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Abstract: Extracellular matrix (ECM) proteins play crucial roles in the regulation of cell proliferation
and differentiation. We identified homologous genes encoding ECM proteins that are known to
associate with integrins in animal cells in red macroalga Neopyropia yezoensis. Four genes encoding
spondin domain-containing proteins (NySPLs) and eight genes encoding fasciclin domain-containing
proteins (NyFALs) from N. yezoensis were selected for bioinformatics and expression analysis in order
to obtain insights into the roles of ECM proteins for the life cycle. NySPLs had eight β-strands with
two contiguous α-helices, which were similar to those of the F-spondin domain of animals. NyFALs
had conserved H1 and H2 motifs and a YH motif between the H1 and H2 regions. Quantitative
reverse transcription polymerase chain reaction showed that NySPL1–3 and NyFAL8 transcripts were
highly accumulated in mature gametophytes that formed the spermatia. Furthermore, expressions of
all NySPLs were upregulated in response to the ethylene precursor 1-aminocylopropane-1-carboxylic
acid that induces gametogenesis. NyFAL1, 4 were highly expressed in sporophytes, whereas NyFAL2,
3, 5, 6, and 7 were overexpressed in gametophytes, especially at the vegetative stage. These findings
facilitate future research on ECM architecture in the unique life cycles of red macroalgae.
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1. Introduction

The extracellular matrix (ECM) not only provides structural support for organs and
tissues in the form of basement membranes but also regulates cell–cell communication
and signaling [1,2]. ECMs from macroalgae, which are commonly referred to as the cell
wall, are complex assemblages of cellulose, various hemicelluloses, and unique sulfated
polysaccharides (ex. agars and carrageenans) [3]. With regard to the research on ECMs,
many reports focus on the ECM polysaccharides, because they are main components of cell
wall structures in addition to useful materials for gel-forming agents, cosmetics, biofuels,
nutraceuticals, and pharmaceuticals [4].

ECM proteins are among the most important ECM components that regulate cell
proliferation and differentiation by binding to multiple interacting partners, such as other
ECM proteins and signal receptors [2,5]. In animal cells, integrins, which are a superfamily
of cell adhesion receptors, trigger various signal transduction events that modulate cell
behavior, such as adhesion, proliferation, polarity, differentiation, and gene expression, by
binding to ECM ligands [6,7].

The marine red algae Bangiophyceae, such as Neopyropia, Porphyra, and Pyropia, is
one of the most important marine aquaculture crops harvested for human food. Bangio-
phyceae has a heteromorphic life cycle, with alterations between its blade gametophyte
and filamentous sporophyte [8,9] (Figure 1). A previous study showed the gametophyte
and sporophyte of Bangiophyceae differ markedly in the composition of the ECM polysac-
charides [10]. In addition, the reproductive regions of Bangiophyceae gametophyte differ
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from vegetative regions in the sugar composition of ECMs [11–13]. Thus, ECM remodeling
appears to occur during the life cycle of Bangiophyceae species. However, in contrast to
ECM polysaccharides, our knowledge of the role of ECM proteins during the unique life
cycle remains limited in spite of the availability of Bangiophyceae genome data sets [14–16].
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phytes. In addition to the sexual life cycle, some species, such as Neopyropia yezoensis, have an asex-
ual life cycle in which asexual spores termed as archeospores (or monospores) are produced, which 
subsequently reproduce gametophytic thallus. VGA: vegetative gametophytes formed vegetative 
cells only; MGA: mature gametophytes formed sexual cells; VSP: vegetative sporophytes formed 
vegetative cells only; MSP: mature sporophytes formed conchosporangia. 

