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Abstract: The quantile method transforms each complex object described by different histogram
values to a common number of quantile vectors. This paper retraces the authors’ research, including a
principal component analysis, unsupervised feature selection using hierarchical conceptual clustering,
and lookup table regression model. The purpose is to show that this research is essentially based on
the monotone property of quantile vectors and works cooperatively in the exploratory analysis of the
given distributional data.
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1. Introduction

The extension of various statistical methods has been developed for complex data
types, including histogram-valued symbolic data [1–4]. This paper considers the following
three research categories.

1.1. Principal Component Analysis (PCA)

The main purpose of traditional PCA is to transform a number of possibly correlated
variables into a small number of uncorrelated variables, which are called principal com-
ponents. In the generalization of PCA for complex data types, mainstream research uses
Pearson’s approach. For example, a summary of various generalized PCA for interval data
are given in [5]. The authors proposed a general method of PCA based on the quantification
method using generalized Minkowski metrics [6,7] and proposed the quantile method of
PCA for general distributional data [8,9].

1.2. Clustering and Unsupervised Feature Selection

In the generalization of hierarchical clustering for histogram-valued data, the main
problem is how to define an appropriate similarity or dissimilarity measure for the given
objects and/or clusters. A hierarchical clustering method based on the Wasserstein dis-
tance [10] and a nonhierarchical method based on the dynamical clustering method [11] are
typical examples. The authors also proposed a hierarchical conceptual clustering method
based on the quantile method [12].

In unsupervised feature selection, clustering is a useful tool for searching for infor-
mative feature subsets. By combining existing clustering methods with an appropriate
wrapper method, for example, we can achieve unsupervised feature selection. The authors
proposed an unsupervised feature selection method for general distributional data using
hierarchical conceptual clustering based on compactness [13]. Compactness plays multiple
roles, i.e., the measures of similarity between objects and/or clusters, cluster quality, and
feature effectiveness. This property greatly simplifies the task of feature selection.

1.3. Regression Models

The extension of linear regression models for histogram-valued variables was devel-
oped in [14–20]. In these studies, some functional forms between the response variable
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and the explanatory variable(s) have been proposed under the appropriately defined opti-
mality criterion. As another very different method, the authors proposed the lookup table
regression model (LTRM) for histogram data using the quantile method [21,22].

This paper retraces the aforementioned studies based on the quantile method and
describes the proposed methods working cooperatively in an exploratory analysis of the
given distributional data.

Section 2 describes the representation of objects by quantile vectors and bin rectan-
gles. Sections 2.1–2.3 describe the quantile method, which transforms each object with p
distributional feature variables into a description using a series of m + 1 p-dimensional
quantile vectors. It further describes these objects using a series of m p-dimensional bin
rectangles, each spanned by adjacent quantile vectors, where m is predetermined integer.
Sections 2.4 and 2.5 define the concept size of bin rectangles and the concept size of the
Cartesian join of objects. The Cartesian join generates a generalized concept for the two
given objects. Section 2.6 defines the measure of compactness for the two given objects
and/or clusters under the assumption of equal bin probabilities. Compactness plays the
central role in our unsupervised feature selection using hierarchical conceptual clustering.

Section 3 discusses the results of an exploratory analysis of two distributional datasets:
oil data and hardwood data. Section 3.1 summarizes the quantile method of PCA and
dual-PCA using rank order correlation coefficients under the monotone property of quan-
tile vectors. Section 3.2 describes the unsupervised feature selection method using the
hierarchical conceptual clustering based on compactness.

Section 3.3 proposes the lookup table regression model (LTRM) for distributional data
based on monotone blocks segmentation (MBS).

Section 4 includes a concluding summary.

2. Quantile Vectors, Bin Rectangles, and Compactness

Let U = {ωi, i = 1, 2, . . ., N} be the set of given objects, and let feature variables Fj,
j = 1, 2, . . ., p describe each object. Let Dj be the domain of feature Fj, j = 1, 2, . . ., p. Then,
the feature space is defined by the following:

D(p) = D1 × D2 × ··· × Dp. (1)

Each element of D(p) is represented by:

E = E1 × E2 × ··· × Ep, (2)

where Ej is the feature value of Fj, j = 1, 2, . . ., p.

2.1. Histogram-Valued Feature

For each object ωi, let each feature Fj be represented by a histogram value as follows:

Eij = {[aijk, aij(k+1)), pijk; k = 1, 2, . . ., nij}, (3)

where pij1 + pij2 + ··· + pijnij = 1 and nij is the number of bins that compose the histogram Eij.
Therefore, the Cartesian product of p histogram values represents the object ωi:

Ei = Ei1 × Ei2 × ··· × Eip. (4)

Because the interval-valued feature is a special case of a histogram feature with nij = 1
and pij1 = 1, the representation of (3) is reduced to an interval, as follows:

Eij = [aij1, aij2). (5)

It should be noted that the histogram representation is also possible for other feature
types, such as categorical multivalued and modal multivalued features [12,13].
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2.2. Representation of Histograms by Common Number of Quantiles

Let ωi ∈ U be the given object, and let Eij be a histogram value in (3) for a feature
Fj. Then, under the assumption that nij bins have uniform distributions, we define the
cumulative distribution function Fij(x) of the histogram (3) as follows:

Fij(x) = 0 for x ≤ aij1

Fij(x) = pij1(x − aij1)/(aij2 − aij1) for aij1 ≤ x < aij2

Fij(x) = F(aij1) + pij2(x − aij2)/(aij3 − aij2) for aij2 ≤ x < aij3

······

Fij(x) = F(aij(nij−1)) + pijnij(x − aijnij)/(aij(nij+1) − aijnij) for aijnij ≤ x < aij(nij+1)

Fij(x) = 1 for aij(nij+1) ≤ x.

Figure 1 illustrates a cumulative distribution function for a histogram feature value,
where c1, c2, and c3 are cut points for the case m = 4, and q1, q2, and q3 are the corresponding
quantile values.
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Our general procedure to have common representation for histogram-valued data is
as follows.

(1) We choose a common number m of quantiles.
(2) Let c1, c2, . . ., cm−1 be preselected cut points dividing the range of the distribution func-

tion Fij(x) into continuous intervals, i.e., bins with preselected probabilities associated
with m − 1 cut points.

(3) For the given cut points c1, c2, . . ., cm−1, we calculate the corresponding quantiles by
solving the following equations:

Fij(xij0) = 0, (i.e., xij0 = aij1)

Fij(xij1) = c1, Fij(xij2) = c2, . . ., Fij(xij(m−1)) = cm−1, and

Fij(xijm) = 1, (i.e., xijm = aij(nij+1)).

Therefore, we describe each object ωi ∈ U for each feature Fj using a (m + 1) tuple:

(xij0, xij1, xij2, . . ., xij(m−1), xijm), j = 1, 2, . . ., p (6)

and the corresponding histogram using:

Eij = {[xijk, xij(k+1)), (ck+1 − ck); k = 0, 1, . . ., m − 1}, j = 1, 2, . . ., p, (7)

where we assume that c0 = 0 and cm = 1. In (7), (ck+1 − ck), k = 0, 1, . . ., m − 1, denote bin
probabilities using the preselected cut point probabilities c1, c2, . . ., cm−1. In the quartile
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case, m = 4 and c1 = 1/4, c2 = 2/4, and c3 = 3/4, four bins, [xij0, xij1), [xij1, xij2), [xij2, xij3),
and [xij3, xij4), have the same bin probability: 1/4.

The number of bins of the given histograms may be mutually different in general.
However, we can obtain (m + 1)-tuples as the common representation for all histograms by
selecting an integer m and a set of cut points.

2.3. Quantile Vectors and Bin Rectangles

For each object ωi ∈ U, we define (m + 1) p-dimensional numerical vectors, which are
called the quantile vectors, as follows.

xik = (xi1k, xi2k, . . ., xipk), k = 0, 1, . . ., m. (8)

We call xi0 and xim the minimum quantile vector and the maximum quantile vector,
respectively. Therefore, m + 1 quantile vectors {xi0, xi1, . . ., xim} in Rp describe each object
ωi ∈ U together with cut point probabilities.

