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Abstract: This article considers the Dirac field in polar formulation and shows that when torsion is
taken in effective approximation the theory has the thermodynamic properties of a van der Waals gas.
It is then shown that in the limit of zero chiral angle the van der Waals gas reduces to a Weyssenhoff
fluid, and in spinlessness regime the Weyssenhoff fluid further reduces to a Newton particle. This
nesting of approximations allows us to interpret the various spinor quantities. We will see that
torsion will provide a form of negative pressure, while the chiral angle will be related to a type
of temperature.
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1. Introduction

Both in geometric construction, and for its far-reaching applications, the Dirac field is
among the most important fields in mathematics and physics. Still, when confronted with
possible interpretations, there appears to be a spread consensus that no one really knows
what a spinor actually is. Of course, this situation is not limited to the relativistic spinor
field. The Pauli field is affected by the very same condition. Nor is this situation confined to
relativistic and non-relativistic spinors. The Schrödinger field, namely the usual quantum
mechanical wave function, carries the same burden, i.e., the lack of visualizability that
renders the understanding of quantum mechanics so difficult, if not impossible. Whether
constituted by two chiral states or only one, or whether characterized by two helicities or
a single one, what seems to be at the root of the problem is the fact that all these wave
functions are intrinsically built to be complex-valued fields.

On the other hand, all complex quantities may always be written in polar form,
in which complex functions are re-expressed as a product of modules times unitary phases,
with modules and phases being real. Pauli spinors, having two helicities, need extra care
in undergoing polar decomposition since, under rotations, the two components would
mix. And even more care is required for Dirac spinors since, having two helicities as well
as two chiralities, under Lorentz transformations all four components would mix. Still,
the relativistic polar formulation is doable just as well, as was first shown in [1,2].

The advantage of the polar decomposition of relativistic spinor fields is that it converts
the entire Dirac theory into a form that is genuinely hydrodynamic [3]. This does not only
mean that all variables are real. It also means that all variables are in themselves perfectly
visualizable in terms of the concepts of fluid mechanics. Indeed, of the four sets of variables
in terms of which a spinor field can be decomposed, two are the density and velocity,
exactly the same as those we have in standard hydrodynamics. Another is the spin, which
is also a very well-known concept nowadays. The final one is the chiral angle, which is
instead not yet easy to understand, although we hope that such an object will be better
clarified in the light of the investigation that we intend to carry out in this work. We will
see, in fact, that, under some very general conditions, the chiral angle can be interpreted as
a form of generalized temperature for the Dirac field. When the chiral angle and density,
spin, and velocity are all accounted for, one can then see that the Dirac field theory has
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indeed been re-formulated as a type of fluid with a temperature and a pressure verifying
the relationships that they would satisfy in the case of the van der Waals gas. We will also
see that in the zero-temperature regime, such a gas behaves as a Weyssenhoff fluid with a
completely antisymmetric spin. And naturally, in the zero-spin limit, the laws of Newton
dynamics are recovered.

The idea of re-formulating quantum mechanics as a type of fluid dates back to the work
of Madelung, who first considered writing the wave function as a product of module and
phase related to density and velocity, respectively. In turn, this would split the Schrödinger
equation into a Hamilton–Jacobi equation with a quantum potential written in terms of the
density and a continuity equation for the velocity. This was the basis upon which Bohm
started to build his interpretation of quantum mechanics [4]. The treatment was revised by
Takabayasi in [5]. The relativistic extension was attempted first by Bohm in [6]. And then it
was undertaken by Takabayasi in a series of works culminating with [7].

All these works share the idea of trying to write relativistic quantum mechanics as
a type of classical mechanics with our present treatment. None of these works, however,
could reach a fully general covariant description because they never considered the polar
form that was first proposed in [1,2]. It is our objective to show that when the polar form
of [1,2] is used, as performed in [3], all the results of Bohm and Takabayasi will finally find
their most generally covariant expression.