Bangiophyceae does not appear to possess integrin adhesion and signaling systems 
similar to animals. However, upon exploring the genomic data of N. yezoensis, we found 
homologs of ECM proteins that interact with integrins in animal cells, such as F-spondin 
and fasciclin. The spondin family, including F-spondin and Mindin, are the molecules that 
are attached to the ECM [17]. The F-spondin molecule consists of approximately 800 
amino acids that contains domains of homologous to reelin, FS domain, and multiple TSR 
repeats (five in invertebrate and six in vertebrate) [18], while Mindin contains an FS do-
main and one TSR domain [19]. Structural studies suggested that the FS domain, which 
exhibits a homology structure similar to that of the C2 domain functions as membrane-
targeting modules through Ca2+-dependent [20]. The F-spondin family, which was identi-
fied in animal species, including rats [21], Xenopus [22], Drosophila [19], and zebrafish [18], 
influences the patterning of the nervous system by promoting adhesion and outgrowth of 
commissural axon [23]. In contrast, members of the fasciclin I family of proteins (FAS1), 

Figure 1. Life cycle of the marine red alga Neopyropia yezoensis. The mature gametophytes of
Bangiophyceae form male (spermatia) and female gametes (carpogonia) during sexual reproduction.
After fertilization occurs, released zygotes (called carpospores) grow into filamentous sporophytes
(called Conchocelis). Mature sporophytes subsequently produce conchospores that are released from
the conchosporangia and settle on the substratum, where they germinate to form new gametophytes.
In addition to the sexual life cycle, some species, such as Neopyropia yezoensis, have an asexual life cycle
in which asexual spores termed as archeospores (or monospores) are produced, which subsequently
reproduce gametophytic thallus. VGA: vegetative gametophytes formed vegetative cells only; MGA:
mature gametophytes formed sexual cells; VSP: vegetative sporophytes formed vegetative cells only;
MSP: mature sporophytes formed conchosporangia.

Bangiophyceae does not appear to possess integrin adhesion and signaling systems
similar to animals. However, upon exploring the genomic data of N. yezoensis, we found
homologs of ECM proteins that interact with integrins in animal cells, such as F-spondin
and fasciclin. The spondin family, including F-spondin and Mindin, are the molecules that
are attached to the ECM [17]. The F-spondin molecule consists of approximately 800 amino
acids that contains domains of homologous to reelin, FS domain, and multiple TSR repeats
(five in invertebrate and six in vertebrate) [18], while Mindin contains an FS domain and
one TSR domain [19]. Structural studies suggested that the FS domain, which exhibits a
homology structure similar to that of the C2 domain functions as membrane-targeting mod-
ules through Ca2+-dependent [20]. The F-spondin family, which was identified in animal
species, including rats [21], Xenopus [22], Drosophila [19], and zebrafish [18], influences the
patterning of the nervous system by promoting adhesion and outgrowth of commissural
axon [23]. In contrast, members of the fasciclin I family of proteins (FAS1), which are
ancient extracellular proteins, are found in many vertebrates, invertebrates, plants, and
microorganisms [24]. FAS1 also participates in cell adhesion and communication for diverse
biological processes, such as axon guidance, morphogenesis, and cell proliferation [25,26].



Phycology 2022, 2 47

Mammalian FAS1 are thought to bind to different types of integrins that mediate mechani-
cal contact between the cytoskeleton and the ECM as well as transduce intracellular signals
using numerous associated proteins [24,27]. In higher plants, FAS1 domain proteins, named
FLAs, were identified as a group of hydroxyproline-rich glycoproteins (HRGPs) called
AGPs [28]. FLAs have a plethora of biological roles, such as the maintenance of cell wall
architecture, regulation of male gametophyte and seed development, and enhancement of
root growth and shoot regeneration [29–34].

Fossil records (ca.1000 Mya) of Bangiomorpha, which closely resemble the extant
Bangiophyceae, provide the oldest evidence of sexually reproducing eukaryotes, since it
is possible to observe both spore and gamete formation [35,36]. The findings imply that
Bangiophyceae species possess a primitive ECM remodeling mechanism for progression of
the life cycle. In the present study, we identified and characterized candidate ECM genes
including four spondin-like (NySPLs) and eight fasciclin-like (NyFALs) genes in N. yezoensis
that is harvested to produce nori in Japan toward our understanding of the role of ECM for
ancestral developmental and reproductive processes.

2. Materials and Methods
2.1. Algal Materials and Treatments

Leafy gametophytes and filamentous sporophytes of the N. yezoensis strain TU-1 [37]
were cultured at 15 ◦C in sterile vitamin-free Provasoli’s enriched seawater (PES; [38])
under a 10 h light/14 h dark photoperiod provided using cool-white, fluorescent lamps at
a light intensity of 40 µmol photons m−2 s−1, as described previously [39].

