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Abstract: Quality of experience (QoE) metrics can be used to assess user perception and satisfaction
in data services applications delivered over the Internet. End-to-end metrics are formed because QoE
is dependent on both the users’ perception and the service used. Traditionally, network optimization
has focused on improving network properties such as the quality of service (QoS). In this paper we
examine adaptive streaming over a software-defined network environment. We aimed to evaluate
and study the media streams, aspects affecting the stream, and the network. This was undertaken to
eventually reach a stage of analysing the network’s features and their direct relationship with the
perceived QoE. We then use machine learning to build a prediction model based on subjective user
experiments. This will help to eliminate future physical experiments and automate the process of
predicting QoE.
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1. Introduction

MPEG dynamic adaptive streaming over HTTP (DASH) is an adaptive bit-rate stream-
ing methodology which has many abilities providing the best quality streaming of
multimedia-related applications across the Internet, a leap from traditional HTTP web
servers. It works based on the criteria of breaking down video content into small sequential
data segments, which further work over HTTP. Every segment has a small time duration
of playback that consists of multiple characteristics, such as a short movie clip or the time
broadcast of an event-like show or sports program. The MPEG-DASH can adapt to alter-
nating network fluctuations and enable the best quality playback with a minimal number
of re-buffering occasions. One of the main problems that we are trying to solve with our
research is determining the correct classification methods for noisy data such as the output
of a DASH media stream.

There is a considerable rise in the general quality of experience (QoE) anticipated
by users across multimedia distribution strategies such as live streaming of video. Since
the number of online client implementations and the equipment usage have increased,
there is a significant change in the capability of the end equipment and facilities, such
as network bandwidth, which are usually distributed among various such as equipment.
Traditionally, best-effort network construction assigns assets depending upon the request
of a client and an advanced-level service level agreement (SLA) without taking application
and user level necessities into consideration. The such as s are usually unsatisfied due to
the perceivable unfairness. The concept of fairness within a network or between network
resources can be interrupted in many ways; thus fairness can also be achieved in many
different ways depending on the scenario [1]. Some of the gaps that we aimed to fill in this
research include (but are not limited to): the possibility to create a hybrid environment
of software-defined networks compatible with multiple network controllers and DASH
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media-streaming experimentation; and the creation of an experimentation framework that
can enhance the multimedia quality of experience evaluation and prediction for future
human-less trials and comparing its outputs, strengths and weakness with the state-of-
the-art solution to provide the most advanced noise-free generated data for machine
learning predictors.

In this paper, a new quality analysis method is used as a distant broadcast technique
for measuring the appropriateness of the environment for contributing to multimedia video
evaluation. In a laboratory experiment, contributors (past researchers) achieved this quality
analysis with various listening devices in various listening surroundings involving a silent
room allowing an imitation of a circumstantial noise situation. Their results show important
observations of the situation and the attending device on the quality inception, and their
physical settings had a direct relation to user perception. Thus, the arrangement of our
video trials will be free of sound and will only target one aspect, the quality of the video
perceived, in a virtual environment guided by ITU recommendations. We aim to tackle the
issues of subjective evaluation of objective QoE models. We proposed an experimentation
framework structure through programmable network management for the generation of
machine learning (ML) training-ready data and MOS/QoE prediction. We used our test
bed’s data-generated analysis with real user experimentation and ML for training and
predicting QoE based on the generated monitoring data. This way with the generated
prediction, limited user testing is needed in the future; hence, future researchers will simply
run the generated monitored data from the network tracing tools into the prediction model,
and it will generate a predicted MOS for faster and more efficient network level tests and
experiments. This model is unique because we tested its data with state-of-the-art ML
algorithms and achieved highly accurate prediction results. The main contributions and
findings of this work outline,

• A hybrid simulation environment to run both P4 [2] and Openflow [3], along with
Python 2 and 3 instances, DASH and Mininet. With all essential packages installed, an
error-free test environment for running this experiment, and applying previous and
similar work to compare and contrast results. Our open-source test bed configuration
is shown here [4]

• A P4 SDN test bed over Mininet with the ability to control DASH initial buffering,
stalling, switching, monitoring, bit rate adaptation, and bandwidth limitation over
selected ports. The test bed provides the capacity for comprehensive user experi-
ments and data collections, which lead to our insights and analysis of congestion for
congestion-related experiments along with full re-configurablity over the data plane
and everything mentioned above. Our open-source test bed setup is shown here [4]

• A proposed experimentation framework structure through programmable network
management for the generation of ML training-ready data and MOS/QoE prediction.

• Human experiment with QoE MOS-based feedback to benchmark the accuracy of the
predicted QoE and network features.

