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Abstract: In this article, the stress/stress sensing capability of FeSiB thin films is demonstrated and
discussed. The sensing relies on the change in permeability by the application of stress, compressive
and tensile, and the application of DC magnetic field. This susceptibility/permeability was tested by
the exciting field (AC) being in the same direction with the applied stress. The susceptibility was
shown to exhibit a maximal value at a given applied stress, the critical stress. Moreover, this maximal
amplitude and position was changing with the application of an external DC magnetic field. For the
DC field applied in the direction of the exciting field (AC) and longitudinal to the stress, the critical
stress was shifted toward negative values and for the DC field applied perpendicularly, the critical
stress was shifted toward larger positive values. This was experimentally demonstrated, and a model
was constructed for a better understanding.

Keywords: magnetostriction; inductance; magnetic anisotropy; susceptibility; simulation; stress-
impedance effect

1. Introduction

The magnetic properties of amorphous soft magnetic material can be used for magnetic
sensors [1]. Typical commercial magnetic field sensors are based on the Giant Magneto
Impedance (GMI) effect (Z(H) − Z(Hmax)/Z(Hmax), with Z being the impedance, H the
magnetic field and Hmax the largest applied field. This can sense magnetic field down to
µ0H = 10−12 T [1]. To produce this effect, an AC current is flowing through the material.
In this case, depending on the frequency, the current density is concentrated close to the
material edge (skin). The current density has a characteristic depth δ, called skin depth,
that can be expressed, for a semi-infinite planar interface as [2]:

δ =

√
1

µ0µrπ f γ
, (1)

where µ0 = 4π10−7 H/m is the vacuum permeability, µr is the material relative permeability,
γ is the material electric conductivity and f is the AC current frequency. Large permeability
is reducing the skin depth, and the impedance of the conductor becomes higher; and the low
permeability is increasing the skin depth, resulting in lower impedance. The application of
an external magnetic field can then reduce the magnetic permeability µr(H). The GMI effect
consists of the change in the measured impedance due to the application of a DC magnetic
field [3,4].

Change in material permeability can also be achieved by applying another type of
external stimulus. Especially, in the stress impedance (SI) effect, a strain or stress σ is
applied to the magnetic material and a change in the magnetic permeability µr(H, σ) also
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changes the measured impedance [5–7]: Z(σ) − Z(σmax)/Z(σmax), with Z the impedance, σ
the magnetic field and σmax the largest applied stress [8].

The SI effect has been used to successfully demonstrate strain sensing devices based
with wires, ribbons and also thin films [5,9–15]. They showed generally much higher gauge
factors than devices, using conventional effects (resistive, semiconductor). Beside general
investigations as a strain gauge, also more specific applications, such as for structural
health monitoring, pressure sensors, or force sensors have been proposed [15,16]. In a
recent work, an amorphous FeSiB material was used to demonstrate the application for
stress sensor [17]. A thin layer of this material was sputtered on top of a silicon beam.
When stress was applied to the beam, the bending of the beam results in compressive stress,
or tensile stress, in the magnetic layer, depending on the curvature of the beam. An external
magnetic field was applied along the beam direction or perpendicularly. This revealed the
complete map of the magneto elastic effect on the magnetic permeability. To complete this
work, a theoretical description of the system should be provided.

Some models of the GMI are presented in the literature [18–22], including the effect of
the stress on the GMI [23] to optimize the GMI because a low magnetostriction constant was
experimentally yielding to a large GMI measurement [24]. Although those models were
matching the experimental data, few models can be found for the susceptibility change with
stress, and most of them are modeling only the case with an applied stress perpendicular
to the anisotropy axis, and without external field [25,26].

In the present article, calculation of susceptibility is performed to understand the effect
for many possible cases (compressive and tensile stress, different magnetic field directions)
and to be able to predict permeability behavior with field and stress. Such results can be
used to optimize sensors based on the magnetic susceptibility change.