Vegetative gametophytes that microscopically formed only vegetative cells and mature
gametophytes that produced clusters of spermatangia were frozen with liquid nitrogen
and stored at −80 ◦C until the RNA was extracted for quantitative reverse transcription
polymerase chain reaction (qRT-PCR). Similarly, vegetative sporophytes that formed only
vegetative cells and mature sporophytes that produced conchosporangia were also frozen
and stored at −80 ◦C. Observation of vegetative and reproductive cells was performed by
a Leica DM 5000 B microscope.

In our previous study, gametophytes treated with Hsp90-inhibiting drugs, such as gel-
danamycin (GA) and radicicol (RAD), induced the formation of archeosporangia [40]. Thus,
to induce an asexual life cycle, vegetative gametophytes were cultured at 15 ◦C under a 10 h
light/14 h dark photoperiod in a PES medium containing 5 µM RAD (Cayman Chemical
Company) that was prepared by dissolving RAD in dimethyl sulfoxide (DMSO) for 7 days.
Simultaneously, the control experiment was conducted using a DMSO-containing culture
at concentrations corresponding to the same volume of the reagent. Alternatively, to induce
sexual life cycle, vegetative gametophytes grown to a blade length of 20–30 mm were used
for transcriptional analyses under 1-aminocylopropane-1-carboxylic acid (ACC) treatments.
Then, for ACC treatments, cultured algae were treated with PES medium containing 50 µM
ACC (Tokyo Chemical Industry, Tokyo, Japan). The gametophytes that induced asexual
and sexual reproduction by the reagents were also frozen and stored at −80 ◦C.

2.2. Transcriptional Analysis of NySPL and NyFAL Genes

RNA extraction and qRT-PCR were performed as described previously [41]. Total RNA
from gametophytes and sporophytes (Fresh weight: 0.05–0.1 g) was separately extracted
using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) in liquid nitrogen with a
mortar and pestle, following the manufacturer’s instructions. Then, extracted RNA was
purified using the TURBO DNA-free kit (Invitrogen/Life Technologies, Carlsbad, CA, USA)
to obtain DNA-free RNA samples. Afterward, first-strand cDNA was synthesized from
0.5 µg total RNA using PrimeScript II 1st strand cDNA Synthesis Kit (TaKaRa Bio, Shiga,
Japan). For subsequent qRT-PCR, obtained cDNA was diluted 10-fold and 1.0 µL of the
diluted cDNA was used as a template in a 20-microlitre reaction volume. qRT-PCR was
performed using the KOD SYBR® qPCR Mix kit (TOYOBO, Osaka, Japan), following the
manufacturer’s instructions. Real-time PCR was then conducted using a LightCycler® 480
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System (Roche Diagnostics, Basel, Switzerland) under the following conditions: 30 s at
95 ◦C, followed by 40 cycles of 5 s at 95 ◦C and 31 s at 55 ◦C. Expression levels for each
NySPL and NyFAL gene were calculated using the 2−44Ct method [42], and the levels
were normalized to the level of the transcription elongation factor 1 (PyElf1) gene [43].
Finally, relative expression levels of the examined genes were calculated as a ratio of the
mRNA level to the transcription level at the vegetative gametophyte stage at 0 day after
ACC treatment. qRT-PCR was conducted in triplicate. Table S1 lists the primers used in
this study.

