimethylformamide (Deajung Co. Siheung-si, Republic of Korea) and tetrahydrofuran
(Deajung Co. Siheung-si, Republic of Korea) at a 1:4 ratio by volume. The TPU and this
solvent were mixed at a 1:2 ratio and dissolved for 48 h by shaking in an orbital shaker at
60 rpm to prepare the TPU mixture. The TPU sensor was manufactured by pouring the
TPU mixture in a mold and by hardening in a 40 ◦C oven for 30 min.

For both the PDMS and TPU sensors, the thickness of the substrate and dielectric
layers was approximately 300 µm, and the final sensor thickness was approximately 1 mm.
Moreover, the outer diameter of the sensor and the diameter of the sensing area (i.e., elec-
trodes) were fabricated to be approximately 20 and 15 mm, respectively. The manufacturing
of the pressure sensor was completed by using a conductive paste to connect the DC power
supply wires to the two electrodes. The detailed properties of the dielectric layer are
described in Appendix A.

The performance of the manufactured pressure sensors was evaluated based on the
following three parameters: sensitivity, hysteresis, and durability. The sensor sensitivity
was evaluated by comparing the load value measured when the weights of 20 N (pressure:
110 kPa), 40 N (pressure: 220 kPa), 60 N (pressure: 330 kPa), and 80 N (pressure: 440 kPa)
were placed on top of the sensor. For the evaluation of hysteresis and durability, a durability
test rig was used with the load repeatedly applied to the sensor at a 2 Hz cycle. For
hysteresis measurement, a repeated load was applied five times. For the durability test,
80 N of static load was applied to the pressure sensor, and the maximum capacitance value
was measured. This process was repeated 100,000 times to observe a decreasing trend
in capacitance.

As described above, a total of four different sensors with different combinations of
dielectric layers and electrode materials were manufactured, and the most suitable sensor
was selected based on the evaluation of the performance of each pressure sensor.

2.2. Hardware Description

Figure 1 shows the developed capacitive-type sensor and the performance test setup.
Figure 1a shows the single-layer structure of the sensor, and Figure 1b shows actual photo
images of the fabricated substrate, dielectric, and electrode layers. Figure 1c depicts
the measurement procedure of a change in the capacitance of the sensor using Arduino
(Arduino S.r.l., Scarmagno, Italy). In this procedure, the time for the voltage at both ends
of the sensor to reach 63.2% of the maximum voltage was measured, namely, the RC time
constant representing the capacitor charging time. Figure 1d shows the durability test rig
that repeatedly applied the load on the sensor using an electric motor and a cam shaft.
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The rig was set up to control the magnitude and cycle of the applied load. The magnitude
of the applied load was measured using a load cell (CWW11-K100, DACELL, Chungju-si,
Republic of Korea) and relayed to Arduino, as shown in Figure 1c. The capacitance and
load data measured by the pressure sensor and the load cell relayed to Arduino were
transmitted to a PC via wired communication (RS-232) with a sampling rate of 1 kHz to
be saved. After analyzing the data, two types of data were compared to evaluate the load
measurement performance of the capacitive-type sensors developed in the present study.

Figure 2 shows the insole system used in the present study, which consisted of (1)
pressure sensors; (2) an insole where the pressure sensors were attached; (3) PCB for GRF
data processing. This insole system was the same system that the authors used in their
previous studies on fall detection and gait analysis [24,27]. Figure 2a,b show the insole
connected to the data processing PCB and capacitive-type pressure sensors; placement
of the insoles inside the shoes; and an illustration of the GRF data processing. The GRF
data measured using the insole system were collected via Bluetooth communication with a
sampling rate of 200 Hz and saved on a PC to be analyzed.
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Figure 2. Insole system for ADL classification: (a) using capacitive-type pressure sensors; (b) compo-
sition of the data acquisition system.

Finally, the capacitive-type pressure sensors developed in the present study and
conventional FSRs were applied as pressure sensors in the insole system for use in a
gait experiment. The GRF data acquired through the experiment were analyzed, and the
performance was compared.