The components of m + 1 quantile vectors in (8) for object ωi ∈ U satisfy the inequalities:

xij0 ≤ xij1 ≤ xij2 ≤ ··· ≤ xij(m−1) ≤ xijm, j = 1, 2, . . ., p. (9)

Therefore, m + 1 quantile vectors in (8) for object ωi ∈ U satisfy the monotone property:

xi0 ≤ xi1 ≤ ··· ≤ xim. (10)

For the series of quantile vectors xi0, xi1, . . ., xim of object ωi ∈ U, we define m series of
p dimensional rectangles, which are called bin rectangles, spanned by adjacent quantile
vectors xik and xi(k+1), k = 0, 1, . . ., m − 1, as follows:

B(xik, xi(k+1)) = xik⊞xi(k+1) = [xi1k⊞xi1(k+1)] × [xi2k⊞xi2(k+1)] × ··· × [xipk⊞xip(k+1)]

= [xi1k, xi1(k+1)] × [xi2k, xi2(k+1)] × ··· × [xipk, xip(k+1)], k = 0, 1, . . ., m − 1,
(11)

where xik⊞xi(k+1) is the Cartesian join [6, 7] of xik and xi(k+1) obtained using the Cartesian
join xijk⊞xij(k+1) = [xijk, xij(k+1)], j = 1, 2, . . ., p.

Figure 2 illustrates two objects using two-dimensional bin rectangles in the quartile
case. Because a bin rectangle is regarded as a conjunctive logical expression, we also use
the term concept. Therefore, four bin rectangles describe each of these objects ωi and ωl as
a concept.
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2.5 Concept size of bin-rectangles 

   For each feature Fj, j = 1, 2,…, p, let the domain Dj of feature values be the following 

interval: 

    Dj = [xjmin, xjmax], j = 1, 2, …, p, where 

    xjmin = min(x1j0, x2j0,…, xNj0) and xjmax = max(x1jm, x2jm,…, xNjm).  

Definition 1 

Let an object ωiÎU be described by the set of histograms Eij in (9):  

We define the average concept size P(Eij) of m bins for histogram Eij by 

     P(Eij) = {c1(xij1 - xij0) + (c2 - c1)(xij2 - xij1) + ××× + (ck+c(k-1))(xijk - xij(k-1)) + ×××  

          + (cm-1 - cm-2)(xij(m-1) - xij(m-2)) + (1 - cm-1)(xijm - xij(m-1))}/|Dj|,  

          ={c1|xij0⊞xij1| + (c2 - c1)|xij1⊞xij2| + ××× + (ck+c(k-1))|xij(k-1)⊞xijk| + ×××  

        + (cm-1 - cm-2)|xij(m-1)⊞xij(m-2)| + (1 - cm-1)|xijm⊞xij(m-1)|}/|Dj|, j = 1, 2, ..., p,          (14) 

where xij(k-1)⊞xijk defines the Cartesian join of xij(k-1) and xijk as the interval spanned by them, and 

where |Dj| and |xij(k-1)⊞xijk| are the length of the domain and the k-th bin, respectively  

The average concept size P(Eij) satisfies the inequality: 

    0 ≤ P(Eij) ≤ 1, j = 1, 2,..., p.                                                (15) 

Example 1 
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average concept size of four bins is 
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F1 

F2 

ωi 

ωl 

Figure 2. Representation of objects and bin rectangles in the quartile case.

2.4. Concept Size of Bin Rectangles

For each feature Fj, j = 1, 2, . . ., p, let the domain Dj of feature values be the follow-
ing interval:

Dj = [xjmin, xjmax], j = 1, 2, . . ., p,

where
xjmin = min(x1j0, x2j0, . . ., xNj0) and xjmax = max(x1jm, x2jm, . . ., xNjm).
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Definition 1. Let object ωi ∈ U be described using the set of histograms for Eij in (7). We define
the average concept size P(Eij) of m bins for histogram Eij as follows:

P(Eij) = {c1(xij1 − xij0) + (c2 − c1)(xij2 − xij1) + ··· + (ck − c(k−1))(xijk − xij(k−1)) + ···
+ (cm−1 − cm−2)(xij(m−1) − xij(m−2)) + (1 − cm−1)(xijm − xij(m−1))}/|Dj|.

(12)

The average concept size P(Eij) satisfies the inequality:

0 ≤ P(Eij) ≤ 1, j = 1, 2, . . ., p. (13)

Proposition 1.

(1) When m bin probabilities are the same, the average concept size of m bins is reduced to the form:

P(Eij) = (xijm − xij0)/(m|Dj|), j = 1, 2, . . ., p. (14)

(2) When m bin widths are the same size wij, we have:

P(Eij) = wij/|Dj|, j = 1, 2, . . ., p. (15)

(3) It is clear that:

wij = (xijm − xij0)/m. (16)

This proposition asserts that both extremes yield the same conclusion.

Definition 2. Let Ei = Ei1 × Ei2 × ··· × Eip be the description of p histograms in Rp for ωi ∈ U.
Then, we define the concept size P(Ei) of Ei using the arithmetic mean:

P(Ei) = (P(Ei1) + P(Ei2) + ··· + P(Eip))/p. (17)

From (13), It is clear that:
0 ≤ P(Ei) ≤ 1. (18)

Definition 3. Let P(B(xik, xi(k+1))), k = 0, 1, . . ., m − 1, be the concept size of m bin rectangles
defined by the average of p normalized bin widths:

P(B(xik, xi(k+1))) = {|xi1(k+1) − xi1k|/|D1| + |xi2(k+1) − xi2k|/|D2| + ··· + |xip(k+1) − xipk|/|Dp|}/p, k = 0, 1, . . ., m − 1. (19)

Then (12) and (19) lead to the following proposition.

Proposition 2. The concept size P(Ei) is equivalent to the average value of m concept sizes of
bin rectangles:

P(Ei) = (c1 − c0)P(B(xi0, xi1)) + (c2 − c1)P(B(xi1, xi2)) + ··· + (cm − c(m−1))P(B(xi(m−1), xim)), (20)

where c0 = 0 and cm = 1.

In Figure 2, two objects, ωi and ωl, are represented by four bin rectangles with the
same probability: 1/4. According to Proposition 2, object ωi has a smaller concept size than
object ωl.
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2.5. Concept Size of the Cartesian Join of Objects

Let Eij and Elj be two histogram values of objects ωi, ωl ∈ U with respect to the
j-th feature. We represent a generalized histogram value of Eij and Elj, which is called
the Cartesian join of Eij and Elj, using Eij⊞Elj. Let FEij(x) and FElj(x) be the cumulative
distribution functions associated with histograms Eij and Elj, respectively.

Definition 4. We define the cumulative distribution function for the Cartesian join Eij⊞Elj
as follows:

FEij⊞Elj(x) = (FEij(x) + FElj(x))/2, j = 1, 2, . . ., p. (21)

Then, by applying the same integer m and the set of cut point probabilities, c1, c2, . . ., cm−1,
used for Eij and Elj, we define the histogram of the Cartesian join Eij⊞Elj for the j-th feature as:

Eij⊞Elj = {[x(i+l)jk, x(i+l)j(k+1)), (ck+1 − ck); k = 0, 1, . . ., m − 1}, j = 1, 2, . . ., p, (22)

where we assume that c0 = 0 and cm = 1 and that the suffix (i + l) denotes the quantile values for the
Cartesian join Eij⊞Elj. We should note that x(i+l)j0 = min(xij0, xlj0) and x(i+l)jm = max(xijm, xljm).

Definition 5. We define the average concept size P(Eij⊞Elj) of m bins for the Cartesian join Eij and
Elj under the j-th feature as follows:

P(Eij⊞Elj) = {c1(x(i+l)j1 − x(i+l)j0) + (c2 − c1)(x(i+l)j2 − x(i+l)j1) + ···

+ (cm−1 − cm−2)(x(i+l)j(m−1) − x(i+l)j(m−2)) + (1 − cm−1)(x(i+l)jm − x(i+l)j(m−1))}/|Dj|

= {c1|x(i+l)j0⊞x(i+l)j1| + (c2 − c1)|x(i+l)j1⊞x(i+l)j2| + ···

+ (cm−1 − cm−2)|x(i+l)j(m−2)⊞x(i+l)j(m−1)| + (1 − cm−1)|x(i+l)j(m−1)⊞x(i+l)jm|}/|Dj|, j = 1, 2, . . ., p.