2.3. Bioinformatic Analysis

After the functional annotation of draft N. yezoensis genome sequence [14] was ana-
lyzed using Blast2GO software (https://www.blast2go.com/) (accessed on 8 June 2021)
with an E value cutoff of 1 × 10−4 [44], four genes encoding spondin domain-containing
proteins (NySPLs) and eight genes encoding fasciclin domain-containing proteins (Ny-
FALs) were identified by key word search on the annotated genome. Based on these
sequences, complete open reading frames were retrieved from N. yezoensis genome se-
quence data (ASM982973v1). The protein sequences from NySPLs and NyFALs were
blasted against NCBI database using BLASTp with the default parameter. Then, their
isoelectric points (pIs) and molecular weights (Mws) were calculated using ExPASy (http:
//web.expasy.org/cgi-bin/compute_pi/) (accessed on 5 August 2021) [45]. Conserved
domains were confirmed using the “ScanProsite” feature under ExPASy (http://tw.expasy.
org/tools/scanprosite/) (accessed on 5 August 2021), and the PROMALS3D multiple
protein sequences alignment program (http://prodata.swmed.edu/promals3d/promals3
d.php) (accessed on 21 August 2021) [46] was used to align the deduced amino acid se-
quences. PSORT II (https://psort.hgc.jp/form2.html) (accessed on 25 August 2021) [47]
was used to predict the algae’s subcellular localization, and the NetNGlyc 1.0 Server
(http://www.cbs.dtu.dk/services/NetNGlyc/) (accessed on 25 August 2021) [48] was
used to predict N-glycosylation sites using artificial neural networks that can examine
Asn-Xaa-Ser/Thr sequences.

3. Results
3.1. Characterization of Spondin Domain-Containing Proteins

The F-spondin family of proteins includes both F-spondin and M-spondin/Mindin
that share similarities in their F-spondin (FS) domains and thrombospondin repeat (TSR)
domains [18,19]. In this study, four genes encoding FS domain-containing proteins were
identified from the N. yezoensis genome sequence and were named NySPL1–4 (spondin-
like proteins) (Figure S1). Details of NySPL proteins, including protein length, molecular
weight, pI, and predicted subcellular localizations are listed in Table 1. The lengths of the
NySPL proteins ranged from 223 to 232 amino acid residues, whereas predicted pI values
ranged from 5.13 to 10.37. NySPLs had 45–49% similarity of the FS domain of human
F-spondin. Furthermore, BLAST analysis showed that the protein sequences of NySPLs
exhibited a 45–72% identity with FS domain-containing proteins from Porphyra umbilicalis.
All four NySPLs lacked a TSR domain.

Table 1. Characteristics of NySPL proteins identified in Neopyropia yezoensis genome.

Name Contig ID Size (aa) pI Mw (KDa) Predicted
Location

NySPL1 contig_17719_g4350 228 5.78 24.64 extracellular
NySPL2 contig_23899_g5890 223 10.37 24.18 extracellular
NySPL3 contig_29619_g7276 232 9.69 24.46 extracellular
NySPL4 contig_33564_g8106 224 5.13 22.55 extracellular

aa-amino acid; pI-isoelectric point; Mw-Molecular weight.

https://www.blast2go.com/
http://web.expasy.org/cgi-bin/compute_pi/
http://web.expasy.org/cgi-bin/compute_pi/
http://tw.expasy.org/tools/scanprosite/
http://tw.expasy.org/tools/scanprosite/
http://prodata.swmed.edu/promals3d/promals3d.php
http://prodata.swmed.edu/promals3d/promals3d.php
https://psort.hgc.jp/form2.html
http://www.cbs.dtu.dk/services/NetNGlyc/
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Secondary structure analysis revealed that all four NySPLs had eight β-strands with
two contiguous α-helices, which were similar to those of the FS domain from animals
(Figure 2A). Multiple sequence alignment showed that all NySPLs had two highly con-
served sequences, i.e., “PSPDW” and “DAGTD”, in the FS domain. These conserved
sequences comprised three aspartic acid residues, which functioned as a solvent-accessible
Ca2+-binding site [20]. The results also showed that the N-linked glycosylation site in the
FS domain from humans was conserved in NySPL1, 3. Likewise, a putative N-glycosylation
site was detected within other NySPL proteins. However, the integrin-binding LEV
triplet found in the FS domain of human, mouse, and rat mindins [49] was not conserved
in NySPLs.

3.2. Characterization of Fasciclin Domain-Containing Proteins

Although the overall sequence conservation among FAS1 domains is low, two con-
served sequence motifs called H1 and H2 exist [50]. Another conserved central [Phe/Tyr]-
His (YH) motif, with approximately 10 amino acids in each conserved region has also
been identified [50]. Prokaryotic representatives typically contain a single FAS1 domain,
whereas many eukaryotic FAS1 family members contain two or more FAS1 domains in
tandem [24]. In this study, eight genes encoding FAS1 domain-containing proteins were
identified from the N. yezoensis genome sequence and were named NyFAL1–8 (fasciclin-like
protein) (Figure S1). Details of the identified NyFAL proteins are listed in Table 2.
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Table 2. Characteristics of NyFAL proteins identified in Neopyropia yezoensis genome.

