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Abstract: Electro-mechanical devices incorporating rotating magnetic fields can be modelled using a
wide range of analytical techniques. Choosing a modelling technique usually requires a trade off between
computational efficiency and accuracy. Magnetic flux-based models aim to achieve an optimum balance
between computational intensity and accuracy, as required for real time control applications. This paper
demonstrates how vector-based magnetic circuit equations can be used to describe the operational
characteristics of an induction motor at a more fundamental level than commonly used magnetic flux
models. Doing so allows for closed form equations to be derived directly from device-specific geometry.
The resultant model has advantages of numerical method-based analytical techniques while retaining
the computational efficiency of closed form equations.

Keywords: magnetic circuit; rotating magnetic fields; direct quadrate model; magnetic equivalent
circuits; induction motor

1. Introduction

Modelling electromagnetic devices can be achieved using simple analytical techniques
such as those based on electrical and magnetic equivalent circuits. The elementary circuit
elements upon which these equivalent circuits are based were originally derived to describe
the characteristics of electromagnetic devices with no relative constituent motion. As such,
using them to model devices incorporating rotational motion often requires a high degree
of abstraction.

In the case of electrical equivalent circuits such as the Steinmetz equivalent circuit of
an induction motor, parameters can either be empirically derived [1,2], or derived using
more complex modelling techniques [3]. This results in a black box model, where internal
workings and parameters are unavailable. The models’ computational efficiency and the
ability to extrapolate its usage to non-ideal operating conditions [4] has kept it relevant
despite the availability of alternatives. However, the lack of access to internal dynamic
parameters limits its ability to be extrapolated to describe more complex operational
behaviour in its basic form [5].

A more fundamental approach to modelling electrical machines can be achieved using
numerical method-based computer simulations at the expense of greater computational
complexity. These modelling techniques divide the internal geometry of the simulated de-
vice into discrete elements, each with their own unique electrical, magnetic and mechanical
properties. Common examples of this approach are variations of the Lumped Parameter
Model (LPM) [6]. These models use an interconnected mesh of magnetic circuit elements to
calculate magnetic flux. In its most basic application, only linear magnetic field behaviour
can be modelled. However, its application can be extended to include modelling non-linear
behaviour such as magnetic saturation [7], fault detection [8] and thermal analysis [9].

The Finite Element Model (FEM) is another commonly used numerical method tech-
nique. It works by solving partial differential equations derived directly from Maxwell’s
equations at the boundaries of each discrete element. This is a more fundamental approach
to modelling electrical and magnetic fields compared to LPM and is therefore regarded as
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being more accurate [10,11]. A trade off for this improved accuracy is increased computa-
tion time [12]. Hybrid FEM models also exist that reduce computational complexity using
either equivalent circuits [13] or lumped parameters [14].

A compromise between computationally intensive numerical methods and equivalent
circuits can be achieved using magnetic flux-based models such as those based on the
Direct Quadrate (D-Q) model. These models define internal parameters such as flux
producing currents and torque producing currents [15]. By modelling internal dynamic
factors, a more detailed operational model can be implemented relative to high-level
equivalent circuits [16,17], with less computational complexity than numerical method-
based techniques.

In this paper, a set of partial differential equations describing a rotating magnetic field
and magnetic circuit power transfers will be defined. These equations describe the relation-
ship between magnetic flux and its time derivative. Power transfers due to the magnetic
flux-based variables and reluctance are also described. Using these equations and the ana-
lytical technique presented in this paper, it is possible to calculate inductive power transfers
between rotating objects. These equations can be applied to the analysis of any AC machine
incorporating a rotating magnetic field, including variable reluctance configurations.

To demonstrate the validity of this analytical technique, these magnetic circuit equa-
tions will be applied to the steady state analysis of an induction motor with results bench-
marked against those derived using FEM. It will be based on a more detailed electric motor
model than that used to derive the D-Q model. This approach results in a less abstract
model that can be derived in terms of closed form equations. While magnetic flux model
parameters are usually derived based on dynamic simulations [18,19], the proposed analyt-
ical technique parameters will be derived based on motor geometry and the electrical and
magnetic material properties.

The proposed analytical technique will only be applied to a specific case in this paper
involving steady state analysis. This will, however, provide the basis upon which further
applications of the underlying equations can be used to model more complex operational
modes, such as those involving transients and faults.

2. Elementary Definitions

To derive a magnetic circuit model of an induction motor, it is necessary to define key
parameters to be measured and to describe their behaviour in a environment experiencing
circular motion. These techniques are analogous to using circular motion equations to de-
scribe rotating objects. Although Newton’s second law of motion can be directly applied to
a rotating object, using equations of circular motion can considerably reduce the analytical
complexity of describing such an object. Similarly, using circular motion magnetic circuit
equations can simplify the analysis of rotating electromagnetic devices to the measurement
of a few key parameters.

There are four key parameters to be measured when analysing an electromagnetic
device incorporating circular motion. Electric current and voltage are two electrical domain
parameters with magnetic flux and the time derivative of magnetic flux being their corre-
sponding magnetic domain parameters. In this analysis, electrical domain parameters are
mapped onto magnetic domain parameters, then, the analysis is performed in the magnetic
domain. To define the relationship between the two magnetic domain parameters, consider
the vector representation of a rotating magnetic field as described by (1). This magnetic
flux vector is defined using a i, j, k coordinate system, with a radian frequency of ω, a phase
offset of θ and time represented by the variable t.

Φ = |Φ| cos(ωt + θ)î + |Φ| sin(ωt + θ) ĵ (1)

Differentiating (1), with respect to time, allows the derivative of the magnetic flux to
be expressed in vector form. For the general case, both the magnitude |Φ| and the phase θ
will be considered implicit functions of time and the radian frequency ω will be a constant.
Using these definitions, the time derivative of (1) can be calculated to be (2).
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Taking the cross and dot product of the magnetic flux and its time derivative al-
lows (3) and (4), respectively, to be derived.