(23)

The average concept size satisfies the inequality:

0 ≤ P(Eij⊞Elj) ≤ 1, j = 1, 2, . . ., p. (24)

Proposition 3. When m bin probabilities are the same or m bin widths are the same, we have the
following monotone property:

P(Eij), P(Elj) ≤ P(Eij⊞Elj), j = 1, 2, . . ., p. (25)

Definition 6. Let Ei = Ei1 × Ei2 × ··· × Eip and El = El1 × El2 × ··· × Elp be the descriptions of
p histograms in Rp for ωi and ωl, respectively. Then, we define the concept size P(Ei⊞El) for the
Cartesian join of Ei and El using the arithmetic mean, as follows:

P(Ei⊞El) = (P(Ei1⊞El1) + P(Ei2⊞El2) + ··· + P(Eip⊞Elp))/p. (26)

From (24), it is clear that:
0 ≤ P(Ei⊞El) ≤ 1. (27)

Definition 7. Let x(i+l)k, k = 0, 1, . . ., m be the quantile vectors for the Cartesian join Ei⊞El, and
let P(B(x(i+l)k, x(i+l)(k+1))), k = 0, 1, . . ., m − 1 be the concept sizes of m bin rectangles defined by
the average of p normalized bin widths, as follows:

P(B(xik, xi(k+1))) = {|xi1k⊞xi1(k+1)|/|D1| + |xi2k⊞xi2(k+1)|/|D2| + ··· + |xipk⊞xip(k+1)|/|Dp|}/p, k = 0, 1, . . ., m − 1. (28)

Then, we have the following result:
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Proposition 4. The concept size P(Ei⊞El) is equivalent to the average value of m concept sizes of
bin rectangles:

P(Ei⊞El) = (c1 − c0)P(B(x(i+l)0, x(i+l)1)) + (c2 − c1)P(B(x(i+l)1, x(i+l)2)) + ··· + (cm − c(m−1))P(B(x(i+l)(m−1), x(i+l)m)), (29)

where c0 = 0 and cm = 1.

We have the following monotone property from Proposition 3 and Definition 6.

Proposition 5. When m bin probabilities are the same or m bin widths are the same for all features,
we have the monotone property:

P(Ei), P(El) ≤ P(Ei⊞El). (30)

This property plays a very important role in our hierarchical conceptual clustering in
Section 3.2.

2.6. Compactness and Its Properties

In the following section, we assume that the given distributional data have the same
representation using m quantile values with the same bin probabilities.

Definition 8. Under the assumption of equal bin probabilities, we define the compactness of the
generalized concept of ωi and ωl as follows:

C(ωi, ωl) = P(Ei⊞El) = (P(B(x(i+l)0, x(i+l)1)) + P(B(x(i+l)1, x(i+l)2)) + ··· + P(B(x(i+l)(m−1), x(i+l)m))/m. (31)

The compactness satisfies the following properties:

Proposition 6.

(1) 0 ≤ C(ωi, ωl) ≤ 1, normalization.
(2) C(ωi, ωl) = 0 iff Ei ≡ El and has null size (P(Ei) = 0).
(3) C(ωi, ωi), C(ωl, ωl) ≤ C(ωi, ωl), monotone property.
(4) C(ωi, ωl) = C(ωl, ωi), symmetric property.
(5) C(ωi, ωr) ≤ C(ωi, ωl) + C(ωl, ωr) may not hold in general.

Figure 3 illustrates the Cartesian join for interval-valued objects. We should note that
the compactness, C(ω1, ω2) = P(E1⊞E2) and C(ω3, ω4) = P(E3⊞E4), takes the same value as
the concept size. On the other hand, any (dis)similarity measures for distributional data
should take different values for the pairs (E1, E2) and (E3, E4). Therefore, a small-value
compactness requires that the pair of objects under consideration should be similar to each
other, but the converse is not true.
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3. Results and Discussion
3.1. Principal Component Analysis (PCA)

In standard numerical data of the size N objects by p variables, we captured macro-
scopic properties of the data on the factor planes using the principal components obtained
from the factorization of a p × p covariance matrix or a correlation matrix. In this paper, for
the given N objects by p distributional variables, we used the following procedures:

Quantile Method of PCA [8,9]

1. We transformed the given data of the size N objects by p distributional variables
into N × (m + 1) quantile vectors in the space Rp, where m is a preselected common
number of quantiles describing each histogram value. For each object, the essential
property of (m + 1) quantile vectors was that they satisfy the monotone property in
the space Rp.

2. We evaluated the covariate relations between each pair of p variables using the
Spearman or Kendall rank order correlation coefficient and obtained the correlation
matrix S. If N × (m + 1) quantile vectors followed a monotone structure, many off-
diagonal elements of S took large absolute values. Then, we expected the existence of
a large eigenvalue of S, and the corresponding eigenvector reproduced the original
monotone property of N × (m + 1) quantile vectors in the space Rp.

3. With the factorization of the correlation matrix S, we obtained factor planes using
the principal components on which each of N objects is represented by m series of
connected arrow lines from the minimum quantile vector to the maximum quan-
tile vector.

3.1.1. PCA of Oil Data

The oil data in Table 1 are composed of six plant oils and two animal fats described
using four interval-valued features and one nominal multivalued feature. Here, we used
the composition table in Table 2 for major acids. Each object is composed of acids from the
ordered acids by molecular weight. For each object, we assumed a unit interval for each
component acid assuming uniform distribution. Figure 4a shows the obtained cumulative
distribution functions, and Figure 4b contains the corresponding quantile functions. The
last column of Table 2 features seven quantiles calculated for each object. Table 3 shows the
oil data described using five interval values. For major acids, we cut 0% and 100% quantiles
to clarify the distinctions between objects, and we regarded 10% and 90% quantiles as the
new 0% and 100% quantiles. Table 4 features the first two principal components for the oil
data in Table 3. The two principal components have very high contribution ratios. In this
example, the first principal component is not the size factor. Specific gravity and iodine
value have very large positive weights.

Table 1. Oil data [6–9].

Object Specific Gravity Freezing Point Iodine Value Saponification Value Major Acids

Linseed [0.930, 0.935] [−27, −18] [170, 204] [118, 196] L, Ln, O, P
Perilla [0.930, 0.937] [−5, −4] [192, 208] [188, 197] L, Ln, P, S
Cotton [0.916, 0.918] [−6, −1] [99, 113] [189, 198] L, O, P, S
Sesame [0.920, 0.926] [−6, −4] [104, 116] [187, 193] L, O, P, S

Camellia [0.914, 0.917] [−21, −15] [80, 82] [189, 193] L, O, P, S
Olive [0.914, 0.919] [0, 6] [79, 90] [187, 196] Ln, O, P, S, A
Beef [0.860, 0.870] [30, 38] [40, 48] [190, 199] L, Ln, O, P, S, A
Hog [0.858, 0.864] [22, 32] [53, 77] [190, 202] L, Ln, O, P, S, A

L: linoleic acid, Ln: linolenic acid, O; oleic acid, P: palmitic acid, S: stearic acid, A: archaic acid.
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Table 2. Composition table of major acids.

Object Palmitic Acid
C16:0

Stearic Acid
C18:0

Oleic Acid
C18:1

Linoleic Acid
C18:2

Linolenic Acid
C18:3

Arachic Acid
C20:0

[0, 10%, 25%, 50%, 75%,
90%, 100%]

Linseed 0.07 0.04 0.19 0.17 0.53 0.00 [0, 1.75, 2.21, 4.06, 4.53, 4.81, 5]

Perilla 0.13 0.03 0.00 0.16 0.68 0.00 [0, 0.77, 3.56, 4.26, 4.63, 4.85, 5]

Cotton 0.24 0.02 0.18 0.55 0.00 0.00 [0, 0.42, 1.50, 3.11, 3.56, 3.84, 4]

Sesame 0.11 0.05 0.41 0.43 0.00 0.00 [0, 0.91, 2.09, 2.83, 3.42, 3.77, 4]

Camellia 0.08 0.02 0.82 0.07 0.00 0.00 [0, 2.00, 2.18, 2.49, 2.79, 2.98, 4]

Olive 0.12 0.02 0.74 0.00 0.10 0.01 [0, 0.83, 2.15, 2.49, 2.82, 4.02, 6]

Beef 0.32 0.17 0.46 0.03 0.01 0.01 [0, 0.31, 0.78, 2.02, 2.57, 2.89, 6]

Hog 0.27 0.14 0.38 0.17 0.01 0.03 [0, 0.37, 0.93, 2.24, 2.63, 3.65, 6]

Table 3. Oil data described using five interval values.

