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Abstract: Inrecent years, there has been a notable increase in utilising multiple criteria decision-
making (MCDM) methods in practical problem solving. The advancement of enhanced decision
models with greater capabilities, coupled with technologies like geographic information systems (GIS)
and artificial intelligence (AI), has fueled the application of MCDM techniques across various domains.
To address the scarcity of irrigation water resources in Bortala, Northwest China, the selection of
a dam site has been approached using a hybrid model integrating a multipolar Fuzzy set and a
plithogenic Fuzzy hypersoft set along with a GIS. This study considered criteria such as a geological
layer, slope, soil type, and land cover. Four potential and reasonably suitable dam locations were
identified using a dam construction suitability map developed for Bortala. Ultimately, we showcased
the benefits of the innovative method, emphasizing an open, transparent, and science-based approach
to selecting optimal dam sites through local studies and group discussions. The results highlight
the effectiveness of the hybrid approach involving a fuzzy hypersoft set and plithogenic multipolar
fuzzy hypersoft set in addressing the challenges of dam site selection.

Keywords: fuzzy hypersoft set; plithogenic multipolar fuzzy hypersoft set; dam site selection;
distance measure; similarity measure; hybrid model

1. Introduction

Decision making identifies the problem, proposes alternatives to address identified
problems, evaluates these alternatives, and finally selects the best option to carry out
the offered solution [1–4]. Several multicriteria decision-making (MCDM) techniques are
available, including the analytical hierarchical process (AHP) and the analytical network
process (ANP) [5], data envelopment analysis (DEA), the technique for order of preference
by similarity to ideal solutions (TOPSIS) [6], fuzzy decision making [7], and intuitionistic
fuzzy sets (IFSs) [8]. Saeed et al. [9–11] worked on solid waste management strategies, the
evaluation of strategic procurement techniques for fuel cell and hydrogen components,
tuberculosis disease prognosis, and proposed potential treatment methods.

Water is precious and essential for human survival and progress in agriculture, sanita-
tion, and the economy. Both temporal and regional disparities in water availability have
contributed to simultaneous floods and drought in different places on the planet. Case
studies involve floods in Southeast Spain in 1997 [12], droughts in Papua New Guinea
(PNG) in 1997 [13], floods in South France in 2003 [14], and droughts in South Africa
in 2003 [15], as well as, of course, floods in the Northeast Iberian Peninsula in 2000 [16]
and droughts in the Amazon River basin in 2005 [17].
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China’s ability to store total freshwater resources is massive, around 2.8 trillion m3,
ranking it sixth in the world [18]. However, according to the Ministry of Water Resources
(MWR), resources of fresh water per capita in China are 2100 m3, which is 28% of the
global average and far below the per capita average number (7831 m3). As a result, the lack
of water remains a major issue in China, particularly in Northwest China, which covers
large areas of arid regions. China accounts for 33% of the total land area comprising six
regions, but it only accounts for 74% of total water resources. Furthermore, Northwest
China is one of the essential glacier and snow field areas, with the largest glacier and
surface area of 1.74 km2 located here [19]. Many freshwater resources are solidified and
difficult to utilize, inflaming the water resources in Northwest China. Previous studies
have shown that Northwest China has one of the world’s highest water resource pressures.
The Budyko aridity index (BAI), which measures climate dryness, is greater than 3.0 in
this province, revealing that it is one of the world’s driest basins [20]. Annual precipitation
in Northwest China ranges from 40 mm to 600 mm [21,22], with an annual potential
evaporation of 1500–3000 mm [23]. As a major wheat- and cotton-producing region, this
area spends 41.58% of its entire water consumption on agricultural irrigation, despite
its low precipitation and high evaporation [24]. Irrigation water supply is crucial for
economic development and food security in Northwest China. Xinjiang Uygur region,
the largest province in China, relies solely on irrigation to advance its agricultural sector [25].
According to a study conducted from 1989 to 2010, [26], the months with the greatest
temporal variation in demand for irrigation water are July and August. When comparing
water availability and demand, the most crucial stage of water supply occurred between
April and May from 1989 to 2010.