Φ× ∂Φ

∂t
= |Φ|2(ω +

dθ

dt
) (3)

Φ · ∂Φ

∂t
= |Φ|d|Φ|

dt
(4)

It is also possible to use the fundamental properties of the dot and cross product to
derive an equation that is independent of the angle between the magnetic flux and its time
derivative. This involves squaring both sides of (3) and (4), then adding them together,
resulting in (5). ∣∣∣∂Φ

∂t

∣∣∣2 =
(d|Φ|

dt

)2
+ |Φ|2(ω +

dθ

dt
)2 (5)

Another definition required for this analysis is an angular dependant measurement of
resistance. To define this quantity, consider the two conductors coloured grey in Figure 1.

Figure 1. Two electrical conductors with dimensions.

In Figure 1, the electrical current flows through each conductor coloured in grey
between the surfaces labelled A and B. Assuming the conductive material is homogeneous
throughout each volume, the resistance of the left most conductor can be calculated by
multiplying its resistance per unit length Rl by its length lr. Defining the resistance per unit
length provides a simple technique to calculate the conductor resistance for an arbitrary
length. A similar process can be applied to a change in angular dimension, as demonstrated
in the right most conductor. Defining a parameter Rθ with units of Ohm-radians allows
the resistance of the right most conductor R between the surfaces labelled A and B to be
calculated using (6), where θr is defined in Figure 1.

R =
Rθ

θr
(6)

Even if the conductor properties are not homogeneous, Rl can still be used if the
conductor is made of a series connection of identical segments, provided the resistance is
measured for an integer number of those segments. Similarly, (6) is still valid in situations
where periodic angular repetitions occur, provided the resistance is measured for integer
multiples of each identical angular segment.

During the operation of an induction motor, energy is transferred from the stator
to the rotor via electromagnetic induction. Quantifying the energy transfers due to this
process can be achieved using vector-based magnetic circuit equations. The power transfer
equation for magnetic circuits [20] is shown in (7).

P = <
(

Φ · ∂Φ

∂t

)
+

1
2

d<
dt

(
Φ ·Φ

)
(7)
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For the analysis of an induction motor, magnetic reluctance will be assumed as con-
stant, thereby resulting in the second product term of (7) to equal zero. Therefore, magnetic
circuit power transfers can be calculated based on reluctance and both the magnitude and
angle of magnetic flux and its time derivative vectors.

Observing magnetic flux vectors from different rotating frames of reference will result
in (7) evaluating different values. It has been demonstrated that the induction motor rotor
torque can be calculated using the difference in power transfer to the rotor obtained by
evaluating (7) from the rotor’s and stator’s frame of reference [20].

Therefore, frame dependant quantities will be identified in this paper using a right
vertical line with a subscript identifying its frame of reference. For example, Φ|stator and
Φ|rotor are magnetic flux vectors evaluated from the stator’s and rotor’s frame, respectively.
While the magnitude of magnetic flux vectors is frame independent in this analysis, the
magnitude and vector value of the magnetic flux time derivative is frame dependant.

For the induction motor derived in this analysis, all rotor electric current-induced
magnetic flux will be represented as the single vector Φr and all stator current-induced
magnetic flux will be represented by the vector Φs. These two vectors are added together
using vector addition to form the net magnetic flux Φn. Rotor power transfers will then
be calculated by substituting the rotor magnetic flux vector into the magnetic flux term
in (7) and the time derivative of the net magnetic flux into the flux partial differential term
in (7). Repeating this process using stator magnetic flux instead of rotor magnetic flux is
used to calculate stator power transfers. A single and constant value of reluctance derived
by analysing the magnetic field energy in the motor will be used. Evaluating these power
transfers from different rotating frames can then be used to derive an operational model of
the induction motor.

3. Rotor and Stator Magnetic Flux Calculations

In an induction motor, magnetic flux is produced by electric currents flowing in the
stator windings and inducing currents in the rotor bars. To calculate the rotor’s magnetic
flux due to induced currents, consider two opposite rotor bars from a cage rotor, as shown
in Figure 2.

Figure 2. Two opposite rotor bars with superimposed vectors.

In Figure 2, the electric currents’ direction is shown by arrows on the rotor conductors
and Φrx is the resultant magnetic flux. This magnetic flux will flow through the shaded
rectangle with the time derivative of the net magnetic flux from the rotor’s frame of
reference determining the induced voltage around the conduction loop. This induced
voltage Vrx can be calculated to be (8), where θ∂Φ is the angular displacement from the
partial derivative of the net magnetic flux vector.

Vrx =

∣∣∣∣∂Φn

∂t

∣∣∣∣
rotor

∣∣∣∣ cos(θ∂Φ) (8)

The induced current in rotor bar pairs can be determined by dividing the induced
voltage Vrx by the resistance around the conduction loop. The conduction loop resistance,
and by extension the rotor’s magnetic flux, will depend on the number of rotor bars. When
the number of rotor bars is high, this analysis can be simplified using a homogenised model
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of the rotor bars with the rotor resistance measured in Ohm-radians. To illustrate how this
is achieved, consider the cross section of rotor bars as shown in the left diagram in Figure 3.

Figure 3. Rotor bar cross sections.

The angular displacement between rotor bars is 2π
nr

, where nr is the number of rotor
bars. As each rotor bar has identical dimensions and angular displacement from its
proceeding rotor bar, it is possible to define an angular resistance in Ohm-radians for the
rotor Rr by dividing the resistance of the current path as shown in Figure 2 by the angular
displacement between rotor bars. This allows the resistance of a conductive loop for a small
differential change in angular displacement dϕΦ to be described, as also shown in Figure 3.