2. Materials and Methods

Sample production and mechanical test were described in [17] and are briefly sum-
marized here: the magnetic material, Ti/Fe79Si7B14/Ti, was sputtered using a magnetron
system (QAM-4-S, ULVAC, Inc., Tokyo, Japan) on a 300 µm thick Si wafer and the thick-
nesses were 20/500/20 nm, respectively. The titanium acted as adhesion layer and sur-
face protection. The samples were cut in rectangle with length l = 40.4 mm and width
w = 7.7 mm. A three-point bending test was applied to the sample and the applied force
was recorded using a load cell (Xforce P, ZwickRoell Corporation, Ulm, Germany) with
maximal force of 5 N. A coil was wrapped around the sample with the coil axis being
parallel to the sample length. The coil was connected to an impedance analyzer (PSM1735,
Newton4th Ltd., Leicester, the UK) for inductance measurements, at a frequency of 20 kHz.
An electromagnet was used to generate an external magnetic field, along or perpendicular
to the sample axis, with an amplitude of up to µ0H = 40 mT.

Magnetic characterizations, the M versus H loop, were performed in a BHV-50H Vibrat-
ing Sample Magnetometer (VSM) from Riken Denshi Co. (Tokyo, Japan). The applied field
ranged from −1000 Oe to 1000 Oe (approximately − 80 kA/m to + 80 kA/m in S.I. units).
From the magnetic loop the relative permeability was estimated as µr(H) = 1+ (dM(H)/dH).

3. Experimental Results

The inductance change is presented in Figure 1 for the external field in the direction of
the sample and in Figure 2 for the external field applied perpendicularly [17].

Figure 1 presents the result of the inductance measurement of the coil, for the case
where the applied field was in the sample axis. For the case where there was no applied
field, H// = 0, the compressive stress affected the inductance differently when compared
to the tensile one. The curve was not symmetric with respect to the force. The curve
was maximum at a critical force Fc, and the decrease was smooth for the force on the
compression side and sharp on the tensile side of the curve. At a large applied force, F
> 1 N, the inductance became constant at a value of L ~ 3.46 µH. As the magnetic field
H//was increased, the initial inductance measured at zero force was decreasing to the
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same inductance value of L ~ 3.46 µH. In fact, the longitudinal field was (i) shifting the
inductance versus force curve toward compressive force and (ii) reducing the inductance
amplitude. Eventually, at larger fields, the inductances versus force curves were constant
with values of L ~ 3.46 µH in the force measurement range.
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After this set of measurements, performed in the longitudinal magnetic field config-
uration, the electromagnet was rotated to apply the magnetic field perpendicular to the
sample axis. Figure 2 presents the result of the inductance measurement of the coil, for the
case where the applied field was perpendicular to the sample axis. In this perpendicular
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configuration and for H⊥ = 0, the curve was different than the previous experiments in the
longitudinal configuration and H// = 0. The experiments were performed first, by applying
force (compression and tensile) in the longitudinal configuration, then the experiments
were performed by applying force (compression and tensile) after setting the configuration
into the perpendicular configuration. Therefore, the sample has first experienced many
stimuli (tensile and compressive stresses, plus longitudinal) large enough to affect the
magnetic state. So, the state of these two curves, H// = 0 and H⊥ = 0 has no reason to be
exactly the same because of history. It is believed that there was a little hysteresis, but the
shape of the curve remained very similar to the previous case: smooth for the force on the
compression side and sharp on the tensile side of the curve. The effect of the field H⊥ was
different from the effect of H//: the inductance peaks were shifting toward tensile force
here. The inductances were reduced in both cases by the application of the magnetic field.

Figure 3a shows the result of the VSM measurement, and the magnetic loop is pre-
sented. Magnetic saturation was MS ~ 1.1 MA/m and a coercive field Hc was ~ 400
A/m. The relative permeability was then extracted and plotted here versus the applied
magnetic field in Figure 3a. This result was compared with the inductance measurement
of the coil around the sample with the applied magnetic field and without an applied
mechanical force.
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Figure 3. (a) Permeability obtained from the VSM (black circle) and coil inductance (red square)
measured on a sample without a magnetic field; the inset shows the magnetic loop M versus H;
(b) Approximation of the relationship between the measured inductance to the permeability.