• Analysis of state-of-the-art machine learning algorithms, along with the creation of
an experimentation framework for feature evaluation in network experiments. Our
open-source analyses are shown here [4]

2. Problem Space and Related Work

HTTP adaptive streaming (HAS), such as MPEG-DASH, splits a broadcast file into
many segments. Every segment is encrypted into the number of bit rates to attain access
for the user with changing stream specifications. The video segments are consecutively
requested by the client, having a maximum bit rate possible, which is approximated based
on the network and user needs. The process of adaptive bit rate algorithms (ABR) is the
method through which a client suggests the ideal bit rate of the part to download. ABR
contains default conditions, but many of them do not reflect the difference between the
multiple scenarios that may occur in a production environment and often work poorly
when the organization makes changes in the work environment. A recent attempt is to link
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the increase in the ABR to the capabilities of the interpolation method [5], which is mainly
based on a machine learning model. The ML-based ABR strategy is divided into two parts.
In the first part, you can adjust the current ABR parameters. A calculation plan based
on the ABR variables is proposed. Support systems allow the ABR to change variables
depending on the order in which the network conditions are changed. In deep learning,
this ABR variable is based on an adaptation policy, where changes are presented as the
context of the flow. In deep learning, depending on the strategy used, the parameters of
the ABRs, would directly affect the streaming content.

Previous research states that bit rate depends upon the ABR models having trained a
predictive collection of decisions (SMASH [6]), where a ’combine grouping’ scheme was
used to make a map of the network-related properties of bit rate. A supervised ML-based
ABR was implemented with features related only to the bit rate status. Therefore, there are
some restrictions with those predictions as features are focused on limited network factors.
Both the conception of engineering and the ML algorithm selections will not be executed
in a methodical fashion; moreover, the trained model has planned to support, rather than
replace, the existing fixed rules that depend upon modifying the algorithm. Moreover, a
recently introduced model-free strategy is Pensieve [7], which uses a reinforcement learning
strategy to introduce a neural network based upon the ABR. This strategy makes no explicit
assumption related to effective data. Multiple papers have reported issues such as Pensieve;
therefore, it is being accompanied by implementing detailed experimental evaluation of
Pensieve, keeping various sets of video content and network under observation [8]. In [9]
within the training process, the results change significantly when using a web account;
the deficit has a high value and does not tend to coincide. They have a high bit rate
presented in their video setup. For example, when running UHD and 4K data packets,
authors choose reasonably bright screens based on past learning success, indicating that the
data are fragmented. A bit rate equal to the brightness percentage is reduced by 50%, the
experimental model only learns to achieve maximum results, and the bit rate leads to an
inaccessible video level. The heterogeneity of wireless networks means that larger variants
continue to be known, and as the value of video resolution continues to grow, so does the
popularity of data. This work was therefore encouraged. For research and experimentation,
researchers spend an enormous amount of time in the creation of their test environment;
most of these environments are quite specific to the target of their research. There are many
downloadable virtual environments, such as P4 or SDN-based virtual test beds; however,
these environments are very specific to their purpose. Configuring a suitable test bed
that has the ability to run multiple solutions from multiple different test beds is very time
consuming. Thus, we created a virtual-box environment with all the necessary libraries and
applications needed to run P4, Openflow, Python 2 and 3 instances, DASH and Mininet.
This provides ease for researchers to use our virtual machine setup to dive straight into
testing and data generation without wasting their time and effort building the virtual setup.

Table 1 shows a list of previous HTTP adaptive video streaming databases that are
widely used in research within QoE. Our generated database of encoded videos contains 6
source segment division videos and 120 different resolution videos. Our database comes
with a pre-configured P4 software defined network with a server and multiple clients for
testing and evaluating QoE with DASH reference player. Its main contribution is that it
monitors the network and all its ports for recording DASHIF reference server packets and
evaluating client data. It then generates training-ready clean data for ML usage purposes.
This was performed to ease the experimentation with big data and data mining for use in
ML and the understanding of multimedia network environment.



Network 2022, 2 503

Table 1. Comparison of publicly available QoE dataset for HTTP-based adaptive video streaming.

Database Source
Videos

Test
Videos

Encoding
Configurations

Test case
Formation HAS-Related Impairments Resolution

Adaption

LIVEMVQA [10] 10 200 H.264 at 4 levels hand-crafted switching or stalling No
LIVEQHVS [11] 3 15 H.264 at 21 levels hand-crafted switching No
LIVEMSV [12] 24 176 no compression hand-crafted stalling No

Waterloo SQoE-I [13] 20 180 H.264 at 7 levels hand-crafted switching Yes
LIVE-Netflix Video QoE

Database [14] 14 112 H.264 at 6 levels hand-crafted initial buffering and stalling and switching No

Waterloo SQoE-III [15] 20 450 H.264 at 11 levels simulated initial buffering and stalling and switching Yes
ITEC DASH [16] 7 131 H.264 at 6 levels hand-crafted initial buffering and stalling and switching Yes

Our Dataset 6 120 H.264 at 6 levels simulated initial buffering and stalling and switching
and monitoring Yes

Furthermore, QoE is widely discussed and predicted in multiple aspects within the
use of different features and multiple joint classifiers [17–21]. Our approach is unique in its
data generation. We depend on our test bed to generate the network data required, and
based on that network data, we use machine learning algorithms to predict the generation
of MOS and all other features.In addition, we analyse the most effective feature from the
network data that directly affects the MOS and prioritize it in our test bed. Thus, the data
generated from the test bed is always training-ready to test on more algorithms.