On the other hand, humans find it extremely difficult to change the total volume of
available freshwater. Efforts to improve the efficiency with which water is used may be a
viable option. Dam construction is one of the most common methods for achieving the goals
above because it collects and redistributes water for application fields such as irrigation,
domestic consumption, industrial use, and aquaculture, but it also generates electricity via
hydropower. Knowing whether or not the Chinese government endorses water initiatives
like dam building is crucial because of the government’s outsized influence in the country.
The Ministry of Water Resources (2014) states that from 2008–2014, the Chinese government
invested CNY 108.82 billion on hydrological projects, rising to CNY 408.31 billion in 2014.
Local and federal governments together accounted for 88.4% of all spending in 2014. Thus,
the Chinese government considers managing water resources crucial. The government also
promotes dam construction in appropriate locations in response to water usage demand.
Aside from Chinese government support, water resource availability is an essential priority
for dam construction. In terms of precipitation amount, the environment is becoming more
appropriate for groundwater harvesting as precipitation in Northwest China has enhanced
over the last 50 years (Ref. [27]), and forecasting for future precipitation under different
scenarios has also increased in Northwest China [28].

The biggest challenge for any organization is to identify potential dam locations.
To assist decision makers in selecting the ideal location for a dam, we developed a hybrid
model for dam site selection using a fuzzy hypersoft set and a plithogenic multipolar
fuzzy hypersoft set. The considered hybrid method is more efficient and less time-costly.
Professionals and researchers can use this methodology for other complex phenomena
more quickly and efficiently.

Zadeh [29] proposed fuzzy sets as additional data of classical type. The concept of
a theory of fuzzy sets has numerous applications. Domains with insufficient or incom-
plete information, such as members of a set, are permitted in bio-informatics fuzzy set
logics to have a moderate view of membership, as explained by the actual unit interim
[0, 1]. The membership function was admired. Molodtsov introduced the soft set [30] as
a mathematical technique for dealing with uncertainties that are free of the issues that
have plagued existing theoretical approaches to dealing with uncertainties. Soft set theory
research is advancing at a rapid pace right now. Chen [31] investigated the concept of
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fuzzy set similarity measure, which Maji et al. [32] found to be ineffective in trading a
parametric model with unpredictability. He discovered strains and issues in mathematical
representations and proposed a soft set theory to address the problems. Saeed et al. [33]
explained a fuzzy soft set with its application in multiattribute decision making. The
authors of [34] introduced the concept of intuitionistic fuzziness, which also plays an
important role in the fuzzy soft set. The authors of [35] proposed using fuzzy numbers
in the mobile selection. Saeed and Majid [36] developed a hybrid model for donations to
deserving and right candidates using a multipolar interval-valued neutrosophic soft set.
Abdel-Basset [37,38] has written articles on medical disease diagnosis using a neutrosophic
imaging environment. Alamri et al. [39] worked on the hybrid entropy-based economic
evaluation of hydrogen generation techniques using multicriteria decision making. Ja-
far et al. [40] worked on distance and similarity measures using max–min operators of
neutrosophic hypersoft sets with applications in site selection for solid waste management
systems. The authors of [41–44] produced several interesting results in the framework of
generalized fuzzy sets and presented several applications on multicritera decision making.

However, due to its size, Northwest China’s geography can only be characterized
through extremely large data sets, which may take too long to process. Therefore, the Bor-
tala region in Northwest China, a more manageable area of about 25,000 km2, was selected
as the subject location for this investigation.

1.1. Aim of this Study

This article aims to identify potential dam locations in the Bortala region of Northwest
China to assist decision makers in determining the best location for a dam(s). The environ-
mental circumstances will largely determine the best locations for dams and the irrigation
water supply as their primary purpose. In addition to the study’s main goal, several other
goals must be met:

• The construction of a suitability map based on the feasibility of building a dam using
several parameters.

• The suggestion of places that would make good dams.
• Computing cross sections and other properties, such as reservoir volume, dam height,

and dam breadth, of potential dam locations.
• A hybrid of a fuzzy hypersoft set and a pathogenic multipolar fuzzy hypersoft set

being applied to the problem of choosing a dam.

1.2. Research Area

The study area is the Bortala Mongoll (Bortala for short) and Xinjiang Uygur (Xinjiang
for short). Northwest China has an area of approximately 27,000 km2 and a population of
0.4 million. Figure 1 represents the location of the research area.

Bortala is located in the Jungar Basin of the southwestern section, between two moun-
tain ranges: the Northwest Bortala and the Southwest Bortala. Bortala is a border area in
Northwest China, as illustrated in Figure 1. It shares a 385 km international border with
Kazakhstan to the west and north (Wikipedia 2016). Inside Bortala are two big closed lakes:
Sayram lake with fresh water and Ebi-Nur Lake with salt water.