High inductances were observed at high permeability values and lowest inductances
are observed at lowest permeability values. In fact, when the magnetic field was larger than
µ0H = 10 mT, the permeability has a low value of µr = 1; this was corresponding to a low
and constant value of inductance L ~ 3.46 µH. This value L ~ 3.46 µH was then used to refer
to the saturation of the sample. The inductance of a coil is usually expressed as L = kµr with
the coefficient k being related to the number of turns of the coil, and the geometry of the coil
and the sample [27,28]. The positive and negative sides of the µr(H) curve, Figure 3a, were
then averaged as µr(Hi) = (µr(+Hi) + µr(−Hi))/2 and plotted versus the coil inductances
measured at the corresponding field L(Hi). Figure 3b is showing the value of permeability
plotted versus the inductance at the same magnetic field Hi amplitude: µr(Hi) versus L(Hi).

A linear approximation of the relationship between permeability and inductance can
be extracted as L = (4.33 × 10−5) × µr + 3.46. This line was also plotted in Figure 3b.

Figures 1 and 2 were presenting the inductance curve versus the applied force in
the case of longitudinal DC field (H//) and orthogonal DC field (H⊥), respectively. The
curves were presenting inductance peaks which can be characterized by the position
of the peak, i.e., the critical force Fc, and the peak amplitude ∆Lmax. This value of the
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peak amplitude ∆Lmax was extracted by subtraction of the saturation value of 3.46 µH:
∆Lmax = max(L) − 3.46 µH. This peak amplitude is an indicator of the permeability according
to the relationship highlighted in Figure 3b as ∆L ~ ∆µr.

Figure 4 shows the critical force Fc and the peak amplitude ∆Lmax for all the tested
configurations. The magnetic field direction was clearly changing the position of the
inductance peak. Longitudinal field (H//) was reducing the critical force (dFc/dH < 0) and
the orthogonal field (H⊥) was increasing the critical force (dFc/dH > 0). In both cases, a
linear tendency was observed. The peak amplitudes ∆Lmax were reduced by the magnetic
field: with H//, the decrease was faster than with H⊥. The tendency of ∆Lmax with applied
fields was nonlinear.
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4. Modeling

In this section, a model built to understand these experimental observations is de-
scribed. According to the result of Figure 3b, the coil inductances can be interpreted by
the magnetic state of the material. In this model, the magnetic states will be calculated
as a function of stress and magnetic field. From these calculated magnetic states, the
susceptibilities χ will be derived. Susceptibilities and permeabilities of materials with such
large permeabilities will be supposed to be similar as for µr ~ 103, then χ = µr − 1 ~ µr.

First, the coupling between the magnetization and the applied magnetic fields has to
be expressed. For this coupling, there are two contributions: one from the AC exciting field
hac, created by the coil, and the second one is from the applied DC magnetic field H.

In the following, we will assume that the AC exciting field has a small amplitude
compared to the field; hac << H. The coupling between an applied magnetic field and a
magnetization vector, with an amplitude Ms, is expressed by the Zeeman energy. The
Zeeman energies are expressed for the two contributions as:

EZeeman_AC = −µ0
→

MS·
→
hac, (2)

and:
EZeeman_DC = −µ0

→
MS·

→
H. (3)
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It can be noticed that these Zeeman energies are minimized when the magnetization
and the field are collinear.

Secondly, the coupling between the magnetization and the magnetic anisotropy has to
be taken into account. In the following, we will assume two contributions: one from the
intrinsic magneto crystalline anisotropy (small for this amorphous material) and a second
one from the extrinsic magneto elastic coupling. For the magneto crystalline anisotropy,
the energy is expressed, assuming a uniaxial anisotropy in the y-direction, as:

Ea = Ka sin2(θ), (4)

where Ka is the first-order magnetic anisotropy constant and θ is the angle between the
magnetization vector and the anisotropy axis. This energy term minimization would
require that θ = 0, hence, the magnetization should be in the anisotropy direction.