2.3. Participants and Experimental Procedures

A single participant (male, height: 1.73 m, weight: 56 kg, and age: 26) with no history
of gait disturbance took part in the gait experiment. The experiment was carried out using
the timed up and go (TUG) test method [28]. As shown in Figure 3, the TUG test consists
of the participant sitting in a chair, standing up from the chair, walking forward for 3 m,
turning around at the turning point, walking back to the chair, and sitting at the chair. This
process involves five different motions: sitting, sit-to-stand transition, standing, walking,
and turning.
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Figure 3. TUG test with five types of ADLs: sitting, sit-to-stand transition, standing, walking,
and turning.

These five motions were simultaneously measured using a motion capture system
(Osprey Motion Analysis Corporation, Santa Rosa, CA, USA). To compare the GRF data
acquired with the insole system and the motion data measured using the motion capture
system, a third device was used to generate synchronization signals to synchronize the
two sets of data [24]. The synchronized GRF data were used to classify the motions of the
participants, and the results were compared with the motion detection results obtained
with the motion capture system to evaluate whether the five motions from the TUG test
could be classified with the insole system.

The TUG test was repeated 30 times, but the experimental data from the first five
tests were excluded, because subjects typically move awkwardly at the beginning when
instructed to walk forward. Accordingly, the motion data from the remaining 25 tests were
used in the analysis.

The experimental protocol was approved by the Institutional Review Board (IRB) at
the Korea Institute of Science and Technology (KIST). The participant provided written
informed consent for the study prior to participation.

2.4. Biosignal Parameters

The GRF data acquired with the insole system were used to calculate the parameters
listed in Table 1. These parameters were also used by the authors in a previous study on the
classification of the standing and walking motions in healthy individuals and patients [24].
In Equation (8), L represents the pelvic width calculated based on the participant’s height.
In Equation (9), the time interval was set to 5 ms. In Equation (10), the window size for
calculating the waveform length was 200 ms (Table 1).
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Table 1. Calculated biosignal parameters using ground reaction force data.

Parameter Equation Description

Fi F = 19.734 × Capacitance − 7.653 (1) Ground reaction force (GRF)

COPX , COPRX , COPLX

COPX =
10

∑
i=1

(Fi × xi)/
10

∑
i=1

Fi (2)

COPRX =
10

∑
i=6

(Fi × xi)/
10

∑
i=6

Fi (3)

COPLX =
5

∑
i=1

(Fi × xi)/
5

∑
i=1

Fi (4)

Center of pressure (COP), x-axis

COPY , COPRY , COPLY

COPY =
10

∑
i=1

(Fi × yi)/
10

∑
i=1

Fi (5)

COPRY =
10

∑
i=6

(Fi × yi)/
10

∑
i=6

Fi (6)

COPLY =
5

∑
i=1

(Fi × yi)/
5

∑
i=1

Fi (7)

Center of pressure (COP), y-axis

COPgradient arctan((COPRY − COPLY)/L) (8) Gradient of COP

.
COP

.
COP =

d
dt

COPgradient (9) Angular velocity of the gradient of the COP

COPW COPW =
window size

∑
i=a

COPgradient (10) Waveform length of the gradient of the COP

2.5. Classification of ADLs

The present study attempted to use a machine learning technique to classify five
types of ADLs described in the TUG test section, whereas the aforementioned biosignal
parameters were calculated and used as input data.

The machine learning technique used was long short-term memory (LSTM), which is
a type of recurrent neural network (RNN). Figure 4 shows the LSTM model used in the
present study. This model carried out learning using a fully connected layer consisting of
50 nodes and LSTM consisting of 30 nodes with the input of 19 biosignals (10 GRF data, 6
COP data, COPgradient,

.
COP, and COPw).
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Figure 4. Structure of the LSTM model used to classify the ADLs.

Before proceeding with machine learning, the 19 biosignals were subjected to a But-
terworth low-pass filter with a frequency cut of 20 Hz to remove noise. In addition, in
order to exclude the influence of the magnitude of the absolute value of each biosignal, a
normalization process of dividing the maximum value of each biosignal into a size between
0 and 1 was performed.

When applying the LSTM technique, the feedback of data from the section 200 ms
earlier and the precision of each model were calculated as the number of LSTM layers
increased from 1 to 5. Moreover, an artificial neural network (ANN) algorithm designed to
have a four-layer structure with 30 nodes was developed to evaluate the precision of the
ADL classification. The result was compared with the precision of the LSTM algorithm.

The nodes of the ANN layer were composed of Relu, and both LSTM and ANN models
were created using the Keras library. For the model training, the results were compared
after 1000 epochs were performed.