Dividing the Figure 3 loop voltage by loop resistance allows the current bounded by
the angular displacement of dθ∂Φ, as represented by the variable iseg, to be calculated.

iseg =

∣∣∣∣∂Φn

∂t

∣∣∣∣
rotor

∣∣∣∣ sin(θ∂Φ)

Rr
dθ∂Φ (9)

The total rotor magnetic flux can be determined by combining the contribution of each
rotor current segment from Figure 3 into a single magnetic flux vector Φr . This cannot be
achieved using a vector addition, as the magnetic field from each rotor segment impacts the
other segments. To account for this effect, consider the magnetic field due to two differential
pairs of rotor bars and their resultant field directions, as shown in Figure 4.

Figure 4. Two differential currents with resultant field directions.

The fields from each current pair will spread approximately evenly around the air gap
between the rotor and stator to follow the course of least reluctance. When two current
pairs are at the same angular displacement from the i axis in Figure 4, components of their
fields cancel out while some field components combine. Based on this principle and the
geometry from Figure 4, the magnetic flux due to two current pairs Φrxd can be calculated
to be (10), where iseg is the current magnitude flowing in each current pair.

|Φrxd| =
4isegθ∂Φ

π< (10)
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Assuming the i axis from Figure 4 is aligned with the derivative of the net magnetic
flux vector, Equation (10) can be used to calculate the magnetic flux flowing through the
rotor using the (9) value of current magnitude.

|Φrxd| =
∣∣∣∣∂Φn

∂t

∣∣∣∣
rotor

∣∣∣∣4θ∂Φ sin(θ∂Φ)

πRr<
dθ∂Φ (11)

Integrating (11) over the range of 0 ≤ θ∂Φ ≤ π
2 as shown in Figure 4, results in the (12)

value of rotor magnetic flux.

|Φr | =
4

πRr<

∣∣∣∣∂Φn

∂t

∣∣∣∣
rotor

∣∣∣∣ (12)

The Φr magnetic flux described by (12) was calculated in the direction of the ∂Φn
∂t

∣∣∣
rotor

vector, as shown in the right picture in Figure 3. This is true by definition, as the i axis in
Figure 4 is aligned with this vector. It can also be observed in Figure 4 that for any value of
θ∂Φ, the net magnetic flux along the j axis will be zero. This will result in no component
of the rotor magnetic flux vector being perpendicular to the time derivative of the net
magnetic flux vector as evaluated in the rotor frame.

As (12) was calculated using the rotor resistance in Ohm-radians, it is independent of
the specific number of rotor bars. However, the stator winding configuration cannot be
homogenised. Therefore, the relationship between stator currents and induced magnetic
flux must be derived separately for every stator winding configuration. For the purpose of
demonstrating the model in this paper, a two pole, three phase induction motor stator with
24 rotor slots will be analysed.

Each stator slot contains windings from two phases. For sinusoidal three phase current
flowing through the stator windings, the total current amplitude flowing through each
stator slot is can be calculated to be (13), where ip is the phase current amplitude and ns is
the number of turns per phase per stator slot.

is =
√

3ipns (13)

There are 12 different phase slot winding configurations arranged in groups of two.
The difference in the current phase between each adjacent group of two is 30◦. Based on
this information, the (10) formula for magnetic flux can also be applied to stator currents.
Substituting (13) into (10) for each differential stator slot pair allows (14) to be derived.

|Φs| = 8.3301
ipns

< (14)

As the number of stator turns per slot per phase ns and magnetic reluctance < are
constant in this application, (14) can be simplified using the variable Ki for further analysis,
as defined in (15).

|Φs| = Kiip (15)

4. Modelling Magnetic Reluctance

The conversion of the current into magnetic flux requires the magnetic path reluctance
to be known. The magnetic reluctance is calculated using magnetic field energy within
the motor as a function of the net magnetic flux Φn. Equation (16) will be used for this
calculation, where U is the magnetic field energy.

< =
2U
|Φn|2

(16)
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The motor will be divided into 5 regions to calculate magnetic field energy. These
concentric regions are shown in the Figure 5 motor cross section, cut perpendicular to the
axis of rotation.

In Figure 5, the inner rotor region that falls within the radius of ri is the section of the
rotor that does not contain the rotor bars. This will be modelled with a constant magnetic
permeability and parallel magnetic field lines. The total net magnetic flux Φn flows through
this region. Due to the assumed parallel nature of the magnetic field lines, the magnetic
flux density will be modelled as constant throughout this region. The magnetic flux density
within this region can be calculated to be (17), assuming that all of the net magnetic flux
Φn passes through this region and the rotor has an axial length of lm.

Binner_rotor =
|Φn|
2rilm

(17)

Integrating the inner rotor region energy due to the (17) magnetic flux density and
substituting this value into (16) allows the (18) value of reluctance to be calculated.

<inner_rotor =
π

4µ0µrlm
(18)

The rotor bar region and the stator slot region contain both electrical and magnetic
field conductors. To make this model easily transferable between different motors, these
regions will be modelled homogeneously with each differential angular segment containing
an electrical and magnetic conductive region. To achieve this, the ratio of the rotor bar
region cross sectional area that contains the rotor bars, relative to its total area, will be
defined as Cr.

Cr =
rotor bar area

rotor bar region area
(19)

To illustrate how this concept can be used to calculate the magnetic field energy within
the rotor bar region of the rotor, consider the small angular segment of this region bounded
by the angular displacement of dθΦ, where θΦ is the angular displacement from the net
magnetic flux vector.

Figure 5. Motor cross section.