2. Dirac Field in Polar Form
2.1. Dirac Spinors

We start with a brief summary of the Dirac spinors to set our convention. To begin,
let γi be matrices belonging to the Clifford algebra {γi, γj}=2Iηij with ηij the Minkowski
matrix and where σik =[γi, γk]/4 are the generators of the Lorentz group. In terms of the
completely antisymmetric Levi-Civita pseudo-tensor εabcd we can also have the validity
of the relation 2iσab = εabcdπσcd implicitly giving the definition of the parity-odd matrix
π whose existence stipulates that the Lorentz group is reducible (this is the fifth gamma
matrix, which we will not indicate as a gamma with an index five to avoid the confusion
coming from the dummy index. The Greek letter π corresponds to the Latin letter p and
it stands for parity in the same way that the Greek letter σ corresponds to the Latin letter
s and it stands for spin). The exponentiation of the generators gives an element of the
Lorentz group Λ and therefore S=Λeiqα is an element of the spinor group also accounting
for gauge transformations. A spinor field is an object that transforms like ψ → Sψ and
ψ→ψS−1 where ψ=ψ†γ0 is the adjoint operation. With a pair of adjoint spinors we can
form the spinorial bi-linears

Σab =2ψσabπψ Mab =2iψσabψ (1)

Sa =ψγaπψ Ua =ψγaψ (2)

Θ= iψπψ Φ=ψψ (3)

which are all real tensors. They verify the Hodge duality

Σab =− 1
2 εabij Mij Mab = 1

2 εabijΣij (4)

beside the constitutive relations

MikUi = ΘSk ΣikUi =ΦSk (5)

MikSi = ΘUk ΣikSi =ΦUk (6)

as well as

MabΦ−ΣabΘ=U jSkε jkab MabΘ+ΣabΦ=U[aSb] (7)
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together with

1
2 Mab Mab =− 1

2 ΣabΣab =Φ2−Θ2 (8)
1
2 MabΣab =−2ΘΦ (9)

and

UaUa =−SaSa =Θ2+Φ2 (10)

UaSa =0 (11)

called Fierz re-arrangements. They show that not all the bi-linears are independent, and in
fact if Φ2+Θ2 ̸=0 both antisymmetric tensors Mab and Σab can be dropped in favor of the
two vectors and the two scalars. In turn, under the same condition, the axial-vector and the
vector Sa and Ua are space-like and time-like, showing that they can be recognized as spin
and velocity, respectively [3].

The spinorial covariant derivative is defined as

∇µψ=∂µψ+ 1
2 Cabµσabψ+iqAµψ (12)

in which Aµ is the gauge potential of charge q and Cab
µ is the spacetime spin connection in

torsionless case. As we will see, full generality will be recovered by introducing torsion as
an axial-vector field in the dynamics.

As usual, the commutator

[∇µ,∇ν]ψ= 1
2 Rabµνσabψ+iqFµνψ (13)

defines the Riemann curvature and the Maxwell strength.
The dynamics is assigned by the torsion field equations

∇ρ(∂W)ρµ+M2Wµ =XSµ (14)

together with the gravitational field equations

Rρσ− 1
2 Rgρσ−Λgρσ = 1

2 [
1
4 F2gρσ−FραFσ

α +

+ 1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α + M2(WρWσ− 1

2 W2gρσ) +

+ i
4 (ψγρ∇σψ−∇σψγρψ+ψγσ∇ρψ−∇ρψγσψ)− 1

2 X(WσSρ+WρSσ)] (15)

and the electrodynamic field equations

∇σFσµ =qUµ (16)

where (∂W)αν =∇αWν−∇νWα and M is the torsion mass, and where we define Rα
ρασ =Rρσ

and Rρσgρσ =R as the Ricci tensor and scalar and Λ is the cosmological constant.
For matter, the dynamics is assigned by the Dirac spinor field equation

iγµ∇µψ−XWσγσπψ−mψ=0 (17)

where Wσ is the Hodge dual of the torsion tensor and X the torsion–spin coupling constant,
added to recover full generality, as we have already anticipated.