To prevent overfitting of the ADL classification model, 4 × 4 fold cross-validation was
performed, and the experimental data were divided into 70% training data and 30% test
data. In other words, of the 25 experimental data sets used in the analysis, the numbers
of training and test data sets were 18 and 7, respectively. Of the training data, three data
sets were used for model validation. This cross-validation was performed four times by
randomly dividing the entire data in a different manner.

Moreover, the aforementioned LSTM algorithm was applied to the GRF data acquired
using FSRs and capacitive-type pressure sensors to calculate and compare the precision of
the ADL classification.

3. Experimental Results
3.1. Sensor Selection

The sensors developed in the present study were divided into four types by classifying
them based on the combinations of materials used (dielectric layer material–electrode
material): PDMS-MWCNTs, PDMS-AgNPs, TPU-MWCNTs, and TPU-AgNPs. The sensor
performance was evaluated based on the sensitivity, hysteresis, and durability. Figure 5
and Table 2 show the results.
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Table 2. Characterization of the capacitive-type sensors.

Sensor Type Sensitivity (pF/kPa) Hysteresis (%) Durability

PDMS-WMCNT 0.033 13.3 9.2% decreased

PDMS-AgNPs 0.035 13.4 9.9% decreased

TPU-MWCNT 0.028 5.6 5.4% decreased

TPU-AgNPs 0.025 7.9 6.9% decreased

However, a linear regression analysis could not be applied to the sensor sensitivity
data shown in Figure 5a,b, because the PDMS sensor had different rates of change in the
capacitance between the low- and high-load regions [29]. Figure 5a,b show the capacitance
at no applied load (Co) and the rate of increase in capacitance with increasing applied
load (∆C) for the PDMS and TPU sensors. Consequently, the capacitance data measured in
the load region exceeding 110 kPa (20 N load) were used to perform the linear regression
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analysis. The obtained sensitivities of the PDMS-MWCNTs, PDMS-AgNPs, TPU-MWCNTs,
and TPU-AgNPs sensors were 0.033, 0.035, 0.028, and 0.025 pF/kPa, respectively, indicating
that the PDMS sensors had a 28.3% higher sensitivity, on average, than the TPU sensors.

Figure 5c,d show the hysteresis curves of the four sensors developed in the present
study. The hysteresis curves were derived by examining the changes in the capacitance
in the same pressure interval measured under loading/unloading conditions when the
load was repeatedly applied five times at a 2 Hz cycle. The results show that the maximum
hysteresis of the pressure sensors was 13.3% at 275 kPa, 14.4% at 375 kPa, 5.6% at 250 kPa,
and 7.8% at 275 kPa for the PDMS-MWCNTs, PDMS-AgNPs, TPU-MWCNTs, and TPU-
AgNPs sensors, respectively. The hysteresis of generally used FSRs is approximately 10%,
whereas the hysteresis of the PDMS and TPU sensors developed in the present study was
higher by 3.58% and lower by 3.3%, on average, than 10%, respectively.

The durability test results for the pressure sensors are shown in Figure 5e,f. As can
be observed, after 100,000 trials of 80 N static application, the PDMS-MWCNTs, PDMS-
AgNPs, TPU-MWCNTs, and TPU-AgNPs sensors showed to be 9.2%, 9.9%, 5.4%, and 6.9%
relative to the baseline capacitance, respectively. In other words, the rate of decrease in the
capacitance was higher by an average of 3.4% in the PDMS sensors than in the TPU sensors.
When the same dielectric material was used, the rate of decrease in the capacitance was
greater by an average of 1.1% in the AgNP electrodes than in the MWCNT electrodes.

In summary, the sensor sensitivity was higher in the PDMS sensors than in the TPU
sensors, but the PDMS sensor showed an inconsistent sensitivity at different magnitudes
of load. Furthermore, the PDMS sensors had lower durability than the TPU sensors.
Meanwhile, there was no significant difference in the performance between the MWCNTs
and AgNPs that were used as electrode materials, but the MWCNTs had a significantly
lower cost. In this regard, the TPU-MWCNTs sensor was selected as the pressure sensor for
the TUG test and was used in manufacturing the insole system explained in Figure 2a.