In Figure 6, the top shaded region represents the electrical conductor and the lower
shaded region represents the magnetic field conductor within this angular segment. Mag-
netic flux will pass through both the electrical and magnetic conductive regions, although
most magnetic flux will pass through the magnetic conductor. The ratio of magnetic flux
passing through the electrical to magnetic flux region can be calculated using magnetic cir-
cuit equations based on the parallel connection of reluctance elements. Based on this model,
the magnetic flux density within the magnetic conductive region Bmcr can be calculated as
a function of distance from the rotational axis r to be (20).

Bmcr =
|Φn|µr cos(θΦ)

2lmr(Cr + µr(1− Cr))
(20)
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Integrating this energy over the rotor slot area results in the (21) value of energy within
the rotor bar region’s magnetic conductors Umcr.

Umcr =
πµr|Φn|2(1− Cr)

8µ0lm(Cr + µr(1− Cr))
2 loge

(
ro

ri

)
(21)

The magnetic flux density in the electrical conductive region Becr of the rotor bar
region can be calculated using the same process to be (22).

Becr =
|Φn| cos(θΦ)

2lmr(Cr + µr(1− Cr))
(22)

Integrating this energy over the rotor slot area results in the (23) value of energy within
the rotor bar region’s electric conductors Uecr.

Uecr =
π|Φn|2Cr

8µ0lm(Cr + µr(1− Cr))
2 loge

(
ro

ri

)
(23)

Figure 6. Rotor bar region bound by small angular displacement.

The sum of (21) and (23) is the total magnetic field energy within the rotor bar region
of the rotor. Substituting this sum into (16) allows the reluctance of the rotor bar region
<rotor_bar to be calculated.

<rotor_bar =
π

4µ0lm(Cr + µr(1− Cr))
loge

(
ro

ri

)
(24)

Calculating the air gap reluctance can be achieved using this same process. Alter-
natively, substituting Cr = 1 into (24) is valid for the air gap region due to its lack of
magnetically permeable material. The radius variables ro and ri from (24) need to be
changed to si and ro, respectively, as per the air gap dimensions in Figure 5, resulting in
the (25) value of air gap reluctance.

<air_gap =
π

4µ0lm
loge

(
si
ro

)
(25)

The stator slot region reluctance is calculated using the same technique used to de-
rive (24). This requires the cross sectional area of the stator slots divided by the cross
sectional area of the entire stator slot region Cs to be defined.

Cs =
stator slot area

stator slot region area
(26)

Repeating the rotor bar region reluctance calculation using the stator slot area dimen-
sions results in the (27) value of reluctance.

<stator_slot =
π

4µ0lm(Cs + µr(1− Cs))
loge

(
sm

si

)
(27)



Magnetism 2022, 2 138

Magnetic flux in the back plane will be the sum of all the magnetic flux that has entered
minus what has left. This can be calculated as a function of angular displacement from
the net magnetic flux vector θΦ by integrating the contribution of each differential flux
component leaving the stator slot region.

Φs_backplane =
∫ 0

θΦ

|Φn|dlm
2lm

cos(θΦ)dθΦ (28)

Φs_backplane =
|Φn|
2lm

sin(θΦ)dlm (29)

Dividing (29) by the stator back plane area allows the magnetic flux density in this
region to be calculated.

Bs_backplane =
|Φn|

2lm(so − sm)
sin(θΦ) (30)

Integrating the magnetic field energy due to (30) over the entire stator back plane
region and substituting the resultant energy value into (16) results in the (31) value of stator
back plane magnetic reluctance.

<s_backplane =
π(so + sm)

8µ0µr(so − sm)lm
(31)

The total equivalent magnetic reluctance < of the motor can be calculated by summing
together all reluctance elements as described by (32).

< = <inner_rotor +<rotor_bar +<air_gap +<stator_slot +<s_backplane (32)

5. Combining Magnetic and Electric Circuit Power Transfers

Magnetic flux from the rotor and stator will add together to form the net magnetic flux.
Due to the sinusoidal distribution of magnetic flux as a function of angular displacement,
the stator and rotor magnetic flux vectors can be added using a vector addition.

In a steady state operation of the induction motor, it can be assumed that the net
magnetic flux magnitude and the relative angle with its time derivative vector are constant.
Therefore, the time derivative of the phase variable θ from (5) can be set to zero. When the
derivative of the magnetic flux magnitude is zero, Equation (4) states the angle between the
magnetic flux, and its time derivative is 90◦. In this situation, Equation (5) can be simplified
to equal (33). ∣∣∣∣∂Φn

∂t

∣∣∣∣ = |Φn|ω (33)

The 90◦ angle between the net magnetic flux and its time derivative will be the same
for all rotating frames. However, the net magnetic flux derivative’s magnitude is frame
dependant due to the ω term in (33).

It was demonstrated in Section 3 that the rotor’s induced magnetic flux is parallel
to the derivative of the net magnetic flux vector. Using this information, the angular
relationship between the stator, rotor and net magnetic flux vectors and the derivative of
the net magnetic flux can be depicted in vector form, as shown in Figure 7.
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Figure 7. Induction motor magnetic flux vectors.