The set of field Equations (14) and (15) with (16) is conceived in this way so to give rise
to conservation laws that turn out to be automatically satisfied when the Dirac spinorial
field Equation (17) is valid, and so it is consistent [8].
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2.2. Polar Decomposition

In the aforementioned case in which Φ2+Θ2 ̸=0 we can perform what is called polar
decomposition of the spinor field. Specifically, it is possible to demonstrate that under the
above condition any spinor field can always be written, in chiral representation, as

ψ=ϕ e−
i
2 βπ L−1


1
0
1
0

 (18)

for a pair of functions ϕ and β and for some L which has the structure of a spinor trans-
formation [1,2] (see also Appendix A for a detailed derivation). As anticipated, the two
antisymmetric tensors are expressed by means of the two vectors and the two scalars,
and these are given by

Sa =2ϕ2sa Ua =2ϕ2ua (19)

and

Θ=2ϕ2 sin β Φ=2ϕ2 cos β (20)

when the polar form is implemented. The last two show that ϕ and β are a scalar and a
pseudo-scalar, known as module and chiral angle. Then, (10) and (11) reduce to

uaua =−sasa =1 (21)

uasa =0 (22)

showing that the velocity has only three independent components, the three spatial rapidi-
ties, whereas the spin has only two independent components, the two angles that, in the
rest-frame, its spatial part forms with the third axis. As for L we can read its meaning
as that of the specific transformation that takes a given spinor to its rest-frame with spin
aligned along the third axis. For the spinorial fields in polar form, the eight real compo-
nents are re-configured in such a way that the two scalars ϕ and β are isolated from the
six parameters of L that can always be transferred into the frame and which are thus the
Goldstone fields.

Because in general one can prove that

L−1∂µL= iq∂µζI+ 1
2 ∂µζijσ

ij (23)

for some ζ and ζij that are in fact the Goldstone fields, it follows that we can define

Rijµ :=∂µζij−Cijµ (24)

Pµ :=q(∂µζ−Aµ) (25)

which are real tensors. By reading these expressions one can see that after the Goldstone
fields are transferred into the frame, they combine with spin connection and gauge potential
to become the longitudinal components of the Pµ and Rijµ tensors, hence called gauge and
spacetime tensorial connections. From (18) with (25) and (24) we obtain

∇µψ=(∇µ ln ϕI− i
2∇µβπ− 1

2 Rανµσαν−iPµI)ψ (26)

as the polar form of the covariant derivative. Notice that

∇µsν = sαRανµ ∇µuν =uαRανµ (27)
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as general identities. The covariant derivative of the velocity is the object with which one
builds the strain-rate tensor in continuum mechanics. Expressions (27) are the extension to
both velocity and spin of what makes Rabµ interpretable as the strain-rate tensor.

The tensorial connections are such that

−Ri
jµν =∇µRi

jν−∇νRi
jµ+Ri

kµRk
jν−Ri

kνRk
jµ (28)

−qFµν =∇µPν−∇νPµ (29)

therefore being the covariant potentials of the Riemann curvature and Maxwell strength.
In the gravitational field equations, the right-hand side aside for the factor 1/2 is the

energy density tensor, and it is expressed in polar variables according to

Tρσ = 1
4 F2gρσ−FραFσ

α +
1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α + M2(WρWσ− 1

2 W2gρσ) +

+ϕ2[Pρuσ+Pσuρ + (∇ρβ/2−XWρ)sσ+(∇σβ/2−XWσ)sρ −
− 1

4 R σ
αν sκερανκ− 1

4 R ρ
αν sκεσανκ ] (30)

where the explicit presence of the spacetime tensorial connection is seen.
The Dirac spinor field equations in polar form are

∇µβ−2XWµ+Bµ−2Pιu[ιsµ]+2msµ cos β=0 (31)

∇µ ln ϕ2+Rµ−2Pρuνsαεµρνα+2msµ sin β=0 (32)

in which R ν
µν =Rµ and 1

2 εµανιRανι =Bµ were defined.
Upon the introduction of the potentials

2Yµ =∇µβ−2XWµ+Bµ (33)

2Zµ =∇µ ln ϕ2+Rµ (34)

it becomes easier to manipulate the polar spinor field Equations (31) and (32) in order to
isolate the gauge tensorial connection