Object Specific Gravity Freezing Point Iodine Value Saponification Value Major Acids

Linseed [0.930, 0.935] [−27, −18] [170, 204] [118, 196] [1.75, 4.81]
Perilla [0.930, 0.937] [−5, −4] [192, 208] [188, 197] [0.77, 4.85]
Cotton [0.916, 0.918] [−6, −1] [99, 113] [189, 198] [0.42, 3.84]
Sesame [0.920, 0.926] [−6, −4] [104, 116] [187, 193] [0.91, 3.77]

Camellia [0.914, 0.917] [−21, −15] [80, 82] [189, 193] [2.00, 2.98]
Olive [0.914, 0.919] [0, 6] [79, 90] [187, 196] [0.83, 4.02]
Beef [0.860, 0.870] [30, 38] [40, 48] [190, 199] [0.31, 2.89]
Hog [0.858, 0.864] [22, 32] [53, 77] [190, 202] [0.37, 3.65]
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Table 4. The first two principal components for the oil data in Table 3.

Spearman Pc1 Pc2

Eigen values 2.77 1.80
Contribution(%) 55.30 35.94

Eigen vectors Pc1 Pc2

Specific gravity 0.584 0.034
Freezing point −0.448 0.379
Iodine value 0.578 0.012

Saponification value −0.077 0.721
Major acids 0.343 0.579
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Figure 5a shows the mutual position of five features, and specific gravity and iodine
value are highly covariate. In Figure 5b, each object is represented by an arrow line
connecting the minimum quantile vector and the maximum quantile vector. Beef and hog
are isolated from plant oils. On the other hand, linseed and perilla have larger concept
sizes and are separated from the other four plant oils.
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Figure 5. Result of PCA for the interval-valued oil data.

Table 5 demonstrates part of the oil data for quartile representation. We obtained
quartiles for four interval feature values assuming uniform distributions. Table 6 reveals
the first two principal components for the quartile case. The two principal components,
again, have very high contribution ratios and are very similar to the results of Table 4.
Figure 6 shows eight objects represented by four connected arrow lines from the minimum
quantile vector to the maximum quantile vector. The quartile representation affects the
shapes of objects, as indicated by the arrow lines.

Table 5. Part of the oil data by quartile representation.

Object Specific Gravity Freezing Point Iodine Value Saponification Value Major Acids

Linseed 0 0.930 −27.00 170.0 118.0 1.75
1 0.931 −24.75 178.5 137.5 2.21
2 0.933 −22.50 187.0 157.0 4.06
3 0.934 −20.25 195.5 176.5 4.53
4 0.935 −18.00 204.0 196.0 4.81

Table 6. The first two principal components for the quartile case of the oil data.

Spearman Pc1 Pc2

Eigen values 2.89 1.70
Contribution (%) 57.80 34.03

Eigen vectors Pc1 Pc2

Specific gravity 0.570 0.099
Freezing point −0.457 0.383
Iodine value 0.562 0.093

Saponification value −0.190 0.700
Major acids 0.339 0.588
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3.1.2. Dual PCA of Oil Data

In the oil data by quartile representation, we used data in the form of (8 × 5 quantile
values) × (5 variables). We replaced the positions of eight objects and five variables as
(5 × 5 quantile values) × (8 objects). Using the factorization of Spearman’s 8 × 8 rank
order correlation matrix, we obtained the results in Table 7. The sum of the contribution
ratios is large, and the first principal component is the size factor in dual PCA. The scatter
plot of Figure 7a is consistent with the results in Figures 5b and 6. In Figure 7b, specific
gravity and iodine value have small concept sizes and are mutually covariate. Similarly,
freezing point is covariate with saponification value. In between these two groups, major
acids shows the largest concept size.

Table 7. The first two principal components for dual PCA of the oil data.

Spearman Pc1 Pc2

Eigen values 4.32 2.71
Contribution (%) 53.95 33.83

Eigen vectors Pc1 Pc2

Linseed 0.26 −0.45
Perilla 0.30 −0.40
Cotton 0.47 0.08
Sesame 0.47 −0.04

Camellia 0.44 −0.02
Olive 0.42 0.24
Beef 0.12 0.54
Hog 0.11 0.53
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Figure 7. Result of dual PCA for the oil data.

3.1.3. PCA of Hardwood Data

The data were extracted from the US Geological Survey (Climate—Vegetation Atlas
of North America) [23]. The number of objects is ten, and the number of features is eight.
Table 8 shows quantile values for the selected ten hardwoods under the variable mean
annual temperature (ANNT). For example, the existence probability of Acer East is 0% under
−2.3 ◦C and 10% in the range −2.3~0.6 ◦C, etc. We selected the following eight variables to
describe the objects (hardwood). The data formats for other variables F2~F8 are the same
as those in Table 8.

F1: Annual temperature (ANNT) (◦C).
F2: January temperature (JANT) (◦C).
F3: July temperature (JULT) (◦C).
F4: Annual precipitation (ANNP) (mm).
F5: January precipitation (JANP) (mm).
F6: July precipitation (JULP) (mm).
F7: Growing degree days on 5 ◦C base × 1000 (GDC5).
F8: Moisture index (MITM).

Table 8. The original quantile values for ANNT.

TAXON NAME
Mean Annual Temperature (◦C)

0% 10% 25% 50% 75% 90% 100%

ACER EAST −2.3 0.6 3.8 9.2 14.4 17.9 24
ACER WEST −3.9 0.2 1.9 4.2 7.5 10.3 21

ALNUS EAST −10 −4.4 −2.3 0.6 6.1 15.0 21
ALNUS WEST −12 −4.6 −3.0 0.3 3.2 7.6 19

FRAXINUS EAST −2.3 1.4 4.3 8.6 14.1 17.9 23
FRAXINUS WEST 2.6 9.4 11.5 17.2 21.2 22.7 24
JAGLANS EAST 1.3 6.9 9.1 12.4 15.5 17.6 21
JAGLANS WEST 7.3 12.6 14.1 16.3 19.4 22.7 27
QUERCUS EAST −1.5 3.4 6.3 11.2 16.4 19.1 24
QUERCUS WEST −1.5 6.0 9.5 14.6 17.9 19.9 27

The hardwood data are numerical data of the size {(10 objects) × (7 quantile values)} ×
(8 variables). Using the factorization of Spearman’s 8 × 8 rank order correlation matrix, we
obtained the results in Table 9. Figure 8 shows the mutual positions of eight variables by
two eigen vectors. We have two groups {ANNP, JANP, JULP, and MOISTURE} and {ANNT,
JANT, JULT, and GDC5}. Figure 9 shows the mutual positions of ten objects in the first
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factor plane. Each hardwood is represented by six arrow lines connecting the minimum
quantile vector to the maximum quantile vectors.

Table 9. The first two principal components of the hardwood data.

Spearman Pc1 Pc2

Eigen values 6.6908 0.9086
Contribution (%) 83.6346 11.3573

Eigen vectors Pc1 Pc2

ANNT 0.3618 −0.3630
JANT 0.3456 −0.4270
JULT 0.3718 −0.2076

ANNP 0.3585 0.3695
JANP 0.3366 0.3648
JULP 0.3522 0.1697
GDC5 0.3653 −0.3312
MITM 0.3347 0.4845
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We should note the following facts for the PCA results:

1. The first principal component is the size factor and the second is the shape factor, and
the sum of their contribution ratios is very high.

2. East hardwoods show similar line graphs, and the maximum quantile vectors take
mutually near positions.

3. West hardwoods are separated into two groups: {ACER WEST and ALNUS WEST}
and {FRAXINUS WEST, JUGLANS WEST, and QUERCUS WEST}. The last arrow
lines are very long, especially for ACER WEST and ALNUS WEST.

