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Abstract: Patulin (PAT) is one of the most common mycotoxins produced by Penicillium and As-
pergillus species and is often associated with fruits and fruit by-products, mostly apple derivatives,
although it has been detected in infant food and cereals. This toxin has shown a mutagenic and
carcinogenic effect. Thus, the development of rapid and accurate methods for PAT detection is
of utmost importance. Currently, the most widely used methods for the analysis and detection
of mycotoxins are based on chromatography, including liquid chromatography (HPLC) and gas
chromatography coupled to a mass detector (GC–MS), since these techniques provide high precision,
selectivity, and sensitivity. In this work we show the preliminary results in the development of a
GC–MS method for the detection of PAT without derivatization. Usually, the detection of mycotoxins
by GC–MS needs a derivatization of all non-volatile and polar compounds. This is one drawback
of gas chromatography compared to the liquid chromatographic technique for the determination of
mycotoxins. In this sense, the PAT monitoring method by GC–MS proposed here is an alternative
and useful technique to maintain high-quality foodstuffs and to ensure food safety.

Keywords: mycotoxins; GC–MS; patulin; food safety

1. Introduction

Food safety is a growing concern in our society due to the increase in chemical and
biological contaminants in the environment. Among these contaminants, mycotoxins are
highly toxic secondary metabolites of low molecular weight and volatility, synthesized by
certain groups of fungi [1,2]. The contamination of agricultural and other food products
with this type of toxins poses serious problems for both human and animal health [1].
Inadequate collection, drying, handling, packaging, storage, and distribution are some of
the factors that contribute to mycotoxin contamination the most [1,3]. Among mycotoxins,
patulin (PAT) is a highly polar lactone with low molecular weight (154.12 g/mol) (Figure 1).
It is produced by many species of the genera Penicillium, Aspergillus and Byssochlamys, Peni-
cillium expansum being one of the main producers and responsible for PAT contamination of
apples and their derived products [2,4]. PAT is soluble in water and in various solvents such
as ethanol, methanol, acetone, ethyl acetate, etc. It is slightly soluble in sulfuric acid and
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benzene, and stable under acidic conditions [1]. Compared to raw foods, the presence of
PAT in processed foods is not frequent, since the clarification, filtration, and enzymatic treat-
ment during juice processing and fermentation during winemaking significantly reduce
its content [1,5]. Acute exposure to PAT can cause gastrointestinal symptoms including
nausea, vomiting, ulcers, intestinal bleeding, and duodenal lesions, as well as impaired
intestinal barrier function accompanied by kidney damage [2], while long-term (chronic)
exposure includes neurotoxic, immunotoxic, immunosuppressive, genotoxic, teratogenic,
and potentially carcinogenic effects [4]. In relation to the analytical determination, methods
to confirm the presence of PAT usually include specific detection techniques, such as mass
spectrometry (MS), previous separation by liquid chromatography (LC) or gas chromatog-
raphy (GC). Today, with the majority of detection methods using the GC–MS methodology,
PAT is detected as its trimethylsilyl derivative (TMS-patulin) [6–8]. In general, mycotoxins’
detection by GC implies their derivatization. However, the derivatization process takes
time and leads to a delay in analysis, especially when a high number of food samples have
to be monitored. In this context, the objective of this work is to collect information regarding
the available chromatography methods for PAT detection using GC and go further in the
use of this technique to detect PAT without derivatization, so that it will be the starting
point for the development of a method which could be improved in speed.
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Figure 1. Patulin structure.

2. Material and Methods
2.1. Chemicals and Materials

Dichloromethane (CH2Cl2), acetonitrile (MeCN), and methanol (MeOH) were pur-
chased from Merck (Darmstadt, Germany). All chemical and reagents were of analytical
grade (GC). The standard of PAT was obtained from Sigma-Aldrich (5 mg). A stock solution
was prepared by dissolving 5 mg of PAT in 1 mL of pure methanol, obtaining a 5 mg/mL
solution. Then, this stock solution was used in further dilutions in dichloromethane, ace-
tonitrile, and methanol in order to obtain the appropriate working standard solutions
(10 µg/mL and 100 µg/mL). All solutions were kept at −20 ◦C before analysis.