The stator magnetic flux vector Φs and the rotor magnetic flux vector Φr add together
to form the net magnetic flux vector Φn. As these vectors represent fields with a sinusoidal
air gap distribution relative to angular displacement, they can be summed together using a
vector addition. Using the vector geometry from Figure 7, it is possible to derive (34).

|Φn| = |Φs| cos(λs) (34)

The magnitude of the net magnetic flux can also be expressed in terms of the phase
current amplitude ip using (15) and (34).

|Φn| = Kiip cos(λs) (35)

Induced voltage is another quantity from the electrical domain that has a magnetic
domain equivalent. Just as the variable Ki can be used to calculate stator current from
the stator magnetic flux, the variable Kv can be used to calculate the derivative of the net
magnetic flux from induced voltage. If the stator winding voltage was only due to the
rotating magnetic field, Equation (36) would describe this relationship, where Vs is the
stator phase voltage amplitude. ∣∣∣∣∂Φn

∂t

∗∣∣∣∣ = KvVs (36)

However, Equation (36) cannot be exact, as induced voltages exist in the stator wind-
ings due to the resistive losses and inductance due to stray magnetic fields. The stator
winding voltage due to resistive losses can be calculated by multiplying the stator winding
resistance per phase Rs by the stator phase current is. As this product is a voltage, it can
be converted into the magnetic domain by multiplying by Kv to equal KvisRs. This vector
quantity will have a 180◦ phase shift relative to the stator magnetic flux vector Φs as per
electrical circuit laws. The induced voltage due to the derivative of the net magnetic flux
vector, as shown in Figure 7 and described by (33), will have a 180◦ phase shift as per Lenz’s
law. Figure 8 shows this information on a vector diagram.

Figure 8. Induction motor magnetic flux and voltage vectors.

In Figure 8, the angle θs is the angle between the net magnetic flux and the magnetic
flux derivative vector based only on the externally applied stator winding voltage. As this
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vector diagram is viewed from the stator’s frame of reference, the net winding voltage
when resistive induced voltages are subtracted from the applied voltage is a function of ω f ,
as shown by the left most vector in Figure 8.

Some of the stator windings magnetic flux does not pass through the rotor and
therefore cannot be included as part of the stator magnetic flux vector Φs. These stray
fields can be modelled as inductors in the series with the stator windings, with an effective
inductance of Ls. This effect requires the stator winding voltage drop due to both the
resistive losses and stray field inductance VR+L to be accounted for, as described by (37).

VR+L = is

√
R2

s + (ω f Ls)2 (37)

The induced winding voltage, as described by (37), will also have a phase shift relative
to the purely resistive current induced voltage, as depicted in Figure 8. This additional
phase shift is represented by the variable ρs, as defined by (38).

ρs = tan−1
(

ω f Ls

Rs

)
(38)

Incorporating this additional information into Figure 8 results in Figure 9.

Figure 9. Induction motor voltage vectors.

Equations (39) and (40) can be derived from the Figure 9 vector geometry.

Vs cos(θs) = is

√
R2

s + (ω f Ls)2 cos(λs + ρs) (39)

Vs sin(θs) = is

√
R2

s + (ω f Ls)2 sin(λs + ρs) +
|Φn|ω f

Kv
(40)

The angle between the KvVs and Kiis vectors from Figure 8 is the same as the phase
angle between the AC voltage and current. This is because transferring quantities between
the electrical and magnetic domain does not change phases in this example. The AC power
delivered to the motor from a three phase source Psupply can be calculated to be (41) from
elementary electrical identities.

Psupply =
3
2

Vsis cos(θs − λs) (41)

Substituting Equations (39) and (40) into (41) results in the (42) value of electrical power.

Psupply =
3
2

Rsi2s +
3ω f

2Kv
|Φn|is sin(λs) (42)
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Equation (35) can be substituted into (42) to eliminate is in the second product term,
resulting in the (43) value of Psupply.

Psupply =
3
2

Rsi2s +
3ω f

2KvKi
|Φn|2 tan(λs) (43)

The product of the variables Ki and Kv can be determined using the transforming
properties of electrical to magnetic domain conversions. Equation (41) is the power trans-
ferred to the stator in the electrical domain. Equating this to its equivalent magnetic domain
power transfer equation using (15) and (36) allows the product term KiKv to be calculated.

3
2

Vsis cos(θs − λs) = <Φs ·
∂Φn

∂t

∗
(44)

KiKv =
3

2< (45)

Substituting (45) into (43) results in the (46) value of stator electrical power.

Psupply =
3
2

Rsi2s +<ω f |Φn|2 tan(λs) (46)

6. Power Losses

Power supplied to the induction motor can be described by (46), although at this
stage in the derivation, variables λs, is and Φn are unknown. To calculate these variables,
all sources of internal losses need to be quantified. Magnetic losses resulting from eddy
currents and hysteresis losses can be quantified using the Steinmetz’s equation. For this
model, stator magnetic power losses Psm will be approximated using (47), while rotor
magnetic losses Prm will be approximated using (48).

Psm = Mseω2
f |Φn|2 + Mshω f |Φn|2 (47)

Prm = Mreω2
s |Φn|2 + Mrhωs|Φn|2 (48)

In Equations (47) and (48), the variables Mse and Mre are the coefficients of stator eddy
current losses and rotor eddy current losses respectively. Msh and Mrh are the coefficients
of stator hysteresis losses and rotor hysteresis losses, respectively.

Rotor electrical power losses can be calculated using the magnetic circuit power
transfer equation, as described by (7). Substituting the (12) value of the rotor magnetic
flux and the (33) derivative of the magnetic flux evaluated from the rotor’s reference frame
into (7) results in the (49) value of the rotor electric power loss Pre.

Pre|rotor =
4

πRr
ω2

s |Φn|2 (49)

Evaluating Pre from the stator’s reference frame results in the (50) value of power loss.

Pre|stator =
4

πRr
ωsω f |Φn|2 (50)

The difference between the rotor electric power loss when evaluated from the stator’s
and rotor’s frame of reference is the rate electrical energy is converted into mechanical
energy due to the rotor torque. Only electrical losses need to be accounted for in this calcu-
lation, as they produce the mutually coupled magnetic flux between the rotor and stator.

Based on this information, the power transfer due to torque on the rotor can be
calculated to be (51), where ωr is the rotor rotational speed (ω f −ωs).