According to the Köppen–Geiger climate classification (Climate-Data.Org 2016), Bor-
tala has an arid climate, also known as a desert climate. Furthermore, 271 of the 431 cities
in Xinjiang Province have desert climate records (Climate-Data.Org 2016), indicating that
desert climate is the dominant climate type in the province. As a result, the weather in
Bortala is typical of Xinjiang Province. Bortala’s average annual temperature has been
7.4 ◦C since 1982, and the average precipitation has been 192 mm (Climate-Data.Org 2016).
According to research on climate change from 1960 to 2006, the annual temperature of
Bortala prefecture climbed from 1960 to 2006 [45], and the amount of precipitation in the
prefecture enhanced and has been growing since 1980 [46].

Approximately 54% of the prefecture’s agricultural output comes from cotton fields
near Bortala. Research conducted in the dry region of Northwest China between 1989 and
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2010 found that the demand for irrigation water increased throughout the study, primarily
due to an increase in cotton-cultivated areas requiring more irrigation water than other
crops [26].

Figure 1. Position of the study region about the rest of China and Xinjiang Province.

1.3. Literature Review

The application of any multicriteria decision-making (MCDM) method begins with for-
mulating a decision matrix that represents the performance of alternatives concerning a set
of conflicting criteria. Despite over 30 (MCDM) tools, prior researchers in decision-making
problems, such as dam site selection, have provided concise introductions to some of these
methods. The mathematical formulations of the different (MCDM) tools are available
in [47–49]. Real-world decision making is often challenging due to the complexity of reality,
and (MCDM), designed to handle decisions in the presence of conflicting criteria [50],
emerges as a viable solution. The location of a dam is a challenging subject since it impacts
and influences a wide range of environmental and societal elements. Dams, on the other
hand, can be built for a variety of causes, resulting in a greater range of factors and effects.
Numerous publications have been published on the topic of the dam site, employing
multiple criteria and measuring the effects of each criterion using diverse approaches.

Lee et al. [51] presents a model for addressing multicriteria decision-making problems.
The proposed model integrates the fuzzy analytic network process (FANP) and fuzzy
goal programming (FGP). FANP allows for the consideration of diverse factors in China.
A water-saving ecological check dam site optimization model (WCSOM) was created,
incorporating novel water-saving factors. This model was then utilized to optimize the
selection of check dam sites in the Sijiagou Basin, China [52]. In 2013, in central Iran,
research was carried out to determine the optimal places for underground dams that
store groundwater beneath the surface in conjunction with aqueducts using a geographic
information system (GIS) [45]. In the same study region [53], the same research team
created and executed a decision-making system of support for the selection of dam sites
that includes the fuzzy (AHP) and (VIKOR) technique for (MCDM) in 2015. In Western
Iran, site selection of a dam and comparative study of the (AHP) and (TOPSIS) [54] were
conducted. A study was conducted in Northwest Saudi Arabia to determine the best dam
location using a combination of (GIS) and (RS) techniques [55].

The four parameters employed in the Northwest Saudi Arabia example to establish
the ideal dam site location were the catchment slope, land cover type, soil types, and rate
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of soil infiltration [56]. In Western Iran, the nine types of criteria and eleven subcriteria are
recognized as the most important aspects for identifying the dam site [57].

In the Western Iran instance from 2015, 18 parameters were analyzed for the better
dam site decision, resource access, economic growth, and overall cost, with dam site health,
annual yield, topography, facility development, economic growth, water quality, dam body
and reservoir damage, river flow regime, reservoir volume, water diversion and transfer,
the annual volume of sediment, the likelihood of dam break, the likelihood of average
annual evaporation, social impacts, environmental impacts, maximum flood, and political
impacts all taken into account. Even if all of the research, as mentioned earlier, concentrates
more on the features of dam construction, some studies focus more on the repercussions of
dam construction. The surface area of the reservoir, time that water is held in the reservoir,
river length impounded, river length left dry, biomass flooded, number of the downstream
tributaries, access roads through the forests, likelihood of reservoir stratification, people
requiring the relocation, and critical natural habitats impacted are all examples of such
indicators. This list was taken from a research paper published in 2003 [58].