3.2. Biosignal Parameters

The selected TPU-MWCNT sensor was used to derive Equation (1) for measuring
the first parameter in Table 1 (GRF). The results are shown in Figure 6. Subsequently, this
equation was used to calculate the GRF, and the results were used in the analysis.
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Figure 7 shows the biosignal parameters calculated using the GRF data acquired from
the TUG test. The numbers on top of Figure 7 represent the five experimental motions
classified using the data measured by the motion caption device: (1) sitting, (2) sit-to-
stand transition, (3) standing, (4) walking, and (5) turning. With respect to the biosignal
parameters, the COPX, COPgradient,

.
COP, and COPw data showed a similar change in the

graphs between the sitting, sit-to-stand transition, and standing motions and the walking
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and turning motions, complicating their classification. In contrast, the comparison of the
GRF and COPY data showed that the data for the sit-to-stand transition motion can be
classified because this type of motion differs from the other motions.
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.
COP; (f) COPw. Each number label corresponds to the ADLs as follows:

(1) sitting, (2) sit-to-stand transition, (3) standing, (4) walking, and (5) turning.

3.3. Classification of ADLs

Five types of LSTM models and one type of ANN model were applied to the GRF data
acquired using the capacitive-type pressure sensors for the classification of ADLs in the TUG
test. Figure 8 shows the precision of the ADL classification based on the obtained results.
The LSTM models showed an average classification precision of 99.24%, 94.99%, 99.28%,
97.50%, and 87.60%, and the ANN model showed an average classification precision of
99.69%, 93.59%, 98.56%, 96.85%, and 83.56% for the sitting, sit-to-stand transition, standing,
walking, and turning motions, respectively. When the FSRs were used, the four-layer
LSTM model showed an average classification precision of 99.66%, 98.33%, 99.44%, 99.61%,
and 91.46%, and the five-layer LSTM model showed an average classification precision of
99.98%, 98.10%, 99.14%, 99.32%, and 98.43% for the sitting, sit-to-stand transition, standing,
walking, and turning motions, respectively.

Existing studies have reported that a motion classification algorithm for treatment
or rehabilitation should have a precision exceeding 90% [24]. The precision of the LSTM
models developed in the present study exceeded 90% for the sitting, sit-to-stand transition,
standing, and walking motions, but the classification precision for the turning motion was
lower than 90%. As shown in Figure 7, the GRF and COPY data were very similar to each
other for the walking and turning motions, and as a result, it is difficult to differentiate
between them, which could result in the low classification precision for the turning motion.
The four-layer and five-layer LSTM models showed turning motion detection precisions of
95.09% and 99.93% (both exceeding 90%), respectively. The five-layer LSTM model showed
a very high motion detection precision, with a probability of motion detection error of
lower than 1% for all five motions.
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As shown in Figure 8, even when the FSRs were used, the classification precision of all
five motions exceeded 90% when the four-layer and five-layer LSTM models were applied.
In particular, the turning motion detection precisions were 91.46% and 98.43%, respectively.
Although these results were 3.36% and 1.50% lower than the corresponding results for the
TPU-MWCNT sensor developed in the present study (95.90% and 99.93%, respectively),
they still represent an excellent precision.

Figure 9 shows the confusion matrices of the motion classification precision using
four different methods (four-layer and five-layer LSTM models applied to TPU-MWCNTs
and FSRs). The y-axis of the confusion matrix shows the actual state of the ADLs detected
by the motion capture system, and the x-axis shows the state predicted by the detection
algorithm. The numbers inside the dark blue boxes located diagonally represent the
precision values. Figure 9c shows the four-layer LSTM model applied to the FSRs, where
the rate of the algorithm accurately classifying the turning motion (predicted label) relative
to the actual turning motion (number label 4, true label) was 0.9146 (91.46%). This value
was the lowest among the ADL classification precisions listed in Figure 9. Meanwhile, in
Figure 9a, which shows the four-layer LSTM model applied to the TPU-MWCNT sensor,
the rate of the algorithm accurately detecting the turning motion was 0.9509 (95.09%). In
contrast, applying the five-layer LSTM model resulted in a high classification precision
exceeding 98%, regardless of the sensor type.
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Figure 9. Confusion matrices of the classification model: (a) four-layer LSTM and TPU-MWCNTs
sensor; (b) five-layer LSTM and TPU-MWCNTs sensor; (c) four-layer LSTM and FSRs; (d) five-layer
LSTM and FSRs. Each number label corresponds to the ADLs as follows: (0) sitting, (1) sit-to-stand
transition, (2) standing, (3) walking, and (4) turning.