3. Preliminaries and Methodology

The approach presented in this paper makes use of different configurations of a neural
network and classification arranged to provide the best fit feature classifier and MOS
prediction suitable for most of the tasks characterizing modern media streaming which is
the specific goal of this work. Moreover, we focused on the design and implementation of
our P4 test bed to host the DASH reference player and the ability to monitor it, where a
researcher can easily extract the data and use the ML techniques we show in this paper to
test and improve upon this work.

3.1. Adaptive Streaming

A multimedia data file is segregated into multiple parts or segments and then conveyed
to the user using HTTP. A media presentation description (MPD) explains the particulars of
the segment, which include aspects such as time, website and multimedia properties such
as video resolution and bit rates. These segments can be arranged in a number of ways
such as segment-based, segment time line, segment template and segment list, depending
on the use case. A segment can be a media file of any type or format, such as the “ISO
base media file format” and MPEG-2 transport stream; there are the two major kinds of
container format. DASH can be considered as a video/audio codec sceptic. Media files are
usually provided as a multiple number of illustrations, and the concerned choice of data is
mainly related to the network status, equipment potential and client preferences that are
responsible for allowing the adaptive bit rate streaming and impartiality of the quality of
the experience.

The adaptive bit rate streaming logic is not defined by an MPEG DASH standard.
Therefore, DASH can be implemented on any type of protocol. PCC expressively de-
creases the storage quantity at the cost of multifaceted pre-processing and execution at the
client. “HTTP adaptive streaming” (HAS) deals with dynamic setup circumstances while
endeavouring transport at maximum quality possible in the given circumstances.

3.2. DASH Objective Metrics

The basic remodelling of the automation is the media streaming that includes best
quality on demand data and live media content. In the present scenarios, the main interest is
to attain the pre-eminent quality of service and experience because of the ever aggregating
network consumption and user demand. The traditional type of streaming methodolo-
gies confront multiple trials in distributing multimedia content to the end user without
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lowering the quality of the service. The adaptive HTTP streaming is the ever increasing
content-providing tactic which delivers real-time content without negotiating quality and
guarantees excellent quality of experience. The selection of bit rate must be effective and
durable; it depends upon the nature of the network, and thus we argue that it must always
be dynamic. The client potential points towards gaining outstanding quality of service
for the end user and achieving an increase in the range of standards and procedures intro-
duced in the adaptive HTTP streaming field. Researching and contrasting is compulsory
for executing numerous techniques depending upon predefined merits. The HTTP live
streaming, Microsoft smooth streaming and MPEG DASH are rising model techniques of
adaptive HTTP streaming. In order to calculate the transporting execution, the experiment
moves forward using G-streamer adaptive HTTP streaming. We base our calculations for
transporting execution upon changing multiple networks and situations for on-demand
streaming and live streaming content. The adaptive HTTP streaming method’s result is
calculated and examined using pre-explained performance indices. The processed data
show that each entertained method of delivery and best conductance is achieved through
the predefined advantages. In short, DASH provides appreciable balanced performance
throughout multiple network arrangements compared to other streaming approaches.

Figure 1 shows the proposed experimental framework for feature evaluation within
the test bed. Features, such as network properties and factors that directly affect user QoE,
are essential inputs to understanding the user’s experience. In this paper, the experiment is
staged based on the encoding information in Table 2. The user will watch a video based on
the video segmentation and resolution properties mentioned in Table 2; all videos are fixed
on 30 frames per seconds on all video streaming qualities, with a minimum buffer time
of 2 s of loaded content. The user will watch five 40 s trials of video content on a limited
bandwidth of 0.5 mbps, 1 mbps, 3 mbps, 5 mbps and unlimited settings. With every trial,
the user will input a video MOS (vMOS) rating based on their video experience of initial
load delay, resolution change, and overall quality of experience.

Figure 1. Proposed experimental framework for feature evaluation.

Table 2. Video database encoding information.

Codec Bandwidth of Activation Resolution

avc1.64001f 3,134,488 bps 1024 × 576
avc1.64001f 4,952,892 bps 1280 × 720
avc1.640028 9,914,554 bps 1920 × 1080
avc1.64000d 507,246 bps 320 × 180
avc1.640015 759,798 bps 480 × 270
avc1.64001e 1,013,310 bps 640 × 360
avc1.64001e 1,883,700 bps 768 × 432
avc1.640033 14,931,538 bps 3840 × 2160
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3.3. Subjective Evaluation of DASH