Name Contig ID Size (aa) pI Mw (KDa) Predicted
Location

NyFAL1 contig_12094_g2891 414 8.59 43.5 extracellular
NyFAL2 contig_12570_g3010 1124 4.06 114.15 membrane
NyFAL3 contig_15884_g3808 204 5.37 20.89 cytoplasmic
NyFAL4 contig_23059_g5692 611 11.25 61.98 membrane
NyFAL5 contig_29738_g7294 336 8.98 34.6 mitochondria
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The length of the identified NyFAL proteins ranged from 204 to 1124 amino acids,
and predicted pI values ranged from 4.06 to 11.25. NyFAL3, 5, 6, and 8 contained a single
fasciclin domain, whereas NyFAL1, 4, and 7 had two fasciclin domains. In contrast, NyFAL2
comprised five fasciclin domains. BLAST analysis showed that the protein sequences of
NyFAS exhibited 42–89% identities with fasciclin domain-containing proteins from P.
umbilicalis. Multiple sequence alignment results showed that the FAS1 domain in NyFALs
had conserved H1 and H2 motifs and the YH motif between the H1 and H2 regions
(Figure 2B). In addition, seven NyFALs (except for NyFAL5) had conserved aspartic acid
residues near the H2 region of the FAS1 domain, similar to those found in human, mice,
Drosophila, and sea urchins, which are proposed to be essential for cell adhesion activity [51].
It has previously been reported that FAS1 domain-containing proteins from higher plants
belong to arabinogalactan proteins (AGPs), named fasciclin-like AGPs (FLAs) [50]. Classical
AGPs contain at least 50% PAST (P, proline; A, alanine; S, serine; T, threonine), but FLAs
contain less than 35% PAST [52,53]. Among the NyFALs examined in this study, NyFAL4
had a pro-rich region located between two FAS1 domains and contained 64.5% PAST (Pro:
47.6%, Ala: 9.2%, Ser: 3.3%, Thr: 4.2%).

3.3. Expression Profiles of NySPL Genes at Different Developmental Stages

mRNA transcripts of NySPL genes were examined at different developmental stages
(Figure 3). Expression analysis showed that the transcripts of NySPL1–3 genes were
highly accumulated in mature gametophytes that formed the spermatia and NySPL4 had a
relatively low expression in sporophytes.

Our previous research revealed that the exogenous application of ACC, a precursor of
the phytohormone ethylene, induced gametogenesis in N. yezoensis [39,54,55]. Therefore,
the expression patterns of NySPL genes were examined in response to ACC (Figure 4). The
expression of NySPL1, 3, and 4 remarkably increased by 35.6 to 91.0-fold after 1 day of
ACC treatment, and this increase immediately decreased 7 days after treatment. In contrast,
the expression of NySPL2 increased after 1 day and gradually decreased later. In contrast
to sexual reproduction, no remarkable increase in the expression of all NySPL genes was
observed in gametophytes that formed archeosporangia (Figure S2).

3.4. Expression Profiles of NyFAL Genes at Different Developmental Stages

The amount of NyFAL1 and NyFAL4 mRNA was large in sporophytes (272.0-fold to
446.7-fold at vegetative sporophytes, respectively). In contrast, NyFAL2, 3, 5, 6, and 7 were
highly expressed in gametophytes, especially at the vegetative stage (except for NyFAL7)
(Figure 5). Results showed that NyFAL8 was highly expressed in mature gametophytes.
The exogenous application of ACC increased NyFAL8 expression levels by 2.0-fold after
3 days (data not shown). Similarly to the results obtained with NySPLs, none of the
NyFALs remarkable increased transcripts in gametophytes that formed the archeosporangia
(Figure S3).
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Expression levels were assessed using the NyElf1 gene for normalization. Data are presented as
means ± standard deviations (n = 3).
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Expression levels were assessed using NyElf1 for normalization. Results were then presented as
relative expression and compared with that in non-treated gametophytes (0 day). Data are presented
as means ± standard deviations (n = 3).
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formed vegetative cells only (VSP). In contrast, mature sporophytes formed conchosporangia (MSP).
Expression levels were assessed using the NyElf1 gene for normalization. Data are presented as
means ± standard deviations (n = 3).