Since the goals of decision makers might range from high consumption (as in the case
of the Three Gorges Dam) to very low usage (as in the case of irrigation or aquaculture in
very small towns), it is challenging to specify a set of criteria for selecting a dam site in
general. Meanwhile, local factors regarding the environment and human civilization and
decision makers’ preferences for speedy or sustainable development create problems in
a wide range of dam site selection criteria. However, some conditions and fundamental
guidelines exist for secure dam construction, such as hydrology and slope.

1.4. Multicriteria Decision Making

Making decisions in the real world can be challenging due to the complexity of reality.
Multicriteria decision making (MCDM) is a potential solution, addressing decision-making
challenges when eligibility criteria often conflict with each other [59]. The 1950s and 1960s
saw the development of the most recent MCDM foundations. The initial suggestion for
the (MCDM) abbreviation appeared in the late 1970s [60]. Complex issues can be broken
down into smaller, simpler components that are easier to measure or appraise utilizing
(MCDM). There is no single (MCDM) approach that can be applied step by step. Instead,
many other approaches to (MCDM) are suggested. The fuzzy hypersoft set and plithogenic
fuzzy hypersoft set are the most prevalent in making decisions.

1.5. Structure of Paper

Basic mathematical definitions related to the proposed study are revised in Section 2.
Section 3 deals with a case study problem corresponding to the desired situation. The arti-
cle’s conclusion and future work are depicted in the Section 4.

2. The Preliminaries

In this section, some important definitions related to this article are given.

2.1. Soft Set

Ref. [61]: Consider a universal set S; a set of the attributes of elements E is in S.
The subset Y of E is defined by a function F as

F : Y → P(S),

Then, the pair (F,Y) is stated as a soft set over S, i.e.,

(F,Y) = {[e,F(e)] : e ∈ Y, F(e) ∈ P(S)}

2.2. Hypersoft Set

Ref. [61]: Let S be a universal set; P(S) is a power set of S. Let t1, t2, · · · , ak, for k ≥ 1
be distinct k attributes; the corresponding attribute values to the sets are T1, T2, · · · , Tk,
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with Ti ∩Tj = ∅, for j ̸= i, and j, i ∈ 1, 2, 3, · · · , k. Then, pair (F, T1 × T2 × · · · × Tk),
where T1 × T2 × · · · × Tk → P(S) is called a hypersoft set over P(S).

Example 1. Let E = {e1, e2, e3, e4} and set M = {e2, e4} ⊂ E. Let the attributes be x1 = size,
x2 = color, x3 = gender, x4 = nationality, and values of their attributes, respectively:

Size = X1 = {short, medium, tall}, color = X2 = {white, brown, black}, gender = X3 = {male,
female, transgender}, nationality = X4 = {Japanese, Nigerian, Pakistani, Chinese}. Let the function
be: F: X1 × X2 × · · · × Xn → P(E). Let us suppose the following: F(short, brown, female,
Nigerian) = {e2, e4}. With respect to set F, one has.

2.3. Fuzzy Hypersoft Set

Ref. [61]: F (short, brown, female, Nigerian) = {e2(0.4), e4(0.8)}, which indicates with
regards to the attribute values {short, brown, female, Nigerian}, all together, that e2 belongs
40% to the set M; similarly, e4 belongs 80% to set M.

2.4. Plithogenic Hypersoft Set

Ref. [61]: The crisp, fuzzy, hypersoft, neutrosophic, and intuitionistic fuzzy frame-
works have evolved into the Plithogenic hypersoft set. In this paradigm, the degree of
belongingness of an element e2 to the set M is determined by considering all attribute
values (short, brown, female, Nigerian) in combination, resulting in a collective degree of
belongingness regarding a set of attribute values. The Plithogenic hypersoft set incorpo-
rates elements from all the frameworks mentioned above. This is because the degree of
belongingness of an element x to the set M regarding any single attribute value could be
the crisp, hypersoft, fuzzy, neutrosophic, or intuitionistic fuzzy set.

2.5. Plithogenic Fuzzy Hypersoft Set

Ref. [61]: The degree to which an element e belongs to the set M with regard to each
attribute value is as follows: fuzzy: d0

e (a) ∈ P([0, 1]), the power set of [0, 1], where d0
e (a)

may be hesitant; the subset; an interval; a single-valued number; the hesitant set, etc. A
considered example for a single-valued number is as follows: F({short, brown, female,
Asian}) = {e2(0.4, 0.7, 0.6, 0.5), e4(0.8, 0.2, 0.7, 0.7)}.