When stress σ is applied to the magnetostrictive material, the corresponding magne-
toelastic anisotropy can also be expressed by Equation (4), with the corresponding constant
Kσ being expressed here as:

Kσ =
3λsσ

2
, (5)

In this Equation (5), λs is the magnetostriction constant of the material.
The final state of the magnetization, under magnetic field H, is obtained by minimizing

the sum of all these energetic contributions. For instance, in the case where the uniaxial
magnetic anisotropy and the applied field are orthogonal, the total magnetic interaction
energy E is expressed, as:

E(θ) = Ka sin2(θ)− µ0MSH cos
(π

2
− θ
)

, (6)

By defining the anisotropy field Ha as:

Ha =
2Ka

µ0MS
, (7)

the two magnetization components, ML (longitudinal, along with the field direction) and
MT (transverse to the field direction), can be expressed, for field H < Ha, as:

→
M = ML

→
ex + MT

→
ey =

MS

Ha

[
H
→
ex +

√
H2

a − H2→ey

]
, (8)

For field H > Ha the two components are then reduced to ML = MS and MT = 0. These
two curves are plotted in Figure 5a. For H < Ha, ML is linearly increasing up to MS and
remained ML = MS for H > Ha. For H < Ha, MT is decreasing from MS down to 0 and
remained MT = 0 for H > Ha.

The corresponding relative susceptibility (dM/dH) components, χL and χT, are di-
rectly obtained for field H < Ha from Equation (8) as:

χL =
MS

Ha
, (9)

and:
χT = −MS

Ha

1√(
Ha
H

)2
− 1

, (10)

For field H > Ha the two components are then reduced to χL = 0 and χT = 0. These
susceptibilities can be normalized according to the constant χa = MS/Ha.

These two curves are plotted in Figure 5b. It can be pointed out that, at H = Ha, there
was no susceptibility calculated. In fact, plotting the angle dependency of E for different
values of field H could reveal this particularity, as explained in detail in Appendix A.
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H/Ha for different magnetic anisotropy direction θa. The full lines are theoretical values (Equation
(8) for ML and MT, Equation (9) for χL and Equation (10) for χT) and square are numerical results
from model.

5. Calculated Results of the Model

The model was used in COMSOL software to calculate the magnetization direction and
then the susceptibility. This AC susceptibility was then calculated from the dependency of
the magnetization with the AC field hac. It was assumed that hac is in the sample’s main axis,
the x-direction (longitudinal direction). The longitudinal direction is then referred below
to as the x-direction and the orthogonal (perpendicular) direction as the y-direction. The
susceptibility was extracted from the x-component of the magnetization as χL = dMx/dhac.
This susceptibility was then calculated with the two types of external stimuli: applied
DC field H and stress σ. Especially, the DC field can be in the x-direction (longitudinal
configuration: H//) or in the y-direction (orthogonal configuration, H⊥). In addition, the
stress was supposed to be applied in the x-direction. Both tensile stress (positive values)
and compressive stress (negative values) were considered. Susceptibilities are then plotted
in the normalized unit (χL/χa) and the same for the applied field (H/Ha) and stress (Kσ/Ka)
to provide a general overview of the phenomenon. A summary of direction of physical
quantities is presented in Table 1.

Table 1. Physical quantity of the model.