4. Discussion

ECM serves as not only a physical scaffold to cells but also a dynamic structure re-
modeled by physiological cell conditions. An increasing body of evidence indicates that
ECM proteins are involved in the regulation of cell proliferation, migration, adhesion, and
differentiation through cell–cell communication and signal transduction in animals and
land plants [2,56]. Previous studies showed the different compositions of ECM polysac-
charides between gametophyte and sporophyte/vegetative and reproductive stages in
Bangiophyceae [10–13]. However, little is known about the role of ECM proteins associ-
ated with generation-specific (gametophyte and sporophyte) and reproduction-specific
ECM architecture in Bangiophyceae species. In this study, we identified homologous
genes encoding ECM proteins such as F-spondin and fasciclin that are known to interact
with integrins. The accumulation of knowledge of NySPLs and NyFALs are valuable for
understanding roles of ECM systems without integrin family as ECM receptors.
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Structural studies have revealed that the FS domain from animals exhibits a homology
structure similar to that of the C2 domain, which is a membrane-targeting domain involved
in signal transduction or membrane trafficking in a Ca2+-dependent manner [20,49,57].
The FS domain of F-spondin from humans was found to be a solvent-accessible Ca2+-
binding site, formed from D325, D354, and D358. Therefore, these results suggest that
the FS domain is responsible for part of the Ca2+-dependent membrane targeting of F-
spondin [20]. NySPLs have similar secondary structures to that of FS domains from
animals as well as three conserved aspartic acid residues that serve as Ca2+-binding sites
(Figure 2). In addition, qRT-PCR analysis showed that NySPLs transcripts increased in
gametophytes treated with ACC that is an inducer of the gametogenesis. Thus, NySPLs
may function as intercellular adhesion and signal transduction for sexual reproduction in a
Ca2+-dependent manner.

The spondin family from animals, including F-spondin and Mindin, consists of FS
domain and TSR domain [17,58]. On the other hand, the results of our study revealed that
all four NySPLs consisted of about 200 amino acids with FS domains, but they lacked a
TSR domain that promotes cell adhesion in various cell types [21]. In addition to NySPLs,
we found FS domain-containing proteins without TSR in other organisms, such as corals.
Although research on F-spondins and mindins that have a TSR domain as well as an
FS domain has been advanced, functional analysis of spondins lacking a TSR domain,
including NySPLs, is important for understanding the evolution of cell adhesion molecules.

In higher plants, FAS1 domain proteins, which are categorized as a group of HRGPs,
have a plethora of biological roles including the maintenance of cell wall architecture and
regulation of development [29–34]. Furthermore, a two-FAS1 domain-containing protein
obtained from the colonial green alga Volvox carteri, called Algal-CAM, influences the
formation of intercellular contacts during early embryogenesis [59]. A study showed that
Algal-CAM, in addition to these two FAS1 domains, contained Ser-Pro rich region, with Pro
residues that were likely hydroxylated [59]. These findings indicated that the FAS1 domain
from green algae and higher plants was closely related to HRGPs, which are important plant
cell wall components [28]. Among NyFALs examined in this study, NyFAL4 contains a
Pro-rich region between two FAS1 domains, and their transcripts were highly accumulated
in the sporophyte stage (Figure 5). The sporophyte of Bangiophyceae has a different cell
wall composition (main cell wall polymer is cellulose), morphology (filamentous), and
growth behavior (tip growth) compared to the gametophyte [10,60]. Thus, the preferential
expression of NyFAL4 in the sporophyte suggests that NyFAL4 may play an important role
in cell wall architecture for sporophyte-specific growth and development. In contrast to
NyFAL4, NyFAL2, 3, 5, 6, and 7 were highly expressed in gametophytes, which implicates
their involvement in development at the gametophyte stage, for example, maintenance of
blade shape.