2.6. Plithogenic Two-Polar Fuzzy Hypersoft Set

Ref. [61] In a plithogenic two-polar fuzzy hypersoft set, the degree of appurtenance of
an element e to the set S is two and fuzzy for each attribute. d0

e (a) ∈ P([0, 1]), the power
set of [0, 1], where d0

e (a) may be an interval, single-valued number, the hesitant set, a subset,
etc. In the considered example, for a single-valued number: F{(medium, short), (white,
brown) (male, female), (Pakistani, Nigerian)} = e2{(0.4, 0.2), (0.7, 0.1), (0.6, 0.7), (0.2, 0.5)},
e4{(0.4, 0.1), (0.4, 0.1), (0.5, 0.7), (0.2, 0.5)}.

2.7. Plithogenic Multi-Polar Fuzzy Hyper Soft Set

In this set, the degree of belongingness of an element e to the set M exceeds two
and is Fuzzy, with respect to each attribute: d0

e (a) ∈, P([0, 1]), the power set of [0, 1]m,
where d0

e (a) may take various forms such as a single-valued number, an interval, a sub-
set, a hesitant set, and so on. As an example, let us consider a single-valued number:
F{[size]m, [color]m, [gender]m, [nationality]m} = {e2{(e1(z), e2(z), · · · , em(z)), (e1(z), e2(z),
· · · , em(z)), (e1(z), e2(z), · · · , em(z)), (e1(z), e2(z), · · · , em(z))}, {e4{(e1(z), e2(z), · · · , em(z)),
(e1(z), e2(z), · · · , em(z)), (e1(z), e2(z), · · · , em(z)) }}}, where the i-th mapping is described
as follows:

Ei : [0, 1]m → [0, 1],
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2.8. Distances

Ref. [62]: Suppose Z = {z1, z2, . . . , zn} is the universal set and E = {e1, e2, . . . , ek} is
the set of attributes. The distance between Z and E can can be calculated:

1. The Hamming distance [62]:

dH(Z,E) =
1
n
{Σn

i=1Σk
j=1|pioZ(zk)− pioE(ej)|}

2. The normalized Hamming distance [62]:

dH(Z,E) =
1

mq
{Σn

i=1Σk
j=1|pioZ(zk)− pioE(ej)|}

3. The Euclidean distance [62]:

dH(Z,E) = { 1
n

Σn
i=1Σk

j=1(pioZ(zk)− pioE(ej))
2}

1
2

4. The normalized Euclidean distance [62]:

dN E(Z,E) = { 1
nk

Σn
i=1Σk

j=1Σm
k=1(

I Ti−
X (ej)(zk)− I Ti−

Y (ej)(zk))}2

5. The similarity measures [62]:
The similarity measures of two sets Z and E can be calculated as,

S(Z,E) =
1

1 + d(Z,E)

3. Application in a Recognition Problem

In this part, we apply the idea of a distance-based similarity measure to the data from
a hybrid of a fuzzy hypersoft set and a plithogenic multipolar fuzzy hypersoft set to tackle
the problem of pattern identification.

3.1. Factors Influencing Dam Siting

Factors are crucial in the site selection process, influencing the outcome from various
perspectives. An extensive review of numerous studies revealed certain commonalities
and characteristics in selecting factors for dams. Despite the variations in natural and
social environments and the intended purpose, there are identifiable similarities in the
considerations taken into account during the site selection process.

The decision makers’ objectives exhibit a broad range, making it challenging to es-
tablish a standardized set of criteria for dam siting. The factors influencing decisions
vary depending on the dam’s purpose, ranging from large hydroelectric power generation
dams, exemplified by the world-leading Three Gorges Dam, to smaller dams intended
for irrigation and aquaculture. The diversity in dam objectives underscores the need for
a flexible and context-specific approach in considering decision factors for dam siting.
According to the latest data from the ICOLD 2020 statistics (Table 1) [63], irrigation is a
major purpose, accounting for 47% and 24% of dams’ sole-purpose and multiple-purpose
statistics, respectively. The next three major purposes are hydropower, water supply, and
flood control.
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Table 1. Purposes of dams.