Quantity Direction

DC field H Field H// (x-direction) or Field H⊥ (y-direction)
AC field hac x-direction

Stress σ x-direction
Anisotropy axis At angle θa to x-direction

Magnetization M Longitudinal ML (x-direction) or Transverse MT (y-direction)

5.1. Without Magnetostriction

Figure 5a is presenting the curves ML/MS and MT/MS versus different anisotropy
angles θa. The component ML is linear with the applied field H < Ha and is constant for the
applied field H > Ha for θa = π/2. The corresponding susceptibility, presented in Figure 5b,
is constant for H < Ha as χL = χa and for H > Ha as χL = 0. For other angles, the longitudinal
component ML is continuously increasing with H with an asymptotic behavior tending to
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the value MS. The corresponding susceptibility χL is observed to continuously decrease
with H tending toward the value 0. The inset of Figure 5b) is presenting the effect of θa on
χL at H = 0: this is following the law χL = χasin2(θa).

5.2. With Magnetostriction
5.2.1. No External Field

Figure 6 is presenting the curves χL/χa versus the anisotropy ratio Kσ/Ka: defined as
the ratio between the magnetoelastic anisotropy (Equation (5)) and magnetic anisotropy
constant, with an angle θa between these two anisotropy directions. The magnetostriction
constant was supposed to be λs = 30 ppm. Firstly, it can be observed that at angle θa = π/2,
a peak appeared in the tensile stress part (σ > 0) at the exact value Kσ = +Ka. This situation
is similar to the magnetic field H = Ha applied perpendicularly to the anisotropy axis,
as discussed previously, where the energy is independent of the magnetization angle
(Appendices A and B), yielding to largest susceptibility. At angle θa = 0, a sharp peak
appeared in the compressive stress part (σ < 0) at the exact value Kσ = −Ka because the
total energy angular dependence would disappear.
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In the case θa = π/2, the value Kσ = +Ka was corresponding to 3σλs = 2Ka, defining
the critical stress [25,26,29,30] as σc = 2Ka/3λs. The part of the curve with θa = π/2 and
σ < σc was a smooth increasing curve, whereas for σ > σc the curve became constant: the
magnetic moments were now aligned with the stress. When the angle θa was reduced, the
discontinuity disappeared and a continuous curve is observed until the angle was θa = 0
where the curve was again discontinuous at stress value corresponding to Kσ = −Ka. For
the intermediate angles, a bump appeared at an intermediate stress value (−Ka ≤ Kσ ≤ Ka).
However, by reducing the angle toward θa = 0, the global shape of the curve remained:
below the critical stress (σ < σc) the curve was smoothly increasing and over the critical
stress (σ > σc), the curve was more sharply decreasing.

The calculation was performed for different values of magnetostriction constant λs
when no DC magnetic field was applied (HDC = 0). The corresponding curves are plotted
in Figure 7. It can be observed that the stress has no influence on the susceptibility for
magnetostriction constant λs = 0. In this case, the susceptibility remains constant. For
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magnetostriction constant λs > 0, the susceptibility is then dependent on the amplitude of λs.
For the lowest value, λs = 5 ppm, the susceptibility is increasing linearly with the applied
stress in the range considered here. For the largest value λs = 30 ppm, the simulation
was performed over a wider range of stress, revealing more about the behavior of the
susceptibility curve: for large compression and large tensile stresses, the susceptibilities
were very low whereas, at the critical stress σc, the curve is exhibiting a maximum value.
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and dashed line is a guideline.

As the value of λs was increased, the critical stress σc was shifted to relatively smaller
tensile stress. The inverse value of the extracted critical stress σc from these curves was
linearly increased when the value of λs was increased. The susceptibility was defined, in
the case of θa = π/2, by Equation (7), as χL = MS/Ha, where Ha was defined in Equation
(9). The susceptibility is χa = µ0Ms