In principle, the aim is to evaluate the relevant QoE parameters and variables that
take into account the kinetic properties of the video. Common objective indicators of
a subject’s performance to regularly determine their relevance to human perception are
essential for evaluation. There is no subjective evaluation of DASH adaptive streaming
for justifying longer video patterns, which are enough to explain the bit rate switching
for the dataset that acquires the longer segment videos for various network condition
sequences. Estimating the end user’s real-time quality of experience (QOE) online by
exploring the apparent influence of delay, diverse packet loss rates, unstable bandwidth,
and the apparent quality of using the altered size of a DASH video stream segment over a
video streaming assembly under multiple video arrangements is quite possible with this
paper’s approach. The performance and potential of the system and prospects depend
upon the mean opinion score. The subjective evaluation of DASH gives an overview of
impairments with various networks and video segments on different systems. For the
test setup and procedure, we used the most recent ITU-T recommendation as general
guidelines. A screen with 4K resolution was used to passively stream the content and
record its segmentation, which was used to compile a separate video and present to the user
to eliminate virtual environment computational power limitations from affecting the video
and its MOS rating. We recommended sitting at a distance of approximately four times the
height of the screen. The applied test protocol was as follows: Firstly we started with the
welcome text-based information, briefing and informed consent. Then we moved on to the
explanation and recommendations of the setup as recommended by the ITU-T, screening
and demographic information. Following that, we showed our content, 5 video samples
based on different networking runs. Our evaluation stage was next, which was a collection
of 3 QoE-related questionnaires for each video sample. We ended with a debriefing which
entitled the feedback and remarks from the end user. This way, we have the MOSes from
the users and the recorded network data of their experiment to use for our prediction
mechanisms later. Equation (1) defines MOS where R represents the user’s ratings for the
given question and the question’s representation of the video’s stimulus, where R is the
individual ratings for a given stimulus by N subjects. The MOS ratings were defined into
5 different classes before uploading the rating data to the training process as shown in
Table 3.

MOS =
∑N

n=1 Rn

N
(1)

where R is the individual ratings for a given stimulus by N subjects.

Table 3. Mean opinion score scale.

MOS Definition Description Class

1 Bad Unsatisfactory Perceived Quality 1
2 Poor Unsatisfactory Perceived Quality 2
3 Fair Acceptable Perceived Quality 3
4 Good Satisfactory Perceived Quality 4
5 Excellent Highly Satisfactory Perceived Quality 5

4. User Experimentation

In our previous paper [22], we discussed the creation of the user experiment. In
this paper, we provide a detailed perspective of the experimentation that was created.
After careful consideration of the time, place and settings, we followed the ITU guide for
experimentation; thus based on that guide, this section explains the user experimentation
process and test bed used. ITU-T P.913 Titled: “Methods for the subjective assessment of
video quality, audio quality and audiovisual quality of Internet video and distribution
quality television in any environment.” INT, I. [23] was ideal to use due to the fact that we
were in an epidemic situation. The guide reflected accurate methods of experimentation in
“any environment”, so we designed the experiment remotely with control over the main
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key technological aspects. There were 36 users who took part in the user study. These users
were selected based on multiple qualifications including a degree in computer engineering
and multimedia. Along with that, these users had to have perfect vision to take part in the
experiment as it was a video-related assessment experiment.

4.1. General Viewing Conditions

The viewing conditions of this experiment will be evaluated based on the user and
their screen. The viewing distance was chosen to be the preferred viewing distance (PVD)
which was based upon viewers’ preferences. These are the recommendations used for the
experiment. Due to the fact that the experiment took place on a remote non-monitored
platform, the user was informed before downloading the sample video to change their
screen settings to the most default settings and ITU recommendation settings and state the
quality feedback of their screen. This way, we had enough information to choose one set of
static screen quality and its default options. The user then evaluated their experience in
the form of an MOS 5-point scoring system. The MOS ratings helped us identify the user’s
preference towards the video and its settings shown in Table 4.

Table 4. Test Conditions (based on ITU-T recommendation).

Bandwidth Anchor Initial Loading Time Quality Switch Pattern

Low Low Quality Reference Long Auto but constant low quality
allocated

Medium Medium Quality Reference Short, but noticeable Auto but constant mid range quality
allocated

High High Quality Reference Very Short Auto, but maximum ranges of quality
are allocated