3.1.4. Dual PCA of Hardwood Data

We changed the places of objects and variables in the hardwood data. Then, we applied
the quantile method of PCA to the dual data in the form of {(8 variables) × (7 quantile
values)} × (10 objects). Table 10 contains the first two principal components for the dual
data, and Figure 10 shows the mutual positions of ten hardwoods by two eigenvectors.
West hardwoods are separated, again, into two different groups. Figure 11 shows the
mutual position of eight variables in the first factor plane. Each variable is represented
by a series of six-line segments connecting the minimum quantile vector to the maximum
quantile vector.

Table 10. The first two principal components of the dual hardwood data.

Spearman Pc1 Pc2

Eigen values 8.79 0.54
Contribution (%) 87.89 5.40

Eigen vectors Pc1 Pc2

AcE 0.323 0.156
AcW 0.305 0.308
AlE 0.317 0.354
AlW 0.303 0.496
FE 0.331 0.008
FW 0.305 −0.436
JE 0.318 −0.071
JW 0.309 −0.497
QE 0.331 −0.056
QW 0.320 −0.253
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We should note the following facts for the result of dual PCA:

1. The first principal component is the size factor and the second is the shape factor, and
the sum of their contribution ratios is very high.

2. We have two groups: {ANNP, JANP, JULP, and MITM} and {ANNT, JANT, JULT,
and GDC5}. MITM and GDC5 have very long line graphs compared with the other
members in each group.

3.2. Unsupervised Feature Selection Using Hierarchical Conceptual Clustering

This section describes our algorithm of hierarchical conceptual clustering and an
exploratory method for unsupervised feature selection based on compactness.

Let U = {ω1, ω2, . . ., ωN} be the given set of objects, and let each object ωi be described
using a set of histograms Ei = Ei1 × Ei2 × ··· × Eip in the feature space Rp. We assumed
that all histogram values for all objects have the same number, m, of quantiles. We also
assumed the same bin probabilities for all histogram values to keep the monotone property
in Proposition 5 and Proposition 6 (3).

3.2.1. Analysis of Oil Data

We applied the hierarchical conceptual clustering (HCC) algorithm [13] to the oil data
in Table 3. In this data, each object is described using interval values, i.e., histograms having
a single bin. The dendrogram in Figure 12 shows three explicit clusters (linseed, perilla),
(cotton, sesame, olive, camellia), and (beef, hog).
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Table 11 summarizes the values of the average compactness for each feature in each
clustering step. As clarified by bold format numbers, the most robustly informative features
are specific gravity and iodine value until step 6.

Table 11. Average compactness of each feature in each clustering step.

Feature
Average Compactness for Each Clustering Step

0 1 2 3 4 5 6 7

Specific gravity 0.066 0.080 0.091 0.099 0.114 0.131 0.475 1.000
Freezing point 0.090 0.099 0.154 0.178 0.204 0.338 0.631 1.000
Iodine value 0.090 0.095 0.109 0.137 0.185 0.222 0.339 1.000

Saponification value 0.202 0.224 0.254 0.283 0.327 0.405 0.560 1.000
Major acids 0.646 0.648 0.720 0.753 0.775 0.809 0.856 1.000

Figure 13 shows the scatter diagram of the oil data for the two selected robustly
informative features. This figure, again, shows three distinct clusters (linseed, perilla) and
(cotton, sesame, camellia, olive), and (beef, hog). They exist in locally limited regions, and
they are organized in a geometrically thin structure with respect to the selected features.
Figure 14 shows the dendrogram with concept descriptions of clusters with respect to
specific gravity and iodine value. This dendrogram clarifies two major clusters, plant oils
and fats, in addition to three distinct clusters, and the compactness takes smaller values
compared with the dendrogram in Figure 12. We should note that compactness plays the
role of the similarity measure between objects and/or clusters, the role of the cluster quality
measure, and the role of the feature effectiveness criterion.
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3.2.2. Analysis of Hardwood Data

To maintain the monotone property in Propositions 5 and 6 (3), we assumed quartile
representation for the hardwood data. Figure 15 is the result of PCA for the quartile
case. After the removal of 10% and 90% quantiles, the lengths of the first and the last
line segments greatly increased compared with the result in Figure 9, especially for the
west hardwoods.

Figure 16 is the result of our HCC using compactness. In this dendrogram, HCC
generated a cluster of east hardwoods in the order ((((AcE, JE), FE), QE), AlE), and ((JW,
FW), QW). Then, AcW was merged into the cluster of east hardwoods with a compactness of
0.847, and AlW was merged further with a compactness of 0.935. Because the compactness
of east hardwoods is 0.671, AcW and AlW are mutually similar compared with the east
hardwoods. As a result, we have three clusters (AcW, AlW), (AcE, AlE, FE, JE, QE), and
(FW, JW, QW). The PCA result in Figure 15 also supports these clusters.
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Table 12 shows the average compactness for each feature and clustering step. The most
robustly informative feature is ANNP, then JULP. However, we should note that JANT is
also important in steps 7 and 8.
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Table 12. Average compactness of each feature in each clustering step.

Step
Average Compactness of Each Feature

ANNT JANT JULT ANNP JANP JULP GDC5 MITM

0 0.161 0.160 0.178 0.115 0.113 0.133 0.180 0.196
1 0.220 0.228 0.239 0.144 0.140 0.172 0.246 0.242
2 0.229 0.234 0.268 0.186 0.197 0.191 0.256 0.323
3 0.238 0.243 0.282 0.202 0.217 0.203 0.268 0.338
4 0.279 0.269 0.322 0.223 0.243 0.220 0.292 0.358
5 0.404 0.395 0.475 0.337 0.372 0.350 0.455 0.541
6 0.490 0.472 0.570 0.388 0.428 0.401 0.525 0.614
7 0.601 0.578 0.692 0.571 0.595 0.505 0.646 0.739
8 0.829 0.777 0.938 0.768 0.810 0.887 0.899 1.000

Figure 17a,b show the scatter diagrams of ten hardwoods by informative feature.
Figure 17b is very similar to the PCA result in Figure 15. We should note, again, that
the compactness contributed to the selection of the important features. We should also
note that the minimum quantile vectors and the maximum quantile vectors describe the
differences between objects and/or clusters in the scatter diagrams under the selected
informative features.
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3.3. Lookup Table Regression Model

This section describes the lookup table regression model (LTRM) for histogram-valued
symbolic data [21,22]. For the given symbolic data table of the size (N objects) × (p variables),
we represented each object using (m + 1) p-dimensional quantile vectors, where m is a
preselected integer number. To the new numerical data table of the size {N × (m + 1)
quantile values} × (p variables), we applied the monotone blocks segmentation (MBS)
algorithm. The MBS interchange N × (m + 1) rows were organized according to the values
of the selected response variable, from smallest to largest. For each of the remaining p − 1
explanatory variables, i.e., columns, MBS executed the segmentation of variable values into
blocks so that the generated blocks, i.e., interval values, satisfied the monotone property.
MBS discarded columns that had only a single block. Therefore, MBS detected monotone
covariate relations existing between the response variable and explanatory variable(s).
Finally, MBS obtained a lookup table of the size N′ × p′, where N′ < N × (m + 1) and p′ < p.
Each element of the table was an interval value corresponding to the segmented block. We
realized the interval value estimation rule for the response variable by searching for the
nearest element in the lookup table.
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3.3.1. Illustration by Oil Data

We used the oil data in Table 3 to describe the basic ideas of MBS and LTRM. In these
data, each of eight objects is described using five interval values. Because an interval
is a special histogram composed of one bin, we split each object into two sub-objects,
the minimum sub-object and the maximum sub-object, described using five-dimensional
quantile vectors, i.e., the minimum quantile vector and the maximum quantile vector.
Table 13 contains the obtained quantile representation of our numerical data of the size
(8 × 2 quantile values) × (5 variables).

Table 13. Quantile representation of oil data.