Description Sole-Purpose Percentage Multiple-Purpose Percentage

Flood Control 2539 8.82% 4911 0.19%
Fish Farming 42 0.15% 1487 0.06%
Hydro Power 6115 21.24% 4135 0.16%

Irrigation 13,850 47.17% 6278 0.24%
Navigation 96 0.33% 579 0.02%
Recreation 1361 4.73% 3035 0.11%

Water Supply 3376 11.73% 4587 0.17%
Talling 103 0.36% 12 0%
Others 1579 5.48% 1385 0.05%

3.2. Criteria Selection

Based on a review of prior research, the specific characteristics of the Bortala region,
and data availability, four criteria were chosen for this study: soil type, land cover slope,
and geological layer resistance. Precipitation is the primary source of runoff water replen-
ishment. In other words, precipitation has a beneficial impact on runoff volume. As a
result, when no natural calamity is induced by excessively high precipitation, such as floods
or landslides, precipitation favors dam function. The slope is one of the most important
factors influencing dam safety, as it raises the risk of landslides and brings additional strain
on building foundations. Soil types can be classified based on texture, resulting in different
soil penetration rates. As a result, soil type impacts dam function in the sense of runoff
volume. Another factor influencing dam protection is the geological layer’s high resistance,
determined by the geological layer’s rock type. Because this research focuses on dams
that provide agricultural irrigation, converting farmland into dam-building land is less
important than building dams on shrub or forest cover.

3.2.1. Soil

The term environment encompasses a broad spectrum of factors. Our study specifically
considered environmental criteria, including soil-related aspects (such as soil type and
erosion), land-use patterns, proximity to water resources, and groundwater availability. It
is important to note that these chosen criteria do not cover all environmental considerations;
rather, they represent commonly utilized factors in the existing literature. Land use and soil
type exhibited the highest prevalence among these criteria, with 88% and 54% utilisation
rates, respectively.

Soil types can be categorized based on texture, influencing soil infiltration rates and
impacting runoff volume. It is advisable to consider sufficiently water-resistant fine-grained
foundations, clays, and clay mixtures [64]. The choice of soil type becomes crucial in
managing and controlling runoff, and selecting properties conducive to water resistance
can be advantageous.

Bortala’s soil properties are extracted from a 2012 worldwide soil properties image.
This region has 11 different types of soil qualities. The classes are identified by the global
distinct SOTER code, which may be used to search for the % mass of the components: sand,
clay, and silt. Simple classification is used to trace the varied soil infiltration in the study
region based on the different percentages of these three soil types. Bortala’s four soil types
are categorized based on their composition and a textural triangle that describes the relative
amounts of sand and clay in different types of soils and basic infiltration rates for different
types of soil [65]. The four soil types are sand, loam, sandy loam, and clay loam. Based on
basic infiltration for rates of each soil type, which can be found in Table 2, the soil types are
allocated preference values for dam construction in Table 3.
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Table 2. Source: organized from [66] for soil.

Type Permeability Land Use Soil

RWH Low Near Agricultural Land Slit Loam
Check Dams Less Barren, Shrub, Riverbed Sandy Clay Loam

Percolation Tank High Barren, Shrub Silt Loam
Farm Ponds Moderate Barren, Shrub Sandy Clay Loam

Table 3. Measured preference quantity for degrees of soil classes.

Soil Type Prefernce Value Unified Preference

Sand 1 25
Sandy Loam 4 50

Loam 3 75
Clay Loam 4 100

3.2.2. Slope

Elevation and slope are key criteria reflecting topographic features. Typically, regions
with moderate elevation are considered more suitable for dam construction than areas with
lower or higher elevations, which are generally deemed less suitable [67]. However, there
is divergence among researchers regarding the suitability of steep slopes versus moderate
slopes for dam construction as in Table 4.

Table 4. Source: organized from [66] for slope.

Type Permeability Land Use Slope

RWH Low Near Agricultural Land <15%
Check Dams Less Barren, Shrub, Riverbed <15%

Percolation Tank High Barren, Shrub <10%
Farm Ponds Moderate Barren, Shrub <10%

Natural structures with an optimal river valley morphology are uncommon, necessi-
tating the adaptation of different dam types to varying river valley shapes. Earthfill dams
are well-suited for wide valleys, gravity dams for narrow sites, and arch dams for even
narrower locations. The appropriateness of the slope is intricately linked to the dam’s
intended purpose. For rainwater harvesting, the Food and Agriculture Organization (FAO)
suggests that the slope should not exceed 5%. In the placement of check dams, the slope
plays a crucial role in determining reservoir capacity and sedimentation, with steeper
slopes often leading to increases.