4.2. Technical Test Bed Setup

Our test bed was built on an Ubuntu machine running multiple items. The SDN
environment was setup on a Mininet virtualisation platform. The network backend was
programmed with P4 Language using the aid of P4Runtime API. We extended the basic
L3 forwarding with a scaled-down version of in-band network telemetry (INT) to make
it simpler to have a multi-hop route inspection. This configuration was completed to
make the test bed have universal application of testing multiple virtual devices and/or
a single device and a server. This configuration allowed the developer to track the path
and the length of queues that every packet traveled through. Multiple issues with normal
Openflow configuration arose at this stage [24]; thus the programmability of data plane
with P4 helped to append an ID and queue length to the header stack of every packet. At
the destination, the sequence of switch IDs corresponded to the path, and each ID was
followed by the queue length of the port at switch. With this, a developer will need to
define the control plane rules as performed with any Openflow application (but with P4).
On top of that, we implemented the data plane logic of the P4 controller. This gave the
user the ability to not only monitor one aspect of the network, but all ports, identifying
multiple monitoring applications such as congestion which was discussed in one of our
previous papers [1]. Furthermore, we created a DASHIF Reference Player Server node on
our test bed, and a client host from another part of the network where the client streamed
the video segments of the DASH server. Through the network, we monitored all routes
and saved all the network data and the reference’s broadcast data to experiment with in
machine learning. There were multiple reasons why we avoided having the user testing
happen on our virtual platform apart from the global COVID-19 pandemic. After a short
time of testing, we realised a noticeable latency delay that was not recorded by the network
monitoring techniques that we implemented. This was due to the limitation of the virtual
machine. While playing a video, we realised that the machine’s CPU was over-exhausted.
Thus, the user MOS rating would be affected by non-network factors which we wanted
to eliminate for accurate results by converting the recorded segments into an mp4 file to
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be downloaded and run by the tester. Figure 2 shows the process of the DASH player
live streaming to a user over HTTP send and receive requests and the adaptation of video
quality. Figure 3 shows the experimentation process from technical server and client ends.
All switches were assigned and defined with an IP address and port numbers known to
the development side of the process for data monitoring. Moreover, links were assigned
experimental bandwidth limitations on the client’s end to understand the patterns of
network flow from the server node and to use them later as support experiments for QoE
classification and prediction. Our generated data, even though it was one type of video
content (animation video), had network traces that helped us in the creation of multiple
predictors and the ability to compare and contrast them to choose the best fit for all future
video data [22]. Table 5 shows the experimentation video map and test conditions.

Figure 2. Testbed overview.

Table 5. Experimentation video map and test conditions.

Video Controlled Bandwidth
Limitations

Observed Quality
Range

Observed Initial
Load Delay

Configuration of Quality
Switch Pattern

Resolutions Chosen from
Segmentation Collection

Video 1 Limited to 0.05 Mbits/s 45,373 2.66 s
(Long)

Auto but constant low/bad
quality allocated

1 out of 20 Resolutions
Chosen

Video 2 Limited to 0.1 Mbits/s 45,373 to 88,482 2.2 s
(Long)

Auto but constant
low/poor quality allocated

2 out of 20 Resolutions
Chosen

Video 3 Limited to 0.3 Mbits/s 45,373 to 317,328 1.58 s
(Short but noticeable)

Auto but constant mid
range quality allocated

2 out of 20 Resolutions
Chosen

Video 4 Limited to 0.5 Mbits/s 45,373 to 503,270 1.52 s
(Short but noticeable)

Auto but high ranges of
quality allocated

3 out of 20 Resolutions
Chosen

Video 5 Unlimited 987,061 to 3,792,491 1.17 s
(Very Short)

Auto but maximum ranges
of quality allocated

2 out of 20 Resolutions
Chosen



Network 2022, 2 508

Figure 3. System test bed process and QoE evaluation.

5. Discussion and Data Analysis
5.1. Experiment Plan and Data Description

In this experiment, we used the DASHIF reference player web streaming application
for adaptive streaming to users. This was to collect stream properties and understand user
response based on quantitative research. Firstly the streaming server streamed selected
videos in fixed properties such as a collection of fixed frame-rates, and resolutions based
on chosen video segmentation. Fixed network properties controlled the experiment from
a network backend perspective; On the web form, there was a MOS rating where the
user shared his/her experience. The quantitative questionnaires were limited to a rating
from 1 to 5 to reflect the relevant chosen video. All network data was captured from the
user, including the questionnaire, screen properties and stream. In addition to server-side
streaming properties, data recorded was placed in the processing phase. Then, concluded
based on highly impacting features whether a user was satisfied or not. The experiment’s
expectation was to outline the correct parameters (such as the manipulation of resolution)
that will be used in the next experiment as an editable user choice configuration. A realistic
video MPD dataset was generated based on segment collection. This dataset represented
a group of MPD manifests and m4s, encoded to run on a DASHIF reference player for
dynamic adaptive streaming testing. We then extracted from the manifests seven video
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features that were our main input to the data training. These included initial buffer length,
live buffer length, bit rate downloading, dropped frames, latency, and video resolution
with indexing information and three MOS ratings made by every user while they were
streaming as shown in Table 6. These features were selected as they are the primary factors
that are affected by network performance which can affect the user’s experience; they
were all used along with multiple other network monitoring properties and were chosen
due to their direct effect on the prediction score. These features along with the network
features themselves aided the classifications algorithms to learn and identify the patterns
of user satisfaction.

Table 6. Generated dataset.