Sub-Object Specific Gravity Freezing Point Iodine Value Saponification Value Major Acids

Linseed 1 0.930 −27 170 118 1.75
Linseed 2 0.935 −18 204 196 4.81
Perilla 1 0.930 −5 192 188 0.77
Perilla 2 0.937 −4 208 197 4.85
Cotton 1 0.916 −6 99 189 0.42
Cotton 2 0.918 −1 113 198 3.84
Sesame 1 0.920 −6 104 187 0.91
Sesame 2 0.926 −4 116 193 3.77

Camellia 1 0.916 −21 80 189 2.00
Camellia 2 0.917 −15 82 193 2.98

Olive 1 0.914 0 79 187 0.83
Olive 2 0.919 6 90 196 4.02
Beef 1 0.860 30 40 190 0.31
Beef 2 0.870 38 48 199 2.89
Hog 1 0.858 22 53 190 0.37
Hog 2 0.864 32 77 202 3.65

In this example, we selected iodine value as the response variable and the remaining
four as explanatory variables. In Table 14, we interchanged the given sixteen quantile
vectors, according to iodine value, from a minimum value of 40 to a maximum value of 208.
Then, we segmented each column into blocks to satisfy the monotone property. Because the
saponification value is composed of a single block, we omitted this from the explanatory
variables. Specific gravity is the most strongly connected to the response variable. In the
previous section, we obtained the data in Figure 14 using the unsupervised feature selection
method. MBS also has a feature selection capability under monotone covariate relations
between the response and explanation variables.

Table 15 contains the obtained lookup table, in which several intervals are composed
of reduced interval values. Based on this lookup table, we can estimate the iodine value for
each object by using specific gravity and freezing point.

The estimation rule used here is as follows:
Let [a1, a2] be the value of an explanatory variable of the given object.

1. If [a1, a2] is included in an interval, [b1, b2], of the explanatory variable in the lookup
table, we select the corresponding value, [c1, c2], of the response variable as the
estimated value.

2. If the minimum value, a1, is included in an interval, [b1, b2], corresponding to the
response value, [c1, c2], and the maximum value, a2, is included in a different interval,
[b3, b4], corresponding to the response value [c3, c4]. Then we determine that the
minimum response value of c1 or c2 according to a1 is near b1 or b2. Similarly, we
determine that the maximum response value of c3 or c4 according to a2 is near b3
or b4.

For example, the specific gravity of cotton is [0.916, 0.918] and is included in [0.916, 0.920].
Hence, the estimated iodine value is [80, 113]. On the other hand, the specific gravity
of sesame is [0.920, 0.926]. The minimum value of 0.920 suggests the maximum value
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113 of the response variable value [80, 113]. On the other hand, the maximum value of
0.926 suggests the value 116 of the response value [116, 116]. As a result, the estimated
iodine value is [113, 116]. Table 16 summarizes our estimated result.

Table 14. Monotone blocks segmentation (MBS) for oil data.

Sub-Object Iodine Value Specific Grav. Freezing p. Saponific. v. Major Acids
Beef 1 40 0.860 30 190 0.31
Beef 2 48 0.870 38 199 2.89
Hog 1 53 0.858 22 190 0.37
Hog 2 77 0.864 32 202 3.65
Olive 1 79 0.914 0 187 0.83

Camellia 1 80 0.916 −21 189 2.00
Camellia 2 82 0.917 −15 193 2.98

Olive 2 90 0.919 6 196 4.02
Cotton 1 99 0.916 −6 189 0.42
Sesame 1 104 0.920 −6 187 0.91
Cotton 2 113 0.918 −1 198 3.84
Sesame 2 116 0.926 −4 193 3.77
Linseed 1 170 0.930 −27 118 1.75
Perilla 1 192 0.930 −5 188 0.77

Linseed 2 204 0.935 −18 196 4.81
Perilla 2 208 0.937 −4 197 4.85

Table 15. Lookup table for oil data.

Iodine Value Specific Gravity Freezing Point Major Acid

[40, 77] [0.858, 0.870] [22, 38]
[40, 192] [0.31, 4.02]
[79, 79] [0.914, 0.914]

[79, 113] [0.916, 0.920]
[79, 208] [−27, 6]
[116, 116] [0.926, 0.926]
[170, 192] [0.930, 0.930]
[204, 204] [0.935, 0.935] [4.81, 4.81]
[208, 208] [0.937, 0.937] [4.85, 4.85]

Table 16. Estimated result using LTRM for oil data.

Fats and Oils Estimated by
Specific Gravity

Estimated by
Freezing Point

Estimated by
Major Acid Actual Value

Linseed [170, 204] [79, 208] [40, 204] [170, 204]
Perilla [170, 208] [79, 208] [40, 208] [192, 208]
Cotton [80, 113] [79, 208] [40, 192] [99, 113]
Sesame [113, 116] [79, 208] [40, 192] [104, 116]

Camellia [80, 113] [79, 208] [40, 192] [80, 82]
Olive [79, 113] [79, 208] [40, 192] [79, 90]
Beef [40, 77] [40, 77] [40, 192] [40, 48]
Hog [40, 77] [40, 77] [40, 192] [53, 77]

3.3.2. Illustration by Hardwood Data

In Section 3.1.3, we applied PCA to the hardwood data of the size (10 × 7 quantile
values) × (8 variables), and we recognized three clusters, (AcW, AlW), (AcE, AlE, FE, JE,
QE), and (FW, JW, QW), on the first factor plane. On the other hand, using dual PCA,
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we found two groups of features, {ANNP, JANP, JULP, MITM} and {ANNT, JANT, JULT,
GDC5}, in which MITM and GDC5 show very long line graphs in each group.

In this example, we selected GDC5 as the response variable and the remaining seven
as explanatory variables. Then, we applied MBS to the data of the size (10 × 7 quantile
values) × (8 variables). MBS selected only ANNT, JANT, and JULT as explanatory variables,
and we obtained a lookup table, which can be seen in Table 17.

Table 17. Lookup table of hardwood data.

GDC5 ANNT JANT JULT

[0.1, 0.1] [7.1, 7.1]
[0.1, 2.5] [−12.2, 10.3]
[0.1, 4.2] [−30.9, 6.8]
[0.3, 0.5] [9.7, 11.5]
[0.6, 0.9] [12.5, 14.8]
[1.0, 1.1] [14.9, 15.2]
[1.1, 6.8] [15.6, 30.4]
[2.7, 3.1] [11.2, 12.6]
[3.5, 3.6] [14.1, 14.6]
[3.7, 4.3] [15.0, 16.4]
[4.3, 6.5] [7.0, 15.3]
[4.5, 4.8] [17.2, 18.7]
[5.2, 5.5] [19.1, 19.9]
[5.6, 5.9] [20.6, 21.2]
[6.0, 6.5] [21.4, 22.7]
[6.5, 6.9] [16.9, 18.9]
[6.7, 7.0] [23.2, 24.4]
[6.9, 8.5] [31.3, 33.8]
[7.0, 7.0] [19.6, 19.6]
[8.5, 8.5] [26.6, 27.2] [26.2, 26.2]

In this table, ANNT shows the strongest connection to the response variable GDC5.
We used the test data in Table 18 to check the estimation ability of our lookup table. Table 19
summarizes the estimated result for our test data. In the range [0.1, 2.5] of GDC5, the
result requires further improvement because the PCA result in Figure 15 suggests the use
of clustering.

Table 18. Test data for the lookup table of hardwood data.

TAXON NAME
Quantiles (%)

0 10 25 50 75 90 100

BETURA
GDC5 0.0 0.3 0.6 0.9 1.5 3.2 5.7
ANNT −13.4 −8.4 −5.1 −1.0 3.9 12.6 20.3

CARYA
GDC5 1.4 2.1 2.6 3.4 4.5 5.2 6.7
ANNT 3.6 7.5 10.0 13.6 17.2 19.4 23.5

CASTANEA
GDC5 1.4 2.2 2.8 3.7 4.6 5.2 6
ANNT 4.4 8.6 11.3 14.9 17.5 19.2 21.5

CAPRINUS
GDC5 1 1.6 2 2.9 4.1 5.2 8.6
ANNT 1.2 4.4 7 11.4 16 19.2 28

TILIA
GDC5 1.0 1.6 1.9 2.4 3.0 3.6 5.4
ANNT 1.1 3.8 5.8 8.8 12.0 14.4 19.9

ULMUS
GDC5 0.8 1.3 1.7 2.6 3.9 5 6.8
ANNT −2.3 1.7 4.9 9.7 15.3 18.6 23.8
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Table 19. Estimated result for the test data.