2.2. GC–MS Equipment and Methodology

The analysis of patulin was performed on the Thermo Scientific Trace 1300 GC system
coupled with a Thermo Scientific ISQ 7000 single quadrupole mass spectrometer. The Trace
1300 GC module is integrated with the Chromeleon chromatography data system software.
The separation was achieved on a HP-88 30 m × 0.25 mm × 0.2 µm capillary column
from—Agilent. Helium was used as the carrier gas with a constant flow of 1 mL/min. The
oven temperature program was initially set at 80 ◦C for 1 min, and increased to 245 ◦C at
60 ◦C/min. After 3 min of hold time at 245 ◦C, the temperature was increased to 260 ◦C at
3 ◦C/min and then increased to 270 ◦C at 10 ◦C/min. Finally, 270 ◦C was held for 10 min.
Patulin was dissolved in dichloromethane, acetonitrile, and methanol; the injection volume
was 1 µL and the solvent delay was 2 min. The method operated in split injection mode
(1:50) with pulse injection at 35 psi for 0.5 min. The ion source temperature was 250 ◦C and
the transfer line temperature was 250 ◦C.
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3. Results and Discussion

Although PAT detection by GC is usually performed by derivatization, the bibliog-
raphy includes some works in which mycotoxins are not derivatized. To our knowledge,
there are just two studies in which GC–MS with negative ion chemical ionization allowed
the detection of underivatized PAT [9,10]. PAT without derivatization was successfully
analyzed and this fact encouraged us to work in this line and develop a method for rapid
detection of PAT without derivatization. For the method development, we first evaluated
the influence of the sample solvent on the chromatogram signal. For this, three commonly
used solvents were selected and compared; they were dichloromethane, acetonitrile, and
methanol [5,6,11,12]. For each solvent, two working standard solutions of 10 µg/mL and
100 µg/mL were prepared and injected. Out of the three solvents used, dichloromethane
produced the higher signal of PAT (Figure 2).
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Figure 2. Standard of patulin at 10 µg/mL and 100 µg/mL in dichloromethane without derivatization.

In this work, we showed that PAT can be analyzed without derivatization using a HP-
88 30 m × 0.25 mm × 0.2 µm capillary column from Agilent. Different columns have been
used to detect PAT. Table 1 shows the available GC–MS methodology for PAT. The most
used column for identifying PAT in apple juice is the capillary column HP-5ms [8,9,11,13]
with limits of detection (LOD) between 0.4 and 3 µg/L. Another study employs three
capillary columns of moderate polarity, DB-17 (0.25 µm i.d. × 30 m, 0.25 µm J&W), DB-1701
(0.25 µm i.d. × 30 m, 0.25 µm, J&W), and BPX-35 (0.22 µm i.d. × 25 m, 0.25 µm, BSE),
obtaining better LODs of 0.1 µg/L [7]. Future research will test the method with different
food samples which will determine the sensitivity of our methodology. Most available
methods for PAT are focused on apple and apple derivatives, although in the last decade,
the GC method has been developed for the detection of PAT and other mycotoxins in
cereals, wheat, rice, maize, spelt, oat, soy, and tapioca [14,15].
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Table 1. Available methodology for patulin detection by GC–MS.

Type of Food Type of Column Operating Conditions LODs LOQs Reference

With derivatization

Fruit juice

Column 50% phenyl, 50%
methyl-polysiloxane, SGE,

capillary (30 m × 0.25 mm ×
0.25 µm)

Initial T: 100 ◦C for 2 min,
ramped at 10 ◦C min−1 to

200 ◦C and then 20 ◦C min−1

to 300 ◦C, held for 3 min.
Carrier gas: He (constant flow:

1.42 mL/min).

5.8 µg/kg−1 13.8 µg/kg [12]

Apple juice

Three capillary columns
(moderate polarity)

(1) DB-17 (0.25 µm i.d. × 30 m,
0.25 µm J&W)

(2) DB-1701 (0.25 µm i.d. ×
30 m, 0.25 µm, J&W)

(3) BPX-35 (0.22 µm i.d. × 25 m,
0.25 µm, BSE)

Oven T: 80 ◦C (2 min)→
150 ◦C (10 ◦C/min)→ 230 ◦C

(5 ◦C/min, 15 min)
Carrier gas: He at constant

pressure of 100 kPa.

0.1 µg/kg 1 µg/kg [7]

Apple, Quince
Supelco SLB-5MS Column

(30 m × 0.25 mm ID × 0.25 µm
film thickness)

Oven T: 100 ◦C held for 1 min,
ramped to 180 ◦C at

10 ◦C/min, finally ramped to
280 ◦C at 30 ◦C/min and held
for 12.67 min (25 min total run

time). Carrier gas: He
(constant flow: 1 mL min).

0.4 µg/kg−1 1.6 µg/kg [5]

Apple juice

Column HP-5MS, crosslinked
5% phenylmethyl silicone (30 m
× 0.25 mm id × 0.25 µm film

thickness, Agilent)

Oven T: 100 ◦C for 2 min,
ramped at 10 ◦C/min to
200 ◦C, and then 200 to
300 ◦C, held for 3 min.