Regarding the detection errors for each motion shown in the matrices, there are
errors where sitting is mislabeled as sit-to-stand transition, sit-to-stand transition as sitting
and standing, standing as sit-to-stand transition and walking, walking as standing and
turning, and turning as walking. It should be noted that nonrelated motions are clearly
distinguished. For example, in the actual state of walking, the model does not predict
sitting, and possible mislabels are only standing and turning. Therefore, the developed
algorithm was determined to be reliable.

4. Discussion

In the authors’ previous study [24], in order to reduce the state classification error
caused by shuffling, COPw was proposed as a new feature to classify the states of standing
and walking. Tsukahara et al. conducted a study to distinguish the sit-to-stand transition
using the COP change in the gait direction [30]. As shown in Figure 8, using all the
algorithms introduced here, it was possible to distinguish the four motions of standing,
walking, sitting, and sit-to-stand transition with over 90% accuracy. However, in the case of
the turning operation, when the ANN algorithm used in the previous study was applied,
the classification accuracy was 83.56%, which did not achieve the required accuracy of 90%.
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The reason why the classification accuracy of the turning motion was low can be
known by observing the force change appearing in the turning motion using a force
plate in Glaister’s study [31]. Among the ground reaction forces during walking, the
force components in the direction parallel to the ground are braking force, propulsive
force, and lateral force. According to the results of Glaister’s study, when the motion
was changed from walking to turning, the braking force and propulsive force did not
show a clear difference among them, but the lateral force was known to show a large
change. Unfortunately, the insole device manufactured with thin pressure sensors could
not measure the horizontal force (shear force) change on the ground, so turning could not
be accurately classified.

To overcome this limitation of the ANN model used in previous studies, we introduced
an LSTM model in which the feedback of the biosignals data from the section 200 ms earlier
was applied.

Jung et al. classified errors in a detection algorithm for controlling a gait rehabilitation
exoskeleton robot into four types: early detection, late detection, unstable error, and
combination of the above. These errors were assessed by setting 150 ms as the detection
delay time limit that would not significantly affect the robot control [32]. Among these
detection errors, unstable errors should be eliminated, because they can cause undesirable
vibrations when the process of instantaneously starting and stopping the control device is
repeated. As such, an unstable error also occurred in the present study; an overlapping
method was used for its elimination. In the overlapping method, the mode value of all
motion classification results in the interval 150 ms prior to the detection time point was
used as the current motion classification result (Figure 10).
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Figure 10. Typical result of the classification of ADLs using the four-layer LSTM model.

Figure 10 shows the motion classification results obtained from a series of TUG tests
performed using the four-layer LSTM model. Here, the black, solid lines represent the
motions detected by the motion capture system; the black, dotted lines represent the
motions classified by the LSTM model; and the red, dotted lines represent the motions
classified by applying the overlapping method described above. The examination of the
classification results obtained using the LSTM model (black, dotted lines) shows that there
were no early detection or late detection types of error, whereas an unstable error occurred
for walking and standing motions. The results obtained after applying an overlapping filter
to these data (red, dotted lines) show that the unstable error was removed, whereas a late
detection error with a delay of approximately 70 ms occurred. The magnitude of such a
delay was lower than 1/2 of the 150 ms suggested as the limit in the aforementioned study
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by Jung et al. Therefore, it was confirmed that the motion classification algorithm with the
application of the overlapping method can be used to control exoskeleton robots.

5. Conclusions

In the present study, capacitive-type sensors were developed as an alternative to FSRs,
which are widely used as pressure sensors for measuring GRF. The newly developed sensors
were applied to an insole system, and the insole system was used in TUG tests for the
classification of five ADLs: sitting, sit-to-stand transition, standing, walking, and turning.

The experimental results showed that the TPU-MWCNT sensor developed in the
present study demonstrates sufficient sensitivity and durability for use as a gait analysis
pressure sensor. Moreover, when the GRF data obtained from the TPU-MWCNT sensor
were applied to the four-layer or five-layer LSTM model, five motions appearing in the
TUG test could be classified with a precision exceeding 95%. Further, when an overlapping
filter was applied to the four-layer or five-layer LSTM model developed for use in motion
classification, no unstable error occurred, and the detection delay was within the time limit.
This indicates that it can be used for the stable control of exoskeleton robots.