Pη =m cos βuη+Yµu[µsη]+Zµuπsτεµπτη (35)

which is recognized to be the momentum of the field and with which the energy (30)
acquires the form

Tρσ = 1
4 F2gρσ−FραFσ

α +
1
4 (∂W)2gρσ−(∂W)σα(∂W)

ρ
α + M2(WρWσ− 1

2 W2gρσ) +

+ϕ2[2m cos βuρuσ − 2Yµsµuρuσ+Yµuµ(sρuσ+sσuρ)+Yρsσ+Yσsρ +

+Zµuπsτ(εµπτσuρ+εµπτρuσ)− 1
4 (Rανπερανπ gσκ+Rανπεσανπ gρκ +

+R σ
αν ερανκ+R ρ

αν εσανκ)sκ ] (36)

in terms of the Rabµ tensor and the Yµ and Zµ potentials.

3. Torsion Effective Approximation and van der Waals Gas
3.1. General Thermodynamic Variables

With this general presentation, we are now ready to begin the study of the various
approximations, starting from the torsion effective approximation. Before this, however,
we recall a very general construction that takes place in thermodynamics. In a thermo-
dynamical context, when combining the two principles of thermodynamics into one, we
obtain the fundamental relation dU=TdS−pdV as is well known. Considering that dS is
an exact differential form, one can extract the expression(

∂U
∂V

)
T
=

(
∂p
∂T

)
V
T−p (37)
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in case V and T are the independent variables. This equation is called internal energy
equation, and with it one can deduce the internal energy from the equation of state.

For example, take the simplest non-perfect gas, that is the van der Waals gas, whose
equation of state is (

p+
a

V2

)
(V−b)=RT (38)

in which a is a constant related to the effective pressure due to forces between the molecules,
positive in the case of attraction, and b is the volume that is occupied by the molecules.
By means of (37) one can deduce that

U=ω+CV T− a
V

(39)

where ω is a generic constant.
It is important to notice that with the equation of the internal energy we are giving

an axiomatic definition of thermodynamical variables, in the sense that we are assigning
a meaning to the different terms entering (37) according to the role they play in such an
equation. For example, if we knew that U had a given dependence on V then the right-hand
side of (37) would be known, and any pair of variables satisfying the right-hand side of
(37) in exactly the way p and T are would, respectively, be interpreted as pressure and
temperature. With this in mind, we are now going to investigate the thermodynamic
structure of the Dirac spinor field theory.

3.2. Massive Propagating Torsion

We will consider the Dirac theory with torsion taken to be massive enough to allow
the effective approximation. In effective approximation, the torsion field loses all its
propagating properties, with field equations reducing to

M2Wµ =XSµ (40)

so that now torsion can be replaced in terms of the spin.
When this is performed in the expression of the energy density tensor (36) remarkable

simplifications occur. Taking in particular the purely spinorial contribution, it reads

Eρσ =ϕ2[2(m cos β−ϕ2X2/M2 − sµ∇µβ/2− 1
4 Rπτηsκεκπτη)uρuσ +

+2ϕ2X2/M2(gρσ−uρuσ) + (sρuσ+sσuρ)uµ∇µβ/2 + sρ∇σβ/2+sσ∇ρβ/2 +

+Zµuπsτ(εµπτσuρ+εµπτρuσ)− 1
4 Rπτηsκ(ερπτκ gση+εσπτκ gρη +

+επτηµuµuσgρκ+επτηµuµuρgσκ)] (41)

which can be worked out in detail in the following way.
Defining the quantities given by

µ=Eρσuρuσ (42)

p=− 1
3 Eρσ(gρσ−uρuσ) (43)

it is easy to prove that

Eρσ =µuρuσ−p(gρσ−uρuσ) (44)

as a general identity. Re-writing the energy density with this structure helps identifying
the quantities µ and p as the internal energy density and the pressure of the field.
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As a consequence, in our case we have that