TAXON NAME
Quantiles (%)

0 10 25 50 75 90 100

BETURA
GDC5 0.0 0.3 0.6 0.9 1.5 3.2 5.7

Estimated <0.1 [0.1, 2.5] 3.1 5.6

CARYA
GDC5 1.4 2.1 2.6 3.4 4.5 5.2 6.7

Estimated [0.1, 2.5] [3.1, 3.6] 4.5 [5.2, 5.5] [6.7, 7.0]

CASTANEA
GDC5 1.4 2.2 2.8 3.7 4.6 5.2 6

Estimated [0.1, 2.5] [2.7, 3.1] 3.7 [4.5, 4.8] [5.2, 5.5] [6.0, 6.5]

CAPRINUS
GDC5 1 1.6 2 2.9 4.1 5.2 8.6

Estimated [0.1, 2.5] [2.7, 3.1] [3.7, 4.3] [5.2, 5.5] 8.5<

TILIA
GDC5 1.0 1.6 1.9 2.4 3.0 3.6 5.4

Estimated [0.1, 2.5] [2.7, 3.1] [3.5, 3.6] [5.2, 5.5]

ULMUS
GDC5 0.8 1.3 1.7 2.6 3.9 5 6.8

Estimated [0.1, 2.5] [3.7, 4.3] [4.5, 4.8] [6.7, 7.0]

Under the assumption of quartiles, we applied HCC to the hardwood data, and we
obtained the dendrogram in Figure 16. From the results in Figures 15 and 16, we supposed
three clusters, C1 = (AcW, AlW), C2 = (AcE, AlE, FE, JE, QE), and C3 = (FW, JW, QW), in
the following discussion.

We applied MBS to each of three clusters, C1, C2 and C3. Tables 20–22 feature lookup
tables for these three clusters. In Table 20, JULT contributes to the range [0.1, 1.1] of GDC5.
On the other hand, in Tables 21 and 22, ANNT is strongly connected to the whole range
of GDC5.

Figure 18 shows the scatter diagram of the hardwood data for ANNT and GDC5, in
which all hardwoods exist in a narrow region. We used the estimation of GDC5 by ANNT
for cluster C2 because the lookup table for C2 covers the widest range of ANNT compared
with the other lookup tables. Figure 19 shows the graph of GDC5 for ANNT under cluster
C2, and Table 23 presents the estimation result for the test data. We could have a better
estimation result compared to the result in Table 19.

Table 20. Lookup table for cluster C1 = (AcW, AlW).

GDC5 ANNT JANT JULT

[0.1, 0.1] [7.1, 7.1]
[0.1, 0.9] [−12.2, 1.9] [−30.5, −10.1]
[0.5, 0.5] [11.3, 11.5]
[0.7, 0.7] [11.8, 12.8]
[0.9, 1.1] [14.4, 15.6]
[1.1, 1.1] [3.2, 4.2] [−7.6, −6.9]
[1.6, 1.6] [7.5, 7.6] [−1.3, −0.8] [17.5, 17.6]
[2.2, 2.2] [10.3, 10.3] [3.3, 3.3] [19.9, 19.9]
[4.8, 4.8] [18.7, 18.7] [10.8, 10.8] [28.3, 28.3]
[5.6, 5.6] [20.5, 20.6] [11.0, 11.0] [29.2, 29.2]

Table 21. Lookup table for cluster C2 = (AcE, AlE, FE, JE, QE).

GDC5 ANNT JANT JULT

[0.1, 0.1] [−10.2, −10.2] [7.1, 7.1]
[0.1, 0.6] [−30.9, −24.6]
[0.5, 0.5] [11.5, 11.5]
[0.5, 0.8] [−4.4, −1.5]
[0.6, 0.6] [13.2, 13.2]
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Table 21. Cont.

GDC5 ANNT JANT JULT

[0.8, 0.8] [−23.8, −22.7] [13.5, 14.8]
[1.0, 1.0] [15.2, 15.2]
[1.0, 1.2] [0.6, 1.3]
[1.0, 1.3] [−18.3, −14.6]
[1.1, 1.1] [16.5, 16.5]
[1.2, 1.2] [16.6, 16.6]
[1.3, 1.3] [1.4, 1.4] [17.4, 17.4]
[1.5, 1.5] [3.4, 3.8] [18.2, 18.4]
[1.5, 1.6] [−14.5, −12.3]
[1.6, 1.6] [4.3, 4.3] [19.0, 19.0]
[1.9, 1.9] [6.1, 6.1] [19.8, 19.8]
[1.9, 2.0] [−9.7, −8.0]
[2.0, 2.0] [6.3, 6.9] [20.3, 20.5]
[2.4, 2.4] [8.6, 8.6] [−6.0, −6.0]
[2.4, 2.5] [22.1, 22.2]
[2.5, 2.5] [9.1, 9.2] [−5.4, −5.1]
[2.9, 2.9] [11.2, 11.2] [−2.8, −2.8] [23.9, 23.9]
[3.1, 3.1] [12.4, 12.4] [−1.0, −1.0] [24.7, 24.7]
[3.5, 3.5] [14.1, 14.1] [1.7, 1.7]
[3.5, 3.7] [25.7, 25.8]
[3.6, 3.6] [14.4, 14.4] [2.3, 2.3]
[3.7, 3.7] [15.0, 15.0] [3.7, 3.7]
[3.9, 3.9] [15.5, 15.5] [3.8, 3.8] [26.4, 26.4]
[4.2, 4.2] [16.4. 16.4] [5.0, 5.0] [26.9, 26.9]
[4.7, 4.7] [17.6, 17.6] [7.0, 7.0]
[4.7, 4.8] [27.3, 27.7]
[4.8, 4.8] [17.9, 17.9] [7.5, 7.9]
[5.2, 5.2] [19.1, 19.1] [9.5, 9.5]
[5.2, 6.8] [28.0, 29.5]
[5.9, 5.9] [20.9, 20.9]
[5.9, 6.0] [12.4, 14.1]
[6.0, 6.0] [21.4, 21.4]
[6.7, 6.7] [23.2, 23.2] [18.1, 18.1]
[6.8, 6.8] [23.8, 23.8] [18.9, 18.9]
[7.0, 7.0] [24.2, 24.2] [19.6, 19.6] [31.8, 31.8]

Table 22. Lookup table for cluster C3 = (FW, JW, QW).

GDC5 ANNT JANT JULT

[0.3, 0.3] [−1.5, −1.5] [−12.0, −12.0] [9.7, 9.7]
[0.9, 0.9] [2.6,2.6] [−7.4, −7.4] [12.5, 12.5]
[1.4, 1.4] [6.0, 6.0] [−5.4, −5.4] [16.2, 16.2]
[1.6, 1.6] [7.3, 7.3] [−1.3, −1.3] [17.1, 17.1]
[2.0, 2.0] [9.4, 9.5] [−0.2, 0.2] [18.0, 18.9]
[2.7, 2.7] [11.5, 11.5]
[2.7, 3.0] [3.3, 3.5]
[2.7, 3.6] [20.0, 21.2]
[3.0, 3.0] [12.6, 12.6]
[3.5, 3.5] [14.1, 14.1] [5.6, 5.6]
[3.6, 3.6] [14.6, 14.6] [6.8, 6.8]
[4.3, 4.3] [16.3, 16.3] [8.8, 8.8] [22.7, 22.7]
[4.5, 4.5] [17.2, 17.2] [9.1, 9.1]
[4.5, 4.8] [24.2, 24.3]
[4.8, 4.8] [17.9, 17.9] [11.3, 11.3]
[5.4, 5.4] [19.4, 19.4] [12.5, 12.5] [25.3, 25.3]
[5.5, 5.5] [19.9, 19.9]
[5.5, 6.5] [14.7, 15.3] [27.4, 30.4]
[6.5, 6.5] [22.7, 22.7] [18.4, 18.4]
[8.5, 8.5] [26.6, 27.2] [26.2, 26.2] [31.3, 33.8]
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Table 23. Estimated result for the test data by lookup table for cluster C2.