Pτ =
4

πRr
ωsωr|Φn|2 (51)
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7. Complete Power Transfer Equations

Equation (46) quantifies the rate electrical energy is transferred to the motor and is
made up of two product terms. The first product term describes energy lost due to the
electrical resistance of the stator windings, while the second describes inductive energy
transfers. These inductive energy transfers are the (50) rotor power and the (47) and (48)
magnetic losses. Equating the second product term of (46) to equal these inductive energy
transfers allows the value of tan(λs) to be calculated.

tan(λs) =
4ωs

πRr<
+

Mseω2
f + Mshω f + Mreω2

s + Mrhωs

ω f<
(52)

The value of λs can now be calculated using (52), as it is a function of known constants
and externally measurable variables.

It is also necessary to calculate the magnitude of the net magnetic flux Φn. This can
be achieved by first squaring (39) and (40), then adding them together to eliminate their
dependence on θs.

V2
s =i2s

(
R2

s + (ω f Ls)
2
)
+

(
ω f |Φn|

Kv

)2

+
2isω f

Kv
sin(λs + ρs)

√
R2

s + (ω f Ls)2 (53)

Substituting Equations (35), (38) and (45) into Equation (53) allows the is, ρs and Kv
terms to be eliminated, resulting in (54).

V2
s

|Φn|2
=

R2
s + (ω f Ls)2

K2
i

(
tan2(λs) + 1

)
+

(2<Kiω f

3

)2

+
4<ω f

3

(
Rs tan(λs) + ω f Ls

)
(54)

As the amplitude of the stator winding voltage Vs is known, Equation (54) can be used
to calculate |Φn|. This value can then be substituted into (51) to calculate the power transfer
due to the rotor torque. Electrical power supplied to the motor can be calculated using (46)
and the stator phase current using (35).

8. FEM Simulation Parameters

The equations derived in this paper can be used to predict the torque speed character-
istics of an induction motor. To validate the model derived in this paper, a FEM simulation
of an induction motor’s torque speed characteristics will be used to establish a benchmark
against which the accuracy of these equations can be assessed. The following geometric
parameters as described in Section 4 of this paper used in the FEM simulation are as follows.

• ri = 43 mm
• ro = 65 mm
• si = 65.5 mm
• sm = 87 mm
• sb = 112 mm
• lm = 160 mm
• cr = 0.65
• cs = 0.65
• µr = 3000

The relative permeability of non-oriented superior motor grade electrical steel is used
in the simulation due to its popularity in small- to mid-sized motors [21]. Soft magnetic
materials such as silicon steel (3.2 wt% Si) are increasing in popularity due to low loss factors.
However, high processing costs and the difficulty in optimising all required mechanical
and electromagnetic parameters is still a limiting factor in the commercialisation of soft
magnetic materials [22]. As this analysis does not require a complex magnetic model to
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demonstrate its validity, the magnetic properties of conventional motor grade electrical
steel will be used where required.

Inserting these dimensions into the Section 4 magnetic reluctance equations results in
the following reluctance values.

• <inner_rotor = 1302 H−1

• <rotor_bar = 1536 H−1

• <air_gap = 29,933 H−1

• <stator_slot = 1055 H−1

• <s_backplane = 5182 H−1

The sum of these motor reluctance values results in < = 39,008 H−1.
Not all the magnetic flux produced by stator currents is mutually coupled with the

rotor. This results in stator leakage flux. Quantifying this value is required to calculate the
stator windings leakage inductance. Leakage flux can be quantified using FEM [23] or real
time emulation models [24]. Magnetic circuit-based leakage flux models are also effective
and can be derived based on geometric factors [25]. As such, the leakage inductance will
be calculated in this model using a reluctance mesh.

This value is determined by estimating the magnetic path reluctance encountered by
these stray fields. The path encountered by one set of stray fields is shown in Figure 10 by
the reluctance circuit surrounding a stator slot.

Figure 10. Stray fields’ magnetic flux path.

Figure 10 depicts the reluctance circuit surrounding a single stator slot. As a phase
winding current will flow through four adjacent slots, the parallel connection of four
reluctance circuits as depicted by Figure 10 will need to be calculated. Using the resulting
reluctance mesh, the reluctance encountered by stray flux is estimated to be 2.85× 106 H−1.
The induction motor is wound with 26 windings per phase per stator slot. This results in
104 conductors enclosed by the stray fields’ reluctance mesh. Therefore, the effective series
inductance in the stator windings due to leakage flux can be calculated using (55).

L =
n2

< (55)

In (55), L is inductance, n is the number of turns and < is reluctance. Using this
relationship, the inductance due to a single phase winding passing through four adjacent
stator slots is 3.80 mH. As each phase has four sets of these windings, the leakage inductance
per stator phase winding, as represented by the variable Ls, is 15.2 mH.

The rotor resistance can be calculated by measuring the electrical path resistance of a
current loop encompassing two opposite rotor bars, as shown in Figure 2. This resistance
for the simulated rotor is estimated to be 1.14× 10−4 Ω. Multiplying this value by the
angular displacement between rotor bars ( π

12 ) results in the rotor resistance Rr value of
2.98× 10−5 Ohm-radians. The stator winding resistance Rs has been set in the simulation
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to be 1.616 Ω. Other simulation parameters are a phase to phase RMS voltage of 400 V, a
Wye connection and a synchronous frequency of 100π radians per second.

For this simulation, all magnetic loss coefficients will be set to zero. This is to validate
the model derivation up to this point. Deriving magnetic loss coefficients directly from
motor geometry and magnetic material properties will require an analysis of approxi-
mately the same length as this paper up to this point. Alternatively, using FEM to derive
approximations for magnetic loss parameters would be using FEM to validate its own
modelling technique. This approach would also invalidate the claim in the introduction
that all parameters can be derived directly from physical laws without the aid of existing
simulation models.