3 µg/L 10 µg/L [11]

Apple/Pear
Juice

Column J&W DB-5MS (30 m ×
0.25 mm id; 0.25 µm film

thickness)

70 ◦C (held for 1 min) to
320 ◦C at 25 ◦C/min (held for

2 min) at a constant flow
regime of 1 mL/min

n.i. n.i. [16]

Apple juice
Agilent HP-5MS column (30 m
× 0.25 mm × 0.25 µm film

thickness)

Oven T initially held at 50 ◦C
(3 min) and programmed to

280 ◦C at a rate of 10 ◦C/min,
then held for 5 min. Total run
time was 31 min. Carrier gas:
He (constant flow: 1 mL min).

0.4 µg/L 1.3 µg/L [13]

Apple juice

Column HP-5MS 5% phenyl
methyl siloxane cross-linked
capillary GC column (15 m ×
0.25 mm i.d., × 0.25 µm film

thickness)

Oven T: initially at 100 ◦C
(2 min) and programmed at
15 ◦C/min to 210 ◦C, then at

50 ◦C/min to a final T of
300 ◦C, which was held for

2 min. Total run time: 13 min.
Inlet: 280 ◦C. Transfer line:

250 ◦C.

2 µg/L 5 µg/L [8]

Apple juice
HP Ultra 2 crosslinked 5%

phenyl methyl silicone (25 m ×
0.2 mm), with 0.33 µm film

Oven T: 100 ◦C (2 min),
ramped at 10 ◦C/min to

200 ◦C and then 20 ◦C/min to
300 ◦C, held for 3 min.

Detector T: 300 ◦C. Injector T:
280 ◦C.

Carrier gas: He (constant flow:
1 mL min).

n.i. n.i [6]
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Table 1. Cont.

Type of Food Type of Column Operating Conditions LODs LOQs Reference

Without derivatization

Apple Juice
Column HP-5MS cross-linked
methyl silicone capillary (30 m

× 0.25 mm id)

T held at 80 ◦C for 1 min after
injection, programmed to

250 ◦C at 15 ◦C/min, and held
for 5 min. Carrier gas: He

n.i n.i [9]

Apple Juice

Capillary column (15 m ×
0.53 mm id) with a 1.5 µm film

of bonded phase methyl
polysiloxane

T held at 60 ◦C for 1 min after
on-column injection, heated at
15 ◦C/min to 260 ◦C, and held
at 260 ◦C for 5 min. Transfer
lines: 260 ◦C. Carrier gas: He

at gas flow of 25 cm/s.

n.i n.i [10]

Apple Juice

Capillary column (30 m ×
0.25 mm id) with a 0.25 µm film

of bonded phase
trifluoropropylmethyl

polysiloxane

T programmed from 60 ◦C to
260 ◦C 1 min after injection at
a rate of 20 ◦C/min. Transfer

lines: 260 ◦C, ion source:
200 ◦C. Injection: 260 ◦C.

Carrier gas: He at constant
flow: 40 cm/s (1.21 mL/min).

n.i n.i [10]

Abbreviations: T (Temperature), n.i. (not included), LOD (limit of detection), LOQ (limit of quantification).

4. Conclusions

PAT is one of the most toxic secondary metabolites produced by fungi. Their occur-
rence is growing significantly on vegetables and fruits like apples, pears, and grapes [1].
Toxicology data revealed that acute PAT intoxication results in ulceration, agitation, con-
vulsions, oedema, vomiting, and DNA damage in the brain, kidney and liver. Thus, the
EU Commission has established maximum levels for PAT in some foods including fruit
juices, spirit drinks and cider (50 µg/kg), solid apple products like compote and puree
(25 µg/kg), and products for infants and young children like apple juice and solid apple
(10 µg/kg) [2], and FAO/WHO have suggested a provisional maximum tolerable daily
intake (PMTDI) of 0.4 mg/kg body weight/day. Available data show that at least 30%
of apple juices may be contaminated with PAT at levels higher than 50 mg/L and that
consumers ingest as much as 250 mL of apple juice per day [1]. PAT has also been found
in seafood such as shellfish and cereals, which is a concern for several sectors of the food
industry. Thus, the monitoring of the contamination of PAT in several kinds of foods is
of the utmost importance to guarantee the products’ safety and quality. In this context,
we have found that the detection of PAT by GC–MS without derivatization can be a solid
analytical procedure for their qualitative detection.
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