There are two ways to describe slopes. The slope measures the inclination of the
ground relative to the horizontal plane. The other is the percentage slope, quantifying
the landscape’s relative vertical and horizontal changes. The Pythagorean theorem can
generate a slope based on a DEM. In previous studies, different slope thresholds were
chosen for dam construction, such as less than 10%, which equals 5.71 degrees [68]. The
slope is classified into four classes in this study, with each 1 degree less than or equal to
5 degrees representing one category, and a slope higher than 5 degrees representing another.
Table 5 displays the classes and preference values.

Table 5. Measured preference quantity for degrees of slope classes.

Slope Preference Value Unified Preference

0 to 1 5 100
1 to 2 4 75
2 to 3 3 50
3 to 4 2 25
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3.2.3. Geological Layer

The geological conditions at a dam site are paramount, as they directly impact the
safety and stability of the project. Furthermore, the geological foundation of the site plays a
crucial role in determining the type of dam and the materials used in dam construction.
The site must possess impermeable geological characteristics, ensuring a secure dam
foundation without leakage. For instance, in regions with a typical karst landscape, like
Southwest China, the lithology directly influences whether water will “leak away” after the
dam is constructed [69]. Key geological-related indicators encompass geology/lithology,
tectonic zones, distance to faults, and proximity to lineaments.

In the examination of analyzed papers, it was observed that 60–70% opted for one
or two geological factors. However, Othman [67] took a more comprehensive approach
by considering four geological factors: tectonic zones, lithology, distance to lineaments,
and faults. Tectonic zones deemed less suitable, such as the imbricated zone and the
high folded zone, are characterized by geological weaknesses represented by faults and
lineaments. These geological features are typically avoided in buffer zones, emphasizing
the pivotal role of geological resistance in selecting dam sites as in Table 6.

Table 6. Source: organized from [66] for geological layer.

Type Geological Resistance Land Use Soil

RWH Low Near Agricultural Land Slit Loam
Check Dams Less Barren, Shrub, Riverbed Sandy Clay Loam

Percolation Tank High Barren, Shrub Silt Loam
Farm Ponds Moderate Barren, Shrub Sandy Clay Loam

No natural elements influencing dam construction are more important than geological
ones. According to a compilation of dam performance statistics and foundation, problems
are the most frequently occurring reasons for dam failure [70]. Competent rock foundations
are resistant to erosion, percolation, and pressure. Table 7 displays the preference values
for each class.

Table 7. Measured preference quantity for degrees of geological layer classes.

Geological Layer Preference Value Unified Preference

Low Resistance 1 25
Slightly Low Resistance 4 50

Moderate Resistance 3 75
High Resistance 4 100

3.2.4. Land Cover

Variations in social contexts result in differences in socioeconomic criteria for site
selection. Proximity to roads and settlements, which reduces transportation costs, was
utilized at a rate of 32%. Distances to material facilities, roads, cities, and villages are
considered to assess construction cost implications. Distances to the countryside and cities
represent distinct scenarios, often requiring a specific distance from the city while aiming
to be as close to the countryside as possible. This is because rural areas can provide the
necessary labor force, while maintaining a certain buffer zone within the city is essential to
prevent significant accidents like dam failures [71].

Land cover influences dam site selection in numerous ways. For starters, land cover
considerably alters the effect of the rainfall, giving land cover a role in influencing soil
destruction [72], and a high soil destruction area creates a poor foundation for dam con-
struction [73]. On the other hand, dam construction results in land expropriation, which
has varying economic costs depending on land cover type. In this study, the land cover
is classified into four major groups, as shown in Table 8, based on the preference for dam
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construction. Furthermore, a Boolean categorization excludes dam locations on water or
settlements. Table 9 displays the preferred values for land cover classes.

Table 8. Source: organized from [66] land cover.

Type Permeability Land Use Slope

RWH Low Near Agricultural Land <15%
Check Dams Less Barren, Shrub, Riverbed <15%

Percolation Tank High Forest <10%
Farm Ponds Moderate Barr and Shrub <10%

Table 9. Measured preference quantity for degrees of land cover.