9. FEM Simulation Results

Predictions made by the magnetic circuit-based model presented in this article will
be benchmarked against a commercially available FEM model to assess its accuracy. This
is achieved using the FEM simulation tools of Ansys Maxwell 16.0. A 3D rendering of
the simulated motor model is shown in Figure 11 from two angles with phase windings
colour-coded black, red and blue for phases 1, 2 and 3, respectively. The motor model is cut
both radially and axially, as the entire motor geometry is not required to be simulated due
to symmetries.

Figure 11. Three-dimensional rendering of FEM-simulated induction motor.

Using the parameters detailed in the previous section, a FEM simulation of the induc-
tion motor was undertaken to obtain its output power, phase current and efficiency as a
function of rotor rotational speed. A 2D rendering of the FEM simulated motor’s magnetic
fields is shown in Figure 12 once they have reached their steady state values.

Figure 12. Two-dimensional rendering of FEM-simulated induction motor with superimposed fields.

This rendering validates the assumptions of the magnetic field distribution within the
motor, as stated in Section 4. Magnetic field distribution within the inner rotor region is
approximately uniform in both magnitude and direction. Stator fields also vary in intensity,
reaching their peak values perpendicular to the direction of the inner rotor’s magnetic field
from the axis of rotation.

The FEM simulation also allowed the output power as a function of rotational speed
to be calculated, as shown in Figure 13. These simulated values are compared to those
obtained using the magnetic circuit model derived in this paper, with the rotational speed
measured in Revolutions Per Minute (RPM).
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Figure 13. Output power vs. rotor rotational speed.

The simulated output power in Figure 13 slightly exceeds the predicted value for
rotational speeds between 500 RPM and 2000 RPM. However, the maximum predicted
output power was 7.29 kW, which is 70 W more than the simulated value of 7.22 kW. For
rotational speeds above 2800 RPM, which correspond to typical operating conditions, the
FEM-simulated and magnetic circuit predictions are closely matched. The RMS deviation
between the two output power data sets is 59.3 W or 2.47% of the average predicted value.

As the magnetic circuit parameters derived in this model do not correspond directly
with those used in the FEM simulation, it is difficult to identify which parameter caused
this discrepancy. It is worth noting that although the FEM-simulated magnetic losses were
set to zero in the material settings, a low but non zero value of magnetic loss was recorded.
This implies that the FEM model uses magnetic loss correction techniques to improve its
accuracy in practical settings.

The predicted phase current in Figure 14 is less than the FEM-simulated values for
rotational speeds below 1500 RPM. Both data sets are closely matched for rotational speeds
above 1500 RPM with only a slight divergence around 2400 RPM. Overall, the RMS devia-
tion between the two data sets is 0.223 A or 0.87% of the average predicted current.

Figure 14. Phase current vs. rotor rotational speed.

The predicted motor efficiency in Figure 15 was slightly less than its simulated value
for most rotational speeds. However, the peak predicted efficiency of 95.8% exceeds the
maximum simulated efficiency of 94.3%. Overall, the RMS deviation between the two data
sets is 0.92%.
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Figure 15. Motor efficiency vs. rotor rotational speed.

Figure 15 also reveals another possible reason for the differences between the FEM
and magnetic circuit-derived results. The FEM efficiency is lower than magnetic circuit
efficiency close to the synchronous frequency. In this operational region, the stator losses
dominate; thus, FEM stator losses might be higher than the magnetic circuit model. As
overall FEM efficiency is slightly higher, a larger FEM inductive coupling factor or lower
FEM rotor losses may also be responsible.

The efficiency function in Figure 15 increases with rotational speed across most of the
data set range, before quickly reducing to zero at the synchronous speed. This overall shape
is to be expected and can be inferred from the rotor power transfer Equations (50) and (51).
Only factoring these into the efficiency equation allows an upper limit on motor efficiency
to be derived. This upper limit is (56), where η is the motor efficiency.

η ≤ 1− ωs

ω f
(56)

In (56), ωs is the slip frequency, which is the synchronous frequency minus the rota-
tional frequency. Equation (56) represents the theoretical limit of the inductive transfer
efficiency to the rotor with a constant reluctance. To achieve this efficiency, no stator losses
can be incurred. As such, the deviation in efficiency from (56) can reveal the impact of
stator related and mechanical sources of power loss on overall motor efficiency.

It is also possible to calculate the angle between the net and stator magnetic flux
vectors λs as a function of rotor rotational speed. As this is not a variable commonly
measured by simulation software, plotting this information offers a unique insight into the
internal magnetic field dynamics within the induction motor. The angle λs is an important
parameter, as it describes how much stator magnetic flux, and therefore, the stator winding
current, is needed to produce the net magnetic flux, as per (34). It also determines how
much stator winding current is required to achieve inductive power transfers. This value
can be determined by substituting (34) into (46).

The value of λs is shown in Figure 16 as a function of rotor rotational velocity.
It can be observed from Figure 16 that the angle between the stator and net magnetic

flux vectors λs is close to 90◦ for low rotor speeds and quickly approaches 0◦ near the
synchronous rotational speed. It is also interesting to note that the operating speeds most
likely to be encountered under normal load have the most variation in λs.
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Figure 16. Angle between net and stator magnetic flux vectors vs. rotor rotational speed.

Figure 16 also reveals that the relative angles between magnetic flux vectors can change
with rotational speed. Other magnetic flux models such as the D-Q model have a fixed
angle of 90◦ between their two magnetic flux vectors. As the angle between the rotor and
net magnetic flux vectors is 90◦, it is possible to see why this assumption might still result
in accurate observations. However, as per (4), this constant 90◦ angle is only possible when
the derivative of the net magnetic flux magnitude is zero, as the rotor magnetic flux is
parallel to the time derivative of the net magnetic flux. Any change to net magnetic flux
magnitude will also change this angle, irrespective of the angular frequency ω and phase
θ, as (4) is independent of these variables. Accounting for this change in angle between
magnetic flux vectors could therefore provide this model with an advantage over fixed
angle models.