Dataset Features

QoE Recored Parameters Initial Buffer Length
Live Buffer Length
Bitrate Downloading
Dropped Frames
Latency
Round-trip Time
Video Resolution

Scoring Factors vMOS

Furthermore, our training data consisted of multiple properties that made them precise
and unique. For the lowest network limitations that were implemented, the downloading
bit rates ranged from 45,373 to 88,482 bps with a noticeable initial loading delay that
averaged out to be around 2.4 s. Medium networking runs provided a better range of
downloading bit rate, averaging around 317,328 bps and 1.58 s of initial load delay. Finally,
when the network was given a bit more space and room to work, the data showed an
approximate bit rate download of 2,147,880 bps and 1.3 s of initial loading delay. This is
expressed in Table 7 for a clearer view. It is also important to know that the test bed was
engineered to monitor the effects of network congestion on the quality of experience. This
study shows the process of training the output data first to understand and generate a
predicted MOS based on the trained model, increasing the ease of analysis of applications
and tests that require MOS prediction within the test bed without the need for more
human ratings.

Table 7. Experiment ranges.

Video/Range (Mbits/s) Quality Range (bps) Initial Load Delay (s)

0.05 ≤45,373 2.66
0.1 ≤88,482 2.2
0.3 ≤317,328 1.58
0.5 ≤503,270 1.52

unlimited ≤3,792,491 1.17

Figures 4–7 show the bit rate downloading, resolution, dropped frames, and buffer
length. Figure 8 shows the vMOS of the users on a 3D scatter plot where the X-Axis shows
the time frame, the Y-Axis shows the users who participated, and the Z-Axis shows the
MOS ratings. This figure explains the number of recorded responses, and we can see the
direct relation of the network features to the MOS and the time frame of uploading. It
seems that the data present a logical front of an increase in performance that directly leads
to an increase in vMOS for the quality preserved by the users. These figures conclude that
our chosen features directly satisfy our data generation for training-ready data as they
show a linear increase in QoE as the network feature abilities are less restricted.
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Figure 4. Results of dropped frames network feature experimentation trials.

Figure 5. Results of buffer length network feature experimentation trials.

Figure 6. Results of bit rate downloading network feature experimentation trials.
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Figure 7. Results of resolution network feature experimentation trials.

Figure 8. Results of vMOS experimentation trials.

5.2. Machine Learning Classification

Furthermore, a data analysing process had to happen on two different levels after
obtaining raw data from the virtual test bed and the vMOS from the users. QoE scoring
factors and network data had to go through data cleaning and normalisation. Then, the
features stated before were placed through a training process against the MOS and vice
versa to make a collection of classification predictions and use a neural network to compare
and contrast them. All features were trained with fine tree, medium tree, coarse tree, kernel
naive Bayes, linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM, medium gaussian
SVM, fine KNN, medium KNN, coarse KNN, cosine KNN, cubic KNN, weighted KNN,
boosted trees, bagged trees, subspace discriminant, subspace KNN and RUSBoosted trees.
With no over-trained attempts, which model is best fitted for the data and the feature
classified [22] by comparing and contrasting. Figure 9 shows an example of the data
analysis process.

In Table 8, all classification methods mentioned above are used to classify the five
features and predict their outcome if a new stream of data is inserted. The table shows
the percentage of the predicted class against true class. From these models, the researcher
selected the models with the highest accuracy along with the fastest prediction time. Bagged
trees was selected for bit rate downloading and MOS and fine KNN for the buffer length,
the dropped frames and the resolution. Table 9 shows the most ideal machine learning
classification prediction methods on highly noisy data, such as our generated network data
and MOS user feedback technique proposed in our previous paper [22]. It is important
here to discuss the prediction speed along with the training time for the prediction of MOS.
The training time, prediction speed and misclassification cost columns are representations
of the different machine learning classifications to predict MOS. The highest accuracy using
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bagged trees resulted in 10.69 s with 1200 observations processed per second. This is a
good presentation to see in the live test bed.

Figure 9. Data analysis.

Table 8. Comparing classification metrics across all features.

Feature/MLC
Prediction Reso-Lution

(%)

Buffer
Length

(%)

Bitrate
(%)

Dropped
Frames (%) MOS (%)

Total Miss-
Classification
Cost (MOS)

Prediction
Speed (obs/s)

(MOS)

Training
Time (s)
(MOS)