TAXON NAME
Quantiles (%)

0 10 25 50 75 90 100

BETURA
GDC5 0.0 0.3 0.6 0.9 1.5 3.2 5.7

Estimated <0.1 [0.1, 0.5] 0.5 [0.8, 1.0] [1.5, 1.6] [3.1, 3.5] [5.2, 5.9]

CARYA
GDC5 1.4 2.1 2.6 3.4 4.5 5.2 6.7

Estimated 1.5 [2.0, 2.4] [2.5, 2.9] [3.1, 3.5] [4.2, 4.7] [5.2, 5.9] [6.7,6.8]

CASTANEA
GDC5 1.4 2.2 2.8 3.7 4.6 5.2 6.0

Estimated 1.6 2.4 2.9 3.7 4.7 5.2 6.0

CAPRINUS
GDC5 1.0 1.6 2.0 2.9 4.1 5.2 8.6

Estimated [1.0, 1.2] 1.6 2.0 2.9 [3.9, 4.2] 5.2 >7.0

TILIA
GDC5 1.0 1.6 1.9 2.4 3.0 3.6 5.4

Estimated [1.0, 1.2] 1.5 1.9 2.4 3.1 3.6 [5.2, 5.9]

ULMUS
GDC5 0.8 1.3 1.7 2.6 3.9 5 6.8

Estimated [0.5,0.8] [1.3, 1.5] [1.6, 1.9] [2.5, 2.9] [3.7, 3.9] [4.8, 5.2] 6.8
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Figure 18. Scatter diagram of hardwood data for ANNT and GDC5. 
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4. Conclusive Summary

The quantile method is a unified quantification method for histogram-valued sym-
bolic data. We retraced and summarized three research categories: principal component
analysis using the monotone property of quantile values, hierarchical conceptual clustering
and unsupervised feature selection using the compactness measure, and look up table
regression model using monotone blocks segmentation (MBS). In the following sections,
we summarize our results.

4.1. PCA and Dual PCA

For each object, (m + 1) quantile values of each variable satisfied the monotone property.
Based on this property, PCA was realized using the eigenvalue problem of the Spearman
correlation matrix.

4.1.1. Analysis of Oil Data

In the PCA of the oil data, three explicit clusters (beef, hog), (olive, camellia, cotton,
sesame), and (linseed, perilla) were obtained in the factor plane using the first two principal
components with a high contribution ratio. Linseed and perilla have larger line graphs
compared with the other objects. The quartile representation affected the shapes of the
objects, especially linseed. In the dual PCA using quartile representation, three groups,
(freezing point, saponification value), (major acids), and (specific gravity, iodine value) were
placed in different positions on the factor plane using the first two principal components
with a high contribution ratio. The specific gravity and iodine values have very small
concept sizes and are in mutually near positions. Major acids has a very large line graph
and is located between the two other groups.

4.1.2. Analysis of Hardwood Data

In the PCA of hardwood data, three clusters, (AcW, AlW), (AcE, AlE, FE, JE, QE), and
(FW, JW, QW), were obtained on the factor plane using the first two principal components
with a high contribution ratio. East hardwoods have similar shapes in a narrow region. On
the other hand, west hardwoods, especially the maximum quantile vectors, were spread
in a wide range on the factor plane. In the dual PCA, two groups (ANNP, JANP, JULP,
MITM) and (ANNT, JANT, JULT, GDC5) were obtained on the factor plane using the first
two principal components with a high contribution ratio. MITM and GDC5 have very large
line graphs in their respective groups.

4.2. Hierarchical Conceptual Clustering (HCC) and Unsupervised Feature Selection

The HCC algorithm is based on compactness under the assumption of equal bin prob-
abilities. Compactness is the concept size of the merged concept of two objects and/or
clusters. Compactness takes a 0–1 normalized value and satisfies the monotone property,
i.e., the merged concept size is larger than the concept sizes of the two given objects and/or
clusters. In each step of our hierarchical conceptual clustering, two objects and/or clusters
were merged to minimize compactness. This required the two merged objects and/or clus-
ters to be mutually similar and have small concept sizes. In this sense, compactness plays
the role of similarity measure between objects and/or clusters. On the other hand, to mini-
mize the merged concept size is equivalent to maximizing the dissimilarity of the merged
concept from the whole concept. Therefore, compactness plays the role of cluster quality. In
each clustering step, we evaluated the average compactness of objects and/or clusters for
each variable. Then, the informative features took smaller values through the successive
clustering steps. Therefore, compactness also plays the role of feature effectiveness criterion.
This fact greatly simplified the task of unsupervised feature selection.
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4.2.1. Analysis of Oil Data

In the dendrogram of the oil data using the HCC algorithm, three explicit clusters,
(beef, hog), (olive, camellia, cotton, sesame), and (linseed, perilla) are recognized again as
PCA results. However, (linseed, perilla) is isolated from other plant oils in the obtained
dendrogram. From the results of average compactness evaluated for each variable and
each clustering step, the most robustly informative variables are specific gravity and iodine
value. The dual PCA and scatter diagram of eight oils on the plane using these informative
variables also support the obtained result. In the dendrogram of the oil data using two
informative features, three clusters have smaller concept sizes than those in the dendrogram
using five variables, and they have mutually similar concept sizes. Furthermore, the cluster
(linseed, perilla) is merged with the cluster of other plant oils.

4.2.2. Analysis of Hardwood Data

The dendrogram of the hardwood data using the HCC algorithm shows two large
clusters, (FW, JW, QW) and (AcE, AlE, FE, JE, QE, AcW, AlW), at step 8. The results of
average compactness for each variable and each clustering step show the facts: ANNP
is informative during steps 1~8, then, JULP is important during steps 3~7, and JANT is
important in steps 7~8. Five east hardwoods exist in a narrow region on the plane using
ANNP and JULP, and west hardwoods spread out widely on the same plane. On the other
hand, on the plane using ANNP and JANT, we have three clusters, (AcW, AlW), (AcE, AlE,
FE, JE, QE), and (FW, JW, QW), and the scatter diagram is very similar to the result of PCA
on the factor plane using the first two principal components.

4.3. Lookup Table Regression Model (LTRM)

In the LTRM, we used the monotone blocks segmentation (MBS) algorithm. When each
of N objects was represented by (m + 1) p-dimensional quantile vectors, MBS interchanged
N × (m + 1) rows of the data table according to the values of the selected response variable,
from smallest to largest. For each of the remaining p − 1 explanatory variables, i.e., columns,
MBS executed the segmentation of variable values into blocks so that the generated blocks,
i.e., interval values, satisfied the monotone property. The MBS discarded single-block
columns and obtained a lookup table of the size N′ × p′, where N′ < N × (m + 1) and
p′ < p. We realized the interval estimation rule for the response variable by searching for
the nearest element in the lookup table.

4.3.1. Lookup Table of Oil Data

When each object was represented by the minimum and maximum quantile vectors,
we applied MBS to the data under the assumption that iodine value was the response
variable and the remaining four were explanatory variables. As a result, we obtained a
lookup table composed of three explanatory variables: specific gravity, freezing point, and
major acids. Specific gravity is the most important variable for explaining iodine value,
and this result is supported by the unsupervised feature selection for the oil data.

4.3.2. Lookup Table of the Hardwood Data

We applied MBS to the hardwood data described using seven quantile values under the
assumption that GDC5 was the response variable and the remaining seven were explanatory
variables. We obtained the lookup table, which is composed of three explanatory variables:
ANNT, JANT, and JULT. Among these, ANNT had the strongest connection to the response
variable. This result is supported by the dual PCA for the hardwood data. We applied
the test data, which is composed of six hardwoods, to the obtained lookup table. In the
range [0.1, 2.5] of GDC5, the result required further improvement. The result of the PCA
for the hardwood data also suggested the use of clustering. We applied MBS to each of
three clusters, i.e., two west hardwood clusters and one east hardwood cluster. The three
obtained lookup tables and the scatter diagram of hardwoods using GDC5 and ANNT
suggested the use of the lookup table for the east hardwood cluster because this lookup
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table covers the widest range of GDC5. In fact, we could have the improved estimation
results for our test data using the lookup table using the east hardwood cluster.

As a concluding remark, we should note that three research categories using the
quantile method are mutually cooperative for analyzing the given distributional data under
the common monotone property of quantiles.
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