The net magnetic flux magnitude |Φn| can be readily obtained from the magnetic
circuit equations derived in this paper. This value is shown in Figure 17 as a function of
rotor rotational speed.

Figure 17. Net magnetic flux magnitude vs. rotor rotational speed.

Figure 17 depicts a continual increase in the net magnetic flux magnitude as a function
of rotor rotational speed. The stator magnetic flux, which is directly proportional to the
stator current, as shown in Figure 14, only decreases when the rotational speed increases.
This illustrates the impact the angle between the net and stator magnetic flux has on the
operation of the induction motor. For low speeds, the stator and rotor magnetic flux are
almost opposite each other and therefore much of their magnetic flux is canceled out. As
the angle λs decreases, less stator flux and therefore phase current is required to produce
the net magnetic flux.
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10. Conclusions

This paper has demonstrated how magnetic circuit analysis can be applied to situations
involving rotating magnetic fields using energy and circular motion-based equations. The
key components of this analytical technique involves both magnetic flux and the time
derivative of magnetic flux in vector form. Quantifying these magnetic domain quantities
from their electrical domain equivalents and using the mathematical relationship between
them allows for the derivation of closed form equations. The resultant magnetic circuit
model can then be used to describe the motor’s operational characteristics and provide
insights into parameters not usually quantified in traditional models.

As a magnetic flux-based model, the proposed analytical technique bears some similar-
ities to the D-Q model. One advantage of this model over the D-Q model is that parameters
can be derived directly from motor geometry. Another is that it is derived at a lower level of
abstraction than the assumptions upon which the D-Q model is based. As such, it involves
a more fundamental approach, from the application of the laws of physics to the description
of AC machines.

It has also been demonstrated in this paper that magnetic circuit analysis can be used
to describe rotating machines without the need for ad hoc or unexplained variables to
match predictions with observations. The same parameters and variables were used to
derive all of the predicted data without the need for individual correction coefficients for
each measurements.

Due to the closed form equations derived using this analytical technique, there is
an inherent computational speed advantage of this model over numerical method-based
models. This could be advantageous for future applications of the underlying mathematical
relationships described in this paper if implemented in real time control applications. It
can also provide motor designers with information such as relative magnetic flux vector
angles, which cannot be readily obtained from some design software.

The model presented in this paper only represents one specific application of these
equations relating the magnetic flux and its time derivative. Therefore, there are still further
applications of this research using the underlying equations and analytical techniques to
derive dynamic models incorporating more complex losses. There is also the potential to
use these magnetic circuit equations as a basis on which to build control algorithms, which
has not yet been explored. Through further applications of the equations derived in this
paper, it may be possible to use magnetic circuit analysis to achieve a more optimal balance
between computational efficiency and accuracy in practical applications.
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Abbreviations

Symbol Quantity
B Magnetic flux density
Binner_rotor Inner rotor magnetic flux density
Bs_backplane Stator backplane magnetic flux density
Becr B field in rotor bar area electric conductor
Bmcr B field in rotor bar area magnetic conductor
Cr Rotor bar area to total area ratio
Cs Stator slot area to total area ratio
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ip Phase current amplitude
is Stator slot current amplitude
iseg Current in differential rotor segment
Ki Current to flux conversion coefficient
Kv Voltage to flux derivative coefficient
L Inductance value
lm Length of rotor and stator
lr Electrical conductor length
Ls Stator winding inductance
Mre Coefficient of rotor eddy current losses
Mrh Coefficient of rotor hysteresis losses
Mse Coefficient of stator eddy current losses
Msh Coefficient of stator hysteresis losses
n Number of winding turns
ns Winding turns per stator slot per phase
P Generic power variable
Pre Rotor electrical power loss
Prm Rotor magnetic eddy current losses
Protor Power transfer to the rotor
Psm Stator magnetic eddy current losses
Pstator Power transfer from stator
Psupply Electrical power supplied to motor
Pτ Mechanical power transfer due to rotor torque
r Radius variable used for integration
ri Inner rotor radius
ro Outer rotor radius
R Generic resistance value
Rl Linear resistivity
Rr Rotor angular resistance
Rs Stator winding resistance
Rθ Angular resistivity
< Magnetic reluctance
<air_gap Air gap reluctance
<inner_rotor Inner rotor reluctance
<rotor_bar Rotor bar area reluctance
<s_backplane Stator backplane reluctance
<stator_slot Stator slot reluctance
Sb Stator backplane radius
Si Stator inner radius
Sm Stator middle radius
t Time
U Generic energy variable
Uecr Energy in rotor bar area electric conductor
Umcr Energy in rotor bar area magnetic conductor
Vrx Induced voltage in rotor bar pair x
VR+L Stator resistive and inductive voltage
Vs Stator voltage amplitude
η Rotor power transfer efficiency
θ Generic angle variable
θr Angular resistivity measurement angle
θ∂Φ Angular displacement from Φn partial derivative
θΦ Angular displacement from Φn
θs Stator voltage vector angle
λs Stator current vector angle
µr Relative permeability
µ0 Vacuum permeability
ρs Inductive stator voltage phase shift
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Φ Generic magnetic flux variable
Φn Net magnetic flux
Φs Stator magnetic flux
Φr Rotor magnetic flux
Φrx Dual rotor bar magnetic flux
Φrxd Differential rotor magnetic flux
Φs_backplane Stator backplane magnetic flux
ω Generic frequency variable
ω f Synchronous frequency
ωs Slip frequency
ωr Rotor rotational frequency
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