µ=2ϕ2(m cos β−ϕ2X2/M2)− [2ϕ2(sµ∇µβ/2− 1
2 εκαµνsκuα∇µuν)] (45)

p=−2ϕ4X2/M2 − 1
3 [2ϕ2(sµ∇µβ/2− 1

2 εκαµνsκuα∇µuν)] (46)

are the internal energy density and pressure of Dirac spinors.
Introducing the volume 2ϕ2=1/V as well as the internal energy U=µV we can write

them, respectively, as

U=m cos β+3RT− X2

2M2
1
V

(47)(
p+

X2

2M2
1

V2

)
V=RT (48)

in which

3RT=−sµ∇µβ/2+ 1
2 εκαµνsκuα∇µuν (49)

has also been defined.
Notice that (48) is exactly the van der Waals equation of state in the case in which

b=0 and 2a=X2/M2 showing that the torsional effective force is indeed attractive. Also
notice that (47) can be recognized as the van der Waals gas internal energy if CV =3R and
m = ω for small values of the chiral angle. It is essential to remark that in order for (48)
and (47) to be structurally similar to those of a van der Waals gas, condition (49) must
hold. The validity of (49) can be interpreted as the definition of temperature for the Dirac
field, and it can be read as the fact that the internal dynamics of the Dirac field obtains
contributions from its chiral angle and its vorticity. It is not surprising that the chiral angle,
the phase difference between the chiral parts, be tied to the internal dynamics and, thus,
thermodynamically associated with the concept of temperature. Such an association is
also clear in the fact that m cos β is another contribution of the chiral angle to the internal
energy, which is just the relativistic mass. We recall to the reader that the association of the
chiral angle to temperature, while justified by an interpretation employing the concept of
internal dynamics, is only the axiomatic type of connection in the sense explained above.
The definition of temperature assigned by means of the internal energy and its Equation (37)
is formal and not functional: we have defined T according to (49) with the aim of rendering
(37) satisfied but T does not represent a chaotic motion of particles in the kinetic theory
of gases.

The definition of temperature as given by (49) seems to us the only way to define
something conceptually close to the idea of temperature even for systems that are not
constituted by randomly distributed particles.

4. Zero Chiral Angle and Weyssenhoff Fluid
4.1. Non-Relativistic Regime

In the previous section, we have identified the chiral angle as what gives rise to a type
of internal dynamics thus related to a generalized form of temperature for the Dirac spinor
field. In [3], and references therein, we have discussed the idea of non-relativistic limit as
the regime for which

u⃗→0 (50)

β→0 (51)

characterizing the difference between the two conditions in the fact that, while the first
represents the lost motion, the second represents the loss of the dynamical properties
that would remain even in rest-frame, thus the intrinsic, internal dynamics. This fits well
in the discussion above, where it is even more reasonably justified the fact that, in non-
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relativistic regime, the temperature (49) would lose all contributions coming from the
material distribution. In other words, we may say that our generalized definition of
temperature for the Dirac field is such that it would tend to zero in non-relativistic cases.

While the pair of conditions (50) and (51) are the non-relativistic limit, the single condi-
tion (51) can be defined as internal triviality. Or equivalently, when the chiral angle vanishes
we lose the internal dynamics. This is also reasonable if we consider that β=0 means no
difference between the two chiral parts. Or that zitterbewegung effects vanish [9,10].

The condition of internal triviality has also the advantage of being covariant, so it
makes sense to see what happens when it is assumed.

4.2. Hydrodynamics with Spin

Assuming β=0 from the start implies that the bi-linear pseudo-scalar Θ=0 identically,
and, therefore, we have that

Mikui = 0 Σikui =2ϕ2sk (52)

Miksi = 0 Σiksi =2ϕ2uk (53)

alongside

Mab =2ϕ2ujskε jkab (54)

Σab =2ϕ2u[asb] (55)

and

Mab Mab =−ΣabΣab =8ϕ4 (56)

MabΣab =0 (57)

as Fierz identities. By employing (4) into (53) one has

Mikui = 0 1
2 εkiab Mabui =2ϕ2sk (58)

Miksi = 0 1
2 εkiab Mabsi =2ϕ2uk (59)

so that focusing in particular on the first, we can re-write the two expressions according to

Mkiui = 0 (60)

M[abuc]= εabckSk (61)

telling that the momentum is orthogonal to the velocity and that the completely antisym-
metric part of Mijuk is the Hodge dual of the spin density axial-vector. It follows that the
momentum Mki is the fundamental spin tensor of Weyssenhoff fluids [11,12], where (60)
is the constitutive condition and (61) the condition saying that it is only the completely
antisymmetric part of the spin density tensor that is excited. This is expected as the Dirac
spinor has a completely antisymmetric spin.