Land Cover Prefernce Value Unified Preference

Farm Land 1 25
Forest 2 50

Shrub and Herb 3 75
Bare Land 4 100

3.3. Problem of Selection of Dam Site: Hybrid of Fuzzy Hypersoft Set and Plithogenic Multipolar
Fuzzy Hypersoft Set
Algorithm of the Problem:

Step 1: Constructing a set of attributes for selection purposes involves defining a set
denoted as E = {U1,U2, · · · ,Uq}.

Step 2: Building a set R representing the requirements of an organization for dam
selection involves identifying and defining the essential criteria and conditions that the
selected dam must meet.

Step 3: Building a hybrid of a fuzzy hypersoft set and a plithogenic multipolar
fuzzy hypersoft set with the help of evaluating various alternatives given by the decision-
making team.

Step 4: To determine the distance between Si and R, utilize the distance formula.
Step 5: The similarity measure SM(Ri, N) between Si and R can be calculated using

a similarity measure formula.
Figure 2 displays the Selection Algorithm for dam site selection, demonstration of

the application of the pattern recognition problem to the selection of a dam can be given
as follows.

Let us take four types of dam sites, denoted byS1, S2, S3, andS4. Let U = U1 = Soil Type,
U2 = Land Cover, U3 = Slope, and U4 = Geological Layer be the feature of dam site selection.
The site’s “Soil Type” refers to the sand, sandy loam, loam, and clay loam. The site slope may
be 0 to 1, 1 to 2, 2 to 3, and 3 to 4. The “Land Cover” of the sites may have forest, farm (shrub
and herb), or bare. The “Geological Layer” is another classified feature of what type of site it is.
The site may have low, slightly low, moderate, and high resistance. Table 10 represents the four
types of dam sites by four-polar fuzzy sets in the space U.

Consider the R unknown dam site to be identified.
S = {(U1, 0.25, 0.50, 0.75, 1.00), (U2, 0.25, 0.50, 0.75, 1.00), (U2, 0.25, 0.50, 0.75, 1.00),

(U3, 0.25, 0.50, 0.75, 1.00)}
The Euclidean distance between Si and R is determined by calculating as follows:

dE(S1,R) = 0.281
dE(S2,R) = 0.254
dE(S3,R) = 0.214
dE(S4,R) = 0.244

The similarity measure of Si and R is determined by calculating as follows:
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S(S1,R) = 0.780
S(S2,R) = 0.797
S(S3,R) = 0.823
S(S4,R) = 0.803

Since similarity measure S3 is the highest, S3 and R have same pattern. Thus, dam
site S3 is more suitable.

Table 10. Four-polar fuzzy sets for dam site selection.

. U1 U2 U3 U4

S1 (0.10 0.40, 0.50, 0.90) (0.23, 0.47, 0.60, 0.85) (0.10, 0.40, 0.60, 0.80) (0.20, 0.40, 0.60, 0.90)
S2 (0.08, 0.45, 0.63, 0.90) (0.18, 0.45, 0.63, 0.70) (0.20, 0.45, 0.62, 0.79) (0.18, 0.45, 0.63, 0.90)
S3 (0.21, 0.47, 0.60, 0.85) (0.10, 0.39, 0.69, 0.90) (0.23, 0.47, 0.61, 0.85) (0.21, 0.47, 0.60, 0.85)
S4 (0.10, 0.40, 0.60, 0.80) (0.20, 0.40, 0.60, 0.80) (0.24, 0.47, 0.60, 0.86) (0.22, 0.48, 0.60, 0.90)

Site Selection Criteria

Maps

Satellite Images

Fuzzy hyper-soft set

Plithogenic multi-
polar fuzzy

hyper-soft set

Euclidean Distance Similarity Measure

Recommended site
Not Recom-

mended sites

Data

Hybrid Model

methodlogy

Figure 2. Criteria for dam site selection.

4. Conclusions and Future Work

This study addresses the issue of water resource shortage in China, particularly in
the Bortala region of Northwest China, by exploring dam construction solutions. We
have developed a dam suitability map and identified potential dam sites using a hybrid
model of a fuzzy hypersoft set and plithogenic multipolar fuzzy hypersoft set. The study
introduces a novel approach to dam site selection, incorporating distance-based similarity
indicators and specifying key operations and their features. The methodology presented
in this research can be extended to include additional parameters, making it applicable to
various complex phenomena. Professionals and researchers can leverage this innovative
method to enhance the efficiency and effectiveness of dam selection processes, contributing
to improved water resource management.

In the future, one can widen the study regarding selection criteria and identify correla-
tions among the criteria developed.
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