2/(2Ka) and if Ka is low, then is χa large. Adding
the magnetostrictive term Kσ, then the effective anisotropy constant can be expressed as
Ka − Kσ (Appendix B). The largest susceptibility appeared at Ka − Kσ = 0, at the critical
stress σc [25,26,29,30]. The critical stress depends on the magnetostriction constant as
σc = 2Ka/3λs ∼= 1/λs. For positive magnetostriction constant (λs > 0), the critical stress σc
is positive (tensile) and for negative magnetostriction constant (λs < 0), the critical stress σc
is negative (compression). The effect of positive and negative stress was also investigated
here for value λs = 30 ppm and value λs = −30 ppm, as seen in Figure 7. The resulting
curves were found to be symmetric to each other. The critical stress σc occurred at opposite
values. This behavior was also observed in the literature [30,31]. For instance, Figure 8
shows an example of two materials permeability versus stress curves, one having a positive
(λs > 0) and the other material with a negative magnetostriction constant (λs < 0). The
two constants were not exactly opposite so the critical strains (εc = Eσc, with E the material
Young’s modulus) were not opposite too. Nonetheless, the shapes of the two curves were
in agreement with our calculations.
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5.2.2. With External Field

Finally, the results of the calculation, including the effect of the external magnetic
field, are presented in this section. First, the effect of the longitudinal field is plotted in
Figure 9. This curve is showing the susceptibility versus the applied stress and magnetic
field applied in the same direction. The curves are observed to shift towards negative
stress. These simulated curves are in agreement with the experimental curves presented in
Figure 1. Magnetization is, without stress and field, directed along the magnetic anisotropy.
As a stress is applied, the effective anisotropy is changing, as discussed in the previous:
compressive stress is reinforcing a perpendicular anisotropy, and the whereas the tensile
stress is lowering a perpendicular anisotropy. The effect of longitudinal field is similar
to the tensile stress and the longitudinal magnetization component, and therefore the
longitudinal susceptibility, are then affected (Figures A2 and A4).

The second configuration for the application of the external field, the perpendicular
configuration, is presented in Figure 10. In this case, the effect was the opposite: the
curves were shifted toward positive stress. The effect of perpendicular field is similar to the
compressive stress which reinforced the effect of the magnetic anisotropy. The longitudinal
magnetization component and therefore the longitudinal susceptibility are then affected
(Figures A3 and A4).

Figure 11 is presenting the peak parameters extracted from these simulated susceptibil-
ity curves for comparison with the experimental results, presented in Figure 4. The behavior
of the critical stress, in the longitudinal and perpendicular configurations, are matching the
behavior of the critical force experimentally found for the same configuration in Figure 4:
longitudinal field was linearly reducing the critical stress whereas the perpendicular field
was linearly increasing this critical stress. From Figure 11, the slope of the critical stress σc
versus applied field was extracted, by fitting the curve by linear fit method, for the case
of longitudinal field (H//) and for the case of perpendicular field (H⊥). The results are
presented in Table 2. The slope of the critical stress, in the longitudinal field configuration
was of −1.72 whereas it was 1.27 in the perpendicular field configuration. The longitudinal
value was 1.35 times larger than the perpendicular one (in absolute value). Experimentally,
inductances were measured for the force applied during the bending test. This force is
somehow believed to be proportional to the stress in the magnetic thin film. The change in
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the critical force measured under field is then proportional to the change in critical stress
with magnetic field. From the experimental critical force, shown Figure 4, the same linear
fit was performed to Fc(H) − Fc(H = 0); the experimental offset was subtracted. The linear
fit results are also presented in Table 2: in the longitudinal field configuration the slope
was of −0.29 N/mT whereas it was 0.16 N/mT in the perpendicular field configuration.
The experimental longitudinal slope value was 1.77 times larger than the perpendicular
one (in absolute value). These two values, 1.35 (exp.) and 1.77 (sim.), are in relatively
good agreement.
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magnetic field.

Table 2. Fitting parameters for the critical stress and Force versus fields (H//and H⊥).

Quantity Linear Slope Coefficient Decay Coefficient

[σc(H//) − σc(H//= 0)]/σc(H// = 0) −1.72 (-) 1 -
[σc(H⊥) − σc(H⊥ = 0)]/σc(H⊥ = 0) 1.27 (-) 1 -

[Fc(H//) − Fc(H// = 0)] −0.29 N/(mT) 2 -
[Fc(H⊥) − Fc(H⊥ = 0)] 0.16 N/(mT) 2 -

χL(H//)/χa - 0.68 (-) 1

χL(H⊥)/χa - 1.48 (-) 1

∆Lmax(H//) - 1.32 (mT−1) 2

∆Lmax(H⊥) - 3.67 (mT−1) 2

1 Data extracted from Figure 11. Notice that parameters [σc(H) − σc(H = 0)]/σc(H = 0), χL(H)/χa and H/Ha have
no units. 2 Data extracted from Figure 4.