As for the biosignals acquired through the TUG tests in the present study, closely
related motions, such as walking and turning, were difficult to differentiate. Therefore,
future studies should attempt to identify new biosignal parameters for classifying motions
among ADLs that are closely related to each other and to conduct motion classification
using such parameters.
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Appendix A

The modulus of elasticity of the dielectric layer was measured as shown in Figure A1a.
A dielectric layer and a load cell (9047C, Kistler, Switzerland) were placed between the anvil
and spindle of a digital micrometer (Mitutoyo, Japan, range 50–70 mm), the displacement
and load values were measured while moving the spindle, and the modulus of elasticity
was calculated [33]. The resolution of the load cell and digital micrometer was 0.01 N and 1
µm, respectively. In order to uniformly apply a force to the surface of the dielectric layer,
round steel plates with a thickness of 1 mm were placed on both sides of the dielectric layer
specimen. The capacitance data output from the sensor was collected in Labview (NI9215,
National Instruments, Austin, TX, USA) via Arduino. The stress was obtained by dividing
the load by the area of the circular steel plate. The modulus of elasticity of the dielectric
layer is shown in Figure A1c.
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Figure A1. Sensor capability of the capacitive-type pressure sensors: (a) schematic of the elasticity
test setup, where the pressure sensor was attached on the load cell; (b) schematic of the response time
test setup, where the response of the pressure sensor to the weight drop was 500 g each; (c) elasticity
of dielectric layers; (d) response time of each sensors.

The response time of the sensors was measured as in Figure A1b. The response time
was measured as the time required for the capacitance increase rate to reach 10% to 90%
after placing a 500 g weight on the dielectric layer specimen. The response time of the
dielectric layer is shown in Figure A1d. The response times of the PDMS sensor and the
TPU sensor were 35 and 39 ms, respectively. In Yao’s study [34], the response time of the
pressure sensor was 40 ms, and the response time of the sensors fabricated in this study
were 1 to 5 ms faster than this value.

References
1. Goldie, P.A.; Matyas, T.A.; Evans, O.M.; Galea, M.; Bach, T.M. Maximum voluntary weight-bearing by the affected and unaffected

legs in standing following stroke. Clin. Biomech. 1996, 11, 333–342. [CrossRef] [PubMed]
2. Belgen, B.; Beninato, M.; Sullivan, P.E.; Narielwalla, K. The association of balance capacity and falls self-efficacy with history of

falling in community-dwelling people with chronic stroke. Arch. Phys. Med. Rehabil. 2006, 87, 554–561. [CrossRef]
3. Mauritz, K.H. Gait training in hemiplegia. Eur. J. Neurol. 2001, 87, 111–117. [CrossRef] [PubMed]
4. Shephard, R.J. Limits to the measurement of habitual physical activity by questionnaires. Br. J. Sports. Med. 2002, 9, 23–29.

[CrossRef]
5. Pazhoumand-Dar, H. FAME-ADL: A data-driven fuzzy approach for monitoring the ADLs of elderly people using Kinect depth

maps. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 2781–2803. [CrossRef]
6. Lockhart, T.E.; Soangra, R.; Zhang, J.; Wu, X. Wavelet based automated postural event detection and activity classification with

single IMU (TEMPO). Biomed. Sci. Instrum. 2013, 49, 224.
7. Wang, Y.; Cang, S.; Yu, H. A survey on wearable sensor modality centred human activity recognition in health care. Expert. Syst.

Appl. 2019, 127, 167–190. [CrossRef]
8. Valarezo, A.E.; Rivera, L.P.; Park, N.; Kim, T.S. Human activities recognition with a single writs IMU via a Variational Autoencoder

and android deep recurrent neural nets. Comput. Sci. Inf. Syst. 2020, 17, 581–597. [CrossRef]
9. Janidarmian, M.; Roshan Fekr, A.; Radecha, K.; Zilic, Z. A comprehensive analysis on wearable acceleration sensors in human

activity recognition. Sensors 2017, 17, 529. [CrossRef]

http://doi.org/10.1016/0268-0033(96)00014-9
http://www.ncbi.nlm.nih.gov/pubmed/11415642
http://doi.org/10.1016/j.apmr.2005.12.027
http://doi.org/10.1046/j.1468-1331.2002.0090s1023.x
http://www.ncbi.nlm.nih.gov/pubmed/11918646
http://doi.org/10.1136/bjsm.37.3.197
http://doi.org/10.1007/s12652-018-0990-1
http://doi.org/10.1016/j.eswa.2019.04.057
http://doi.org/10.2298/CSIS190920005V
http://doi.org/10.3390/s17030529