5. Spinlessness and Newton Mechanics
5.1. Classical Limit

At last, we discuss spinlessness. Such a case is obtained in the approximation

sa →0 (62)

and it means that we are losing quantum effects. Indeed, if we were not to choose natural
units, the spin would be seen to be proportional to h̄ and the limit h̄→0 is what would give
rise to the condition encoding the classical approximation.
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Notice also that the validity of the Dirac equation gives

∇iSi =2mΘ (63)

showing that β→0 is implied by Si →0 and stating that there can be no chirality if there is
no helicity. The present limit is therefore compatible with the limit that we discussed in the
previous section.

5.2. Point Particle

Let us then re-consider the momentum (35) as well as the energy density tensor (36) in
effective approximation and in this limit. We have

Pη =(m−2ϕ2X2/M2)uη (64)

and

Tρσ = 1
4 F2gρσ−FραFσ

α + 2ϕ2(m−2ϕ2X2/M2)uρuσ+2ϕ4X2/M2gρσ (65)

which next we discuss in view of their conservation laws.
To this purpose, set 2ϕ2=ρ with ρ being the density distribution of the material field.

The last two expressions now become

Pη =(m−ρX2/M2)uη (66)

and

Tρσ = 1
4 F2gρσ−FραFσ

α + ρ(m−ρX2/M2)uρuσ+ 1
2 ρ2X2/M2gρσ (67)

and for them we know that

∇αTαν =0 (68)

and

∇α(ρuα)=0 (69)

must be valid as a consequence of the Dirac spinorial field equations. Taking (66) into (67)
and the result into (68) and then employing (69) we arrive at

1
2 Fαπ∇σFαπ+Fαπ∇π Fσα−∇η FηαFσα + ρuν∇νPσ−∇σ p=0 (70)

where the pressure p=− 1
2 ρ2X2/M2 was used.

By employing now the Maxwell Equation (16) we obtain

ρuν∇νPσ =∇σ p+qρFσαuα (71)

which is the Newton equation of hydrodynamic motion.
In total absence of torsion, no pressure remains so that it becomes possible to simplify

the density on both sides and we reduce to the final

uν∇νPσ =qFσαuα (72)

as the Newton equation for the motion of material points.
It is important to remark that the Newton law has been obtained without any assump-

tion on localization for the matter distribution. With this we do not mean to imply that
matter distributions cannot be localized, but only that there is no need for this assumption.
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6. Conclusions

In this work, we have considered the Dirac spinor field theory re-formulated in terms of
the polar variables given by the ϕ and β scalars with the ua and sa vectors. After conversion,
the full relativistic quantum mechanics turn into a type of hydrodynamics in which 2ϕ2

is the density distribution and β is the chiral angle while ua is the velocity and sa is the
spin. This hydrodynamics is, therefore, an extension of the usual one since not only are the
density and velocity present, but the chiral angle and spin are also present.

However, the general construction can be restricted to the standard hydrodynamics
by removing these two extra variables. The general theory, with torsion in its effective
approximation, has the same thermodynamic features of a van der Waals gas, with van
der Waals pressure due to torsion being always negative since torsion is always attractive,
and with the temperature and internal energy being tied to the chiral angle. In the limit
β→0 (corresponding to the requirement of losing the phase difference between chiral parts)
the general theory reduces to that of a Weyssenhoff fluid with completely antisymmetric
spin. And, for sa →0 (corresponding to the condition of non-quantum limit) it reduces to a
Newton fluid in the presence of pressure due to torsion. By vanishing torsion, the usual
Newton equation for the motion of material points is eventually recovered.