The behavior of the simulated susceptibility peak amplitudes was also similar to
the experimental results: the applied field was reducing the amplitude of the peak for
the two configurations, although the decrease was faster in the case of the longitudinal
configuration. To quantify these, a decay function: y = A*exp(−H/Hdecay) was arbitrary
selected to represented the behavior of the susceptibility peak amplitudes decrease with
applied fields (H//and H⊥). The curves ∆Lmax(H), obtained from Figure 4 for H//and H⊥,
were fitted using this function. The results are given in Table 2. The decay coefficients
Hdecay obtained from the fitted curves of ∆Lmax(H//) and ∆Lmax(H⊥) were then 1.32 mT−1

and 3.67 mT−1, respectively. Hence, the experimental longitudinal coefficient value was
2.78-times smaller than the perpendicular one. The simulated χL(H//)/χa and χL(H⊥)/χa
versus H/Ha were fitted using the same decay function. The results are given in Table 2
as well. The decay coefficients Hdecay obtained from the fitted curves of χL(H//)/χa
and χL(H⊥)/χa were then 0.68 and 1.48, respectively. Hence the simulated longitudinal
coefficient value was 2.18-times smaller than the perpendicular one. These two values,
2.78 (exp.) and 2.18 (sim.), are in relatively good agreement.
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Finally, the important parameters, for the stress sensor application [32], of such sus-
ceptibility versus stress curves are presented in Figure 12. The chosen conditions were
selected to better understand the magnetization behavior in such materials, due to field
and stress was classical material (FeSiB) for GMI and SI, but not optimized for the best con-
dition. Stress-impedance sensors would have larger sensibility by several thermal/stress
and magnetic treatments [3,33]. The model presented above might help to predict these
parameters and to adapt and optimize the material’s magnetic behavior, as a high value
of susceptibility is needed to increase the sensitivity. The sensitivity direction can be se-
lected to have a positive slope or negative slope by selecting the magnetostriction constant
(Figure 7). In addition, the sensibility can be linear over a large range of stress by selecting
a low amplitude magnetostriction constant, as seen in Figure 7.
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If the shape of the µr (~χ) versus stress σ (~ε) was directly controlled by the sign of
the magnetostriction constant λs, the position of the peak depends on the anisotropy stress
direction as seen in Figure 6, which was observed in [6]. Moreover, this susceptibility peak
can be shifted with a magnetic field, although this was decreasing the peak amplitude.

6. Conclusions

In this article, magneto elastic susceptibility was studied. Experimental data reported
that when a force (stress) was applied in the same direction as the exciting field (AC field),
for a critical force, the susceptibility was maximal. Under a longitudinal applied magnetic
field, this critical force was reduced, even getting negative, and on the other hand, with the
application of a perpendicular field, this critical force was shifted to larger values. In both
cases, the observed peak amplitudes were reduced.

From these observations, a model of this magnetic behavior was constructed. This
model assumed the magnetization rotation under the application of stress and magnetic
field, and magnetic anisotropy. By setting the magnetostriction constant positive around
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λs = 30 ppm, the shape of the susceptibility can be retrieved. Moreover, this model was
successful to demonstrate similar behavior of the magnetic field effect on the susceptibility.

It is believed that this model is useful to provide a guideline in the conception of a
stress sensor using the magneto elastic behavior of film based on the FeSiB type series; for
stress impedance sensors or for coil-type sensors, as they are both sensitive to the magnetic
state of the material under applied stress.