Micro 2023, 3 50

10. Tang, J.; Zheng, J.; Wang, Y.; Yu, L.; Zhan, E.; Song, Q. Self-tuning threshold method for real-time gait phase detection based on
ground contact forces using FSRs. Sensors 2018, 18, 481. [CrossRef]

11. Lim, D.H.; Kim, W.S.; Kim, H.J.; Han, C.S. Development of real-time gait phase detection system for a lower extremity exoskeleton
robot. Int. J. Precis. Eng. Manuf. 2017, 18, 681–687. [CrossRef]

12. Catalfamo, P.; Moser, D.; Ghoussayni, S.; Ewins, D. Detection of gait events using an F-Scan in-shoe pressure measurement
system. Gait Posture 2008, 28, 420–426. [CrossRef]

13. Bar-Haim, S.; Harries, N.; Hutzier, Y.; Belokopytov, M.; Dobrov, I. Training to walk amid uncertainty with Re-Step: Measurements
and changes with perturbation training for hemiparesis and cerebral palsy. Disabil. Rehabil. Assist. Technol. 2013, 8, 417–425.
[CrossRef]

14. Sazonov, E.S.; Fulk, G.; Hill, J.; Schutz, Y.; Browning, R. Monitoring of posture allocations and activities by a shoe-based wearable
sensor. IEEE Trans. Biomed. Eng. 2010, 58, 983–990. [CrossRef] [PubMed]

15. Truong, P.H.; You, S.; Ji, S.H.; Jeong, G.M. Wearable system for daily activity recognition using inertial and pressure sensors of a
smart band and smart shoes. Int. J. Comput. Commun. 2020, 14, 726–742. [CrossRef]

16. Ding, S.; Ouyang, X.; Liu, T.; Li, Z.; Yang, H. Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU.
IEEE Sens. J. 2018, 18, 9728–9735. [CrossRef]

17. Paredes-Madrid, L.; Fonseca, J.; Matute, A.; Gutiérrez Velásquez, E.I.; Palacio, C.A. Self-compensated driving circuit for reducing
drift and hysteresis in Force Sensing Resistors. Electronics 2018, 7, 146. [CrossRef]

18. Metzger, C.; Fleisch, E.; Meyer, J.; Dansachmüller, M.; Graz, I.; Kaltenbrunner, M.; Bauer, S. Flexible-foam-based capacitive sensor
arrays for object detection at low cost. Appl. Phys. Lett. 2008, 92, 013506. [CrossRef]

19. Heng, W.; Pang, G.; Xu, H.; Huang, X.; Pang, Z.; Yang, G. “Flexible insole sensors with stably connected electrodes for gait phase
detection. Sensors 2019, 19, 5197. [CrossRef]

20. Ponder, R.I.; Roberts, H.R.; Safaei, M.; Anton, S.R. Feasibility of force detection in 3D printed flexible material using embedded
sensors. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019; SPIE: Denver,
CO, USA, 2019; Volume 10970, p. 109702F.

21. Amitrano, F.; Coccia, A.; Ricciardi, C.; Donisi, L.; Cesarelli, G.; Capodaglio, E.M.; D’Addio, G. Design and validation of an
E-Texile-based wearable sock for remote gait and postural assessment. Sensors 2020, 20, 6691. [CrossRef]

22. Lee, W.; Hong, S.H.; Oh, H.W. Characterization of elastic polymer-based smart insole and a simple foot plantar pressure
visualization method using 16 electrodes. Sensors 2019, 19, 44. [CrossRef] [PubMed]

23. Jeon, H.; Kim, S.L.; Kim, S.; Lee, D. Fast wearable sensor-based foot-ground contact phase classification using a convolutional
neural network with sliding-window label overlapping. Sensors 2020, 20, 4996. [CrossRef] [PubMed]

24. Park, J.S.; Koo, S.M.; Kim, C.H. Classification of standing and walking states using ground reaction forces. Sensors 2021, 21, 2145.
[CrossRef] [PubMed]