Previous reports showed that FAS1 domain protein from Arabidopsis, AtFla4, localized
to the developing mucilage pocket of seed coat epidermal cells, and AtFla10 and AtFla17
were identified in a proteome of mature mucilage [61]. Among NyFALs, NyFAL8 transcripts
were highly accumulated in mature gametophytes that formed sexual cells (Figure 5).
During sexual reproduction in Bangiophyceae species, the mucilage is synthesized in
sexual cells, which is responsible for attachment to male and female gametes and the
protection of the spores until cell wall deposition [12,13,62]. These findings imply that
NyFAL8 may be involved in mature mucilage during N. yezoensis reproduction.

N-linked protein glycosylation modulates ECM protein conformation and activity,
thereby affecting cell–ECM interactions [63]. In this study, putative N-glycosylation sites
were detected within all four NySPL and four NyFAL proteins. Glycosylation reactions
are catalyzed by glycosyltransferases, which add sugar chains to various complex carbo-
hydrates [64]. Our previous study showed that the transcripts of the GT14 gene encoding
a homolog of N-acetylglucosaminyltransferase, which can transfer N-acetylglucosamine
(GlcNAc) to an acceptor substrate, were upregulated in N. yezoensis gametophytes that
induced sexual reproduction in response to treatment with ACC [65]. In the present study,
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we also found that expression levels of NySPLs increased after ACC treatment (Figure 4).
Thus, N-glycan structures of NySPLs during sexual reproduction should be investigated in
the future to elucidate the role of N-linked protein glycosylation in ECM protein activity.

5. Conclusions

N. yezoensis is proposed to be absent in the integrin system, but possesses integrin-
related ECM components, such as spondin domain-containing and fasciclin domain-
containing proteins. Bioinformatics and expressions analysis imply that NySPLs may
play an important role in intercellular adhesion and signal transduction for sexual repro-
duction in a Ca2+-dependent manner. NyFALs had conserved aspartic acid residues near
the H2 region of the FAS1 domain, which are proposed to be essential for cell adhesion
activity in animals. Among NyFALs, NyFAL4 had a pro-rich region located between two
FAS1 domains and exhibited sporophyte-preferential expression, suggesting that NyFAL4
may involve in cell wall architecture for filamentous morphogenesis and tip growth at
the sporophyte stage. In addition to the functional analysis of NySPLs and NyFLAs,
the identification of membrane receptors or other ECM proteins that interact with NyS-
PLs and NyFLAs can help us better understand not only the role of ECM remodeling in
Bangiophyceae life cycle but also its ancient cell adhesion mechanisms.

Supplementary Materials: The following supporting information can be downloaded at the follow-
ing website: https://www.mdpi.com/article/10.3390/phycology2010003/s1, Figure S1: Schematic
representations of the conserved domains of NySPLs and NyFALs. Domains were determined by
searching NySPL and NyFAL sequences in ScanProsite. FS; F-spondin domain, FAS1; Fasciclin 1
domain. The position of the putative N-glycosylation site is indicated using a triangle. Numbers
correspond to amino acid positions from the first methionine residue; Figure S2: Relative expression
levels of NySPLs genes in Neopyropia yezoensis during asexual reproduction. RNA samples were pre-
pared from gametophytes treated with Hsp90-inhibiting drug, radicicol (RAD), or dimethyl sulfoxide
(DMSO, control) for 7 days. Expression levels were assessed using NyElf1 for normalization. Results
were then presented as relative expression and compared with that in non-treated gametophytes
(0 day). Data are presented as means ± standard deviations (n = 3); Figure S3: Relative expression
levels of NyFALs genes in Neopyropia yezoensis during asexual reproduction. RNA samples were pre-
pared from gametophytes treated with Hsp90-inhibiting drug, radicicol (RAD), or dimethyl sulfoxide
(DMSO, control) for 7 days. Expression levels were assessed using NyElf1 for normalization. Results
were then presented as relative expression and compared with that in non-treated gametophytes
(0 day). Data are presented as means ± standard deviations (n = 3); Table S1: The list of primers used
for gene expression analysis by quantitative Real-Time PCR.
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