This can be used for both Fe-based (λs > 0) and Co-based (λs < 0) amorphous films. It
can also help to predict the critical stress value, where the best sensitivity of the sensor can
be found.
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Appendix A

These curves are presented in Figure A1. The curves corresponding to the case
H > Ha are clearly showing that the magnetization angle would be locked at an angle
θ = π/2: the field is strong enough to orientate the magnetization in the field direction. The
curves corresponding to the case H < Ha are showing a minimum between 0 and π/2: the
magnetization is at an intermediate angle between the anisotropy axis and field direction.
The curve corresponding to the case H = Ha shows a broader minimum. This means that
the magnetization can rotate more easily; the rotational susceptibility is then larger.

The Taylor expansion of E, Equation (6), around the angle θ = π/2, is:

Ẽ
(

θ ∼ π

2

)
∼ K− µ0MSH −

(
K− µ0MSH

2

)(
θ − π

2

)2
+ · · · , (A1)

Then, by rearranging the terms and using Ha = 2K/µ0Ms, we obtain:

Ẽ
(

θ ∼ π
2
)

K
∼ 1− 2H

Ha
−
(

1− H
Ha

)(
θ − π

2

)2
+ . . . , (A2)

By setting the field value as H = Ha, the energy expression is finally simplified as:

Ẽ
(

θ ∼ π
2
)

K
∼ −1 + · · · , (A3)

This Expression (A3) shows that if the field is applied perpendicularly to the Easy
Axis, and with amplitude as H = Ha, then the angular dependency vanished. These Taylor
expansions, Equation (A1), are plotted for field values around Ha, showing the inversion of
curvature as H is crossing the value H = Ha which is a flat curve.
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If KA = Kσ, the total energy is then independent of the angle. The first derivative of 
this energy is: 𝑑𝐸 𝜃𝑑𝜃 = 𝐾 − 𝐾 𝑠𝑖𝑛 2𝜃 , (A5) 

In addition, the second derivative of this energy is: 𝑑 𝐸 𝜃𝑑𝜃 = 2 𝐾 − 𝐾 𝑐𝑜𝑠 2𝜃 , (A6) 
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Figure A1. Angular dependence of the energy. Solid lines were constructed by using Equation (6)
and dotted lines were based on the Taylor expansion, Equation (A3).

This was the simple case where a uniaxial magnetic anisotropy exists with θa = π/2,
at other angles, the magnetization curves were smoother and the susceptibility could be
calculated for many field values. In the following, the effect of stress is considered along
with the fields.

Appendix B

In the case of two uniaxial anisotropies, the treatment is provided in [34] and adapted
below. Considering the anisotropy constants KA (magneto crystalline) and Kσ = 3σλs/2
(magneto elastic term) with perpendicular directions, then the total energy can be written as:

E(θ) = KA sin2(θ) + Kσ sin2(π
2 − θ

)
= KA sin2(θ) + Kσ cos2(θ)

= Kσ + (KA − Kσ)sin2(θ)
(A4)

If KA = Kσ, the total energy is then independent of the angle. The first derivative of
this energy is:

dE(θ)
dθ

= (KA − Kσ) sin(2θ), (A5)

In addition, the second derivative of this energy is:

d2E(θ)
dθ2 = 2(KA − Kσ) cos(2θ), (A6)

From Equation (A5), the minimum can be found at θ = 0 and/or π/2; to determine
whether the total energy is a minimum at these angles, the Equation (A6) must be positive.
So, a condition on (KA − Kσ) appeared: if KA > Kσ, then the minimum is for angle θ = 0
(then M is along the magneto crystalline direction) and if KA < Kσ, then the minimum is
for angle θ = π/2 (then M is along the stress direction). The term in sin2(θ), after adding
the magneto elastic term, behaves with an effective constant KA − Kσ. For tensile stress
(σ > 0), the effective term in sin2(θ) is reduced whereas for compressive stress (σ < 0), the
term in sin2(θ) is enhanced. Tensile stress is reducing the magneto crystalline anisotropy
and compressive stress is reinforcing it.
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