25. Chen, S.; Zhuo, B.; Buo, X. Large area one-step facile processing of microstructured elastomeric dielectric film for high sensitivity
and durable sensing over wide pressure range. ACS Appl. Mater. Interfaces 2016, 8, 20364–20370. [CrossRef] [PubMed]

26. Valentine, A.D.; Busbee, T.A.; Boley, J.W.; Raney, J.R.; Chortos, A.; Kotikian, A.; Lewis, J.A. Hybrid 3D printing of soft electronics.
Adv. Mater. 2017, 29, 1703817. [CrossRef]

27. Lee, C.M.; Park, J.S.; Park, S.; Kim, C.H. Fall-detection algorithm using plantar pressure and acceleration data. Int. J. Precis. Eng.
Manuf. 2020, 21, 725–737. [CrossRef]

28. Higashi, Y.; Yamakoshi, K.; Fujimoto, T.; Sekine, M.; Tamura, T. Quantitative evaluation of movement using the timed up-and-go
test. IEEE Eng. Med. Biol. 2008, 27, 38–46. [CrossRef]

29. Zhuo, B.; Chen, S.; Zhao, M.; Guo, X. High sensitivity flexible capacitive pressure sensor using polydimethylsiloxane elastomer
dielectric layer micro-structured by 3-D printed mold. IEEE J. Electron Devices Soc. 2017, 5, 219–223. [CrossRef]

30. Tsukahara, A.; Kawanishi, R.; Hasegawa, Y.; Sankai, Y. Sit-to-stand and stand-to-sit transfer support for complete paraplegic
patients with robot suit HAL. Adv. Robot. 2010, 24, 1615–1638. [CrossRef]

31. Glaister, B.C.; Orendurff, M.S.; Schoen, J.A.; Bernatz, G.C.; Klute, G.K. Ground reaction forces and impulses during a transient
turning maneuver. J. Biomech. 2008, 41, 3090–3093. [CrossRef]

32. Jung, J.Y.; Heo, W.; Yang, H.; Park, H. A neural network-based gait phase classification method using sensors equipped on lower
limb exoskeleton robots. Sensors 2015, 15, 27738–27759. [CrossRef] [PubMed]

33. Lei, K.F.; Lee, K.F.; Lee, M.Y. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement.
Microelectron Eng. 2012, 99, 1–5. [CrossRef]

34. Yao, S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014,
6, 2345–2352. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s18020481
http://doi.org/10.1007/s12541-017-0081-9
http://doi.org/10.1016/j.gaitpost.2008.01.019
http://doi.org/10.3109/17483107.2012.754954
http://doi.org/10.1109/TBME.2010.2046738
http://www.ncbi.nlm.nih.gov/pubmed/20403783
http://doi.org/10.15837/ijccc.2019.6.3618
http://doi.org/10.1109/JSEN.2018.2871328
http://doi.org/10.3390/electronics7080146
http://doi.org/10.1063/1.2830815
http://doi.org/10.3390/s19235197
http://doi.org/10.3390/s20226691
http://doi.org/10.3390/s19010044
http://www.ncbi.nlm.nih.gov/pubmed/30583544
http://doi.org/10.3390/s20174996
http://www.ncbi.nlm.nih.gov/pubmed/32899247
http://doi.org/10.3390/s21062145
http://www.ncbi.nlm.nih.gov/pubmed/33803909
http://doi.org/10.1021/acsami.6b05177
http://www.ncbi.nlm.nih.gov/pubmed/27427977
http://doi.org/10.1002/adma.201703817
http://doi.org/10.1007/s12541-019-00268-w
http://doi.org/10.1109/MEMB.2008.919494
http://doi.org/10.1109/JEDS.2017.2683558
http://doi.org/10.1163/016918610X512622
http://doi.org/10.1016/j.jbiomech.2008.07.022
http://doi.org/10.3390/s151127738
http://www.ncbi.nlm.nih.gov/pubmed/26528986
http://doi.org/10.1016/j.mee.2012.06.005
http://doi.org/10.1039/c3nr05496a
http://www.ncbi.nlm.nih.gov/pubmed/24424201

	Introduction 
	Methods 
	Sensor Development 
	Hardware Description 
	Participants and Experimental Procedures 
	Biosignal Parameters 
	Classification of ADLs 

	Experimental Results 
	Sensor Selection 
	Biosignal Parameters 
	Classification of ADLs 

	Discussion 
	Conclusions 
	Appendix A
	References