Fine Tree 98.8 41.2 97.6 47.1 99.4 1 ∼2300 5.3971

Medium Tree 98.8 42.4 97.6 47.1 99.4 1 ∼2400 4.7336

Coarse Tree 92.9 41.2 84.1 40.0 99.4 1 ∼2400 3.7631

Kernel Naive Bayes 97.6 N.A. N.A. 60.6 99.4 1 ∼360 12.252

Linear SVM 74.1 44.1 66.5 42.9 79.4 35 ∼1600 7.2777

Quadratic
SVM 78.2 88.2 70.0 82.4 79.4 35 ∼1600 7.0385

Cubic SVM 78.2 88.2 70.0 86.5 79.4 35 ∼2000 6.3877

Fine Gaussian
SVM 77.6 38.8 65.3 77.6 79.4 35 ∼2100 7.0037

Medium Gaussian
SVM 78.2 38.8 65.9 46.5 79.4 35 ∼2000 7.5385

Coarse Gaussian
SVM 70.6 39.4 55.9 44.7 79.4 35 ∼1700 7.4505

Fine KNN 78.2 91.2 78.2 91.8 79.4 35 ∼4200 8.1421

Medium KNN 75.9 40.0 78.2 41.2 79.4 35 ∼4000 8.0454

Coarse KNN 32.4 28.2 31.2 28.2 26.5 125 ∼3900 7.9715

Cosine KNN 75.9 40.0 78.2 41.2 79.4 35 ∼5700 7.9047

Cubic KNN 75.9 40.0 78.2 41.2 79.4 35 ∼2200 8.2537

Weighted KNN 78.2 91.2 78.2 91.8 79.4 35 ∼6000 8.1849

Boosted Trees 32.4 48.8 96.5 61.8 26.5 125 ∼4400 9.1509

Bagged Trees 97.1 36.5 97.6 39.4 99.9 0 ∼1200 10.69

Subspace
Discriminant 81.2 30.6 52.9 78.2 86.5 22 ∼610 11.817

Subspace KNN 84.7 85.3 82.4 70.0 85.9 32 ∼560 11.567

RUSBoosted Trees 85.3 60.0 53.5 57.1 27.6 125 ∼9200 11.404
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Table 9. Resulting machine learning prediction methods on noisy network training data.

Feature/MLC Prediction Resolution Buffer Length Bitrate Dropped Frames MOS

Fine Tree 98.8 Not ideal 97.6 Not ideal Not ideal

Medium Tree 98.8 Not ideal 97.6 Not ideal Not ideal

Fine KNN Not ideal 91.2 Not ideal 91.8 Not ideal

Weighted KNN Not ideal 91.2 Not ideal 91.8 Not ideal

Bagged Tree Not ideal Not ideal Not ideal Not ideal 99.9

5.3. Models Description and Neural Network

As described earlier, for each architecture we tried different hyper-parameters to
see the best fit for the proposal. More precisely, we varied the following: 1. the use of
cross-validation folds to protect against overfitting by partitioning the dataset into folds
and estimating accuracy on each fold (from 2 to 50 folds); 2. number and types of splits
(diversity indexes, surrogate decision splits); 3. training algorithm; 4. number of layers
in a network; and 5. number of neurons for a layer. A total of 30% of our data was
randomly taken out of the training phase to use for validation. Ultimately, we considered
the classification of all features and their classes as shown in Table 8 and the use of a neural
network on MOS prediction using the Bayesian regularization with 2 layers and 10 neurons,
using mean squared error for performance rating. This resulted in a 0.999 regression value
which means that the correlation between the output and the target is highly accurate.
So, after comparing and contrasting the classification metrics used, we recommend the
mentioned models above for each one of the features as an accurate prediction method. The
study shows that these models are quite accurate when it comes to DASH-related streaming
data and real user MOS. The neural network method with the selected options stated above
tend to be more accurate towards small or noisy datasets. However, it takes more time and
computing power and will be inefficient to be placed within a test bed for auto prediction
and redirection of resources. For such noisy data, prediction methods must be tested and
uniquely selected for the prediction of each and every feature that is dependent on all other
features, Figure 10 shows the framework bit rate precision result after choosing bagged
trees, whereas Figure 11 shows the framework’s resolution prediction results after choosing
fine tree. The main takeaway from these two figures is to show the differences between
the two methods on the same data. This helps our research by identifying and reading
correctly predicted true classes and how the methods react to noisy data such as ours.

Figure 10. Framework bit rate prediction results.
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Figure 11. Framework resolution prediction results.

5.4. State-of-the-Art Comparison Discussion

It is quite difficult to compare our framework to other state-of-the-art solutions due
to its multiple different outputs. However, there are some solutions that provide parts
similar to some of our outcomes. These are listed in Table 10. SDNDASH [25,26] focuses
on QoE requirements to build an SDN-based management and resource allocation system
to maximize the quality perceived; However, their solutions do not consider the network
data as a straight feature contribution for direct prediction. Our approach focuses on
using network data to automatically predict the QoE of a real user. With multiple network
configurations, our predicted features and QoE reached new heights on known classifiers.
SDNDASH focuses on a single user and recommends a certain bit rate and buffer levels,
where our framework comes with pre-designed adjustable network features and shows the
developers how each feature affects the QoE on a human level, thus eliminating testing
with users. Another solution [27] proposed a network application controller called service
manager, which reads video traffic and allocates resources fairly among competing conges-
tion. Our solution has elements of this step and shows the user the best segments with the
most optimal resolution for their network configuration. The higher the configuration, the
better the quality perceived and shown on the classifiers will be. A similar state-of-the-art
solution [25] offers a caching technique where users are informed of the cache’s content
as well as a short-term prediction of the bottleneck bandwidth, whereas our framework
shows prediction for the entire duration of the segmented perceived file. QFF [28] proposed
an open-flow-assisted QoE framework with optimizing QoE among HAS clients with
heterogeneous device requirements. This is ideal because the device information can limit
the allocation to certain devices and save the rest for devices that require more bandwidth.
Our test bed is missing this functionality, and it can be useful to adapt it. Our framework
can produce training-ready data; thus, this can be an addition in future work to enhance
the test bed. However, it will not affect the prediction due to the fact that the prediction is
based purely on network features.
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Table 10. State of Art Comparison.