Aside from allowing us to see that torsion is a form of pressure and that the chiral
angle can be interpreted like a type of temperature, the polar re-formulation of spinors
allows for the relativistic quantum mechanics to convert into a specific hydrodynamics,
whose variables may perfectly be visualized and, because of this, better understood.

The challenges of relativistic quantum mechanics have no resolution in a reformulation
of the theory alone, and many questions still remain. Nonetheless, questions that can be
answered more easily when made clearer will receive a boost by a Dirac spinor field theory
formulated in terms of variables that are visualizable.

In its polar form, the Dirac theory is precisely this.

Funding: This work has been carried out in the framework of activities of the INFN Research Project
QGSKY and funded by Next Generation EU through the project “Geometrical and Topological effects
on Quantum Matter (GeTOnQuaM)”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: There are no data associated with this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

In this appendix, we give a derivation of the polar form (18).
To begin, let us recall that we have assumed that Φ2+Θ2 ̸=0 in general. In this case,

the Fierz identity (10) tells us that UaUa >0 and thus Ua is time-like. It is a known result
of relativity that in such a case it is always possible to perform up to three boosts to bring
all three spatial components of such a vector to be equal to zero (conversely, one could
always generate such components by boosting, and this tells us that these components are
the spatial velocities, and so Ua is the velocity 4-vector).

Once these boosts have been performed, we are in the rest-frame. Because of the Fierz
identity (11) we also have that S0 = 0 in such a frame. Consequently, Sa has only spatial
components. By employing only rotations around the first and second axes, we can always
align the space part of Sa along, for example, the third axis. Namely, we are choosing the
system of reference with respect to which S1=S2=0 too.

What this means is that in our case it is always possible to perform a series of Lorentz
boosts and rotations for which the final result is that U1=U2=U3=S1=S2=0 identically.



Foundations 2024, 4 144

Let us now consider, in chiral representation, a general spinor field of the form

ψ=


ceiγ

deiδ

aeiα

beiβ

 (A1)

and impose U1 = U2 = U3 = 0 on it. After some very straightforward manipulation
we obtain

ab cos (β−α)= cd cos (δ−γ) (A2)

ab sin (β−α)= cd sin (δ−γ) (A3)

a2+d2=b2+c2 (A4)

which now have to be solved. The general solution of the above gives the rest-frame spinor
field according to

ψr=


± cos ωeiγ

± sin ωeiδ

cos ωeiα

sin ωeiαeiδe−iγ

ϕ (A5)

up to the sign of the ω function. We can now impose S1=S2=0 and proceed as before. It
is a matter of algebra to see that

ω=n π
2 (A6)

so that after some re-naming of variables we obtain the rest-frame spin-eigenstate spinor as

ψrs=


±e

i
2 ζ

0
e−

i
2 ζ

0

eiφϕ or ψrs=


0

±e
i
2 ζ

0
e−

i
2 ζ

eiφϕ (A7)

according to whether the axial-vector is aligned or anti-aligned with the third axis. Apart
from the direction of the third axis, it is enough to consider only one of the above. And the
sign can be re-absorbed through a shift of the ζ function. Therefore, it is enough to take

ψrs=


e

i
2 ζ

0
e−

i
2 ζ

0

eiφϕ (A8)

as the final form. We can use now the rotation around the third axis to remove a global
phase obtaining

ψrs=


e

i
2 ζ

0
e−

i
2 ζ

0

ϕ (A9)
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or equivalently

ψrs=ϕe−
i
2 ζπ


1
0
1
0

 (A10)

as rest-frame spin-eigenstate spinor. This form has been obtained by acting only with a
series of Lorentz transformations, which we can collect into a single one called L and hence
ψrs=Lψ where ψrs is the rest-frame spin-eigenstate spinor. By undoing the transformations
that takes the general spinor to its rest-frame spin-eigenstate form we can write

ψ=L−1ψrs (A11)

in general. Recalling that [L, π]=0 we obtain (18).
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