Solution Approach Network Prediction HAS Strategy SDN Add-On Weakness Asset Resolution
Adaptation

Bhat [25],
Bentaleb [26] Hybrid Fixed No

Bit Rate
Recommendation
and buffer level

Internal and external
SDN- based resource
management
components

Outdated User
Communication
interface

Optimized QoE per
user. No

Kleinrouweler [27] Hybrid Fixed No Chosen bit rates
pushed to each user

HAS Aware Service
Manager

Users have to
manually cooperate
with the service
manager

Explicit adaptation
assistance with
fairness criteria

No

Bhat [25] Hybrid Fixed ARIMA short term
prediction

User assisted with
information about
cache location and
link bandwidth

SABR Module

Overhead due to
bandwidth and
cache occupancy
monitoring

Video segment
decision remains at
the user’s control
(scalable)

No

Bhattacharyya [28] Hybrid Fixed No
Optimum bit rate
that ensures fairness
pushed to user

Orchestrating
OpenFlow Module

Utility functions
need to be
precalculated and
stored for all video
content at each
resolution

Optimized QoE,
Heterogeneity
support, Fairness

No

Liotou [29] Bit Rate Guidance Mobile Longer-term (cluster
based)

Rate-guided,
prediction-based QoE-SDN APP Assumes VSP- MNO

collaboration

Network Exposure
feedback enabled, no
change needed at
HAS clients

No

Our
Experimentation
Framework

Hybrid Resolution
Adaptation for best
QoE Prediction

Fixed, Virtual

Prediction for overall
QoE using video’s
features and vice
versa prediction for
video’s features for
further
experimentation
design on network
level.

Initial buffering,
stalling and
switching influenced
by network
restrictions.

P4 based dataplane
configurations to
customize network
limitations
depending on
experimentations to
export QoE
training-ready data.

Overall predictions
are exterior to the
SDN Testbed

Framework
produces network
features and QoE
noisy data in
training ready status
along with
recommended
classifiers for each
feature. Open-source
Test bed image for
recreation and
further testings.

Yes
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6. Conclusions

This research concludes by answering and researching multiple questions about
quality of experience and its prediction. Firstly, we aimed to ease the replication of this
research by building a new simulation environment for future researchers in similar fields.
This simulation is able to run both P4 and Openflow, along with Python 2 and 3 instances,
DASH and Mininet. With all essential packages installed, an error-free test environment
for running this and other related experiments and applying previous and similar work
to compare and contrast results is installed. Furthermore with this build, a P4 SDN test
bed over Mininet was designed with the ability to control DASH initial buffering, stalling,
switching, monitoring, bit rate adaptation and bandwidth limitation over selected ports.
The test bed provides the capacity for comprehensive user experiments and data collections,
which lead to our insights and analysis of congestion for congestion-related experiments,
along with full re-configurability over data plane. This being an open-source project clears
the difficulties and eases the research methodology into media streaming applications,
tests and experiments. Was it possible to create a hybrid environment for testing on
a user level and predicting with machine learning with simply inserting the network
or user feedback data to generate the other? With this open-source project, we cleared
that hurdle. Moreover, we proposed an experimentation framework structure through
programmable network management for the generation of ML training-ready data and
MOS/QoE prediction with the aid of a human experiment with QoE MOS-based feedback
to benchmark the accuracy of the predicted QoE and network features. Our analysis of
state-of-the-art machine learning algorithms, along with the creation of our framework for
feature evaluation in network experiments is unique in its attribute and network design;
however, it is reprogrammable to match any type of media experimentation. Understanding
user-effective network data has become as crucial as the QoE on individual user devices.
This paper discusses different features of network-level experimentation and the prediction
of QoE in multimedia applications. We also discussed how perceivable QoE is linked
to resource allocation and traffic engineering at the network level and how emerging
programmable networks such as SDN can be used as a tool to improve user feedback and
how that data can be used to predict human feedback. An automated data collection and
prediction framework is also proposed to harness the capabilities of new network designs
and growing availability of computing resources in future networks for fairness-aware
content distribution. As shown in Table 8, the ML classification methods are used and
compared for the features that are used for prediction. We conclude that our generated
dataset and experimentation framework can support the development of a high-accuracy
machine learning model for QoE estimation. The use of existing neural networks also
proved effective with our data but consumed more computational power and time as
mentioned in the previous section. Our future work will look into implementations of this
QoE/MOS predictor in a live smart home environment.
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