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Abstract: In this paper, we study the dynamical and statistical properties of the cosmic web and
investigate their ability to infer the corresponding cosmological model. Our definition of the cosmic
web is based on the local dimensionality of the gravitational collapse that classifies the cosmic
web into four categories: voids, walls, filaments, and nodes. Our results show that each category
has its specific non-Gaussian evolution over time and that these non-Gaussianities depend on the
cosmological parameters. Nonetheless, the non-Gaussianities in each category exist even at early
epochs when the matter field has a Gaussian distribution. Additionally, by using deep learning
techniques, we show that leveraging the cosmic web information engenders an improved inference
of cosmological parameters, when compared to merely using the matter field.
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1. Introduction

The formation of structures in the Universe results from the highly non-linear dy-
namics (NLD) of gravitational collapse, and yields to a network (the cosmic web) of
interconnected voids, sheets, filaments, and knots; thus, this web pattern ranges from large
scales to small scales.

Previous works have shown that non-linearities depend on cosmology [1]; moreover,
more recent studies [2] prove that combining the power spectra of the cosmic web categories
improve the constraints on cosmological parameters. In addition, advances in N-body
simulations allow for having access to a large set of cosmological models to finely study
the non-linear evolution of the cosmic matter field. On the other hand, deep learning have
improved their ability to learn from complex, non-linear data and they have been widely
used in cosmology [3].

In this work, we use the large suite of Quijote simulations [4] to study the cosmic web
properties, and we show using a deep neural network that they indeed allow for information
beyond the matter field only, the paper is organised as follows: in Section 2 we describe our
cosmic web segmentation technique, in Section 3 we illustrate the dynamical properties of
the cosmic web environments and their dependence on the cosmological model, while, in
Section 4, we present the results of the cosmological parameters inference using the cosmic
web categories using a deep neural network. At the end, in Section 5, we discuss and explain
the results; all the results of our study are presented in details in two forthcoming papers [5,6].

2. TWEB Algorithm

To characterize the cosmic web [7], we employ the algorithm proposed in [8], which
is based on the local geometry of the collapse, in particular on the dimensionality that is
quantified by the number of positive tidal field’s eigenvalues in each point. The tidal field is a
hessian of the gravitational potential φ, and is computed from the smoothed matter density
field δ by solving the Poisson equation on a regular grid using a Fast Fourier Transform.
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The smooth density field is first computed by interpolating particles positions using a
Cloud-in-Cell (CIC) interpolation scheme, on a regular grid of 10243 cells, then smoothed
with a Gaussian kernel with a 2 Mpc·h−1 radius.

Once the tidal field is computed, each grid point is classified as being a part of a node,
filament, or wall, if it has, respectively, 3, 2, or 1 positive eigenvalues, while a grid point
with no positive eigenvalue is a part of a void.

3. Cosmic Web Properties
3.1. Observables

Once each particle/grid cell has been assigned to an environment, we have a den-
sity field for each category, from which we can compute its probability density function
P(δ), which is the number of grid cells between [δ, δ + dδ], and its power spectrum P(k),
the Fourier transform of the two-point correlation function. We can also compute scalar
observables such as the P(δ) moments or the mass- and volume-filling fractions in (i.e.,
how much mass/volume is occupied by a given category); in this section, we show the
non-Gaussianities evolution in the cosmic web, and illustrate the cosmic web dependency
on the cosmological parameters.

3.2. Data

To study the cosmic web properties, we use the Quijote suite of simulations [4], in
particular the high-resolution fiducial model, with 10243 particles in a box of 1 (Gpc·h−1)3,
and cosmological parameters [Ωm, Ωb, h, σ8, ns] = [0.3175, 0.049, 0.6711, 0.834, 0.9624] for
redshifts z = 127, 3, 2, 1, 0.5, 0.

3.3. Non-Gaussianities

The PDF is a good tool to visualize the non-Gaussianities and their evolution in
density distribution. Figure 1 shows that it is not possible to associate each category with a
particular range of densities, since there is no unique density range for a particular category,
but the density distribution of each category has its own evolution. For voids, the PDF
becomes more shifted towards weak density regions, which can be understood by the fact
that cosmic evolution implies more collapse of matter, which leaves more room for low
densities, while it is the opposite for nodes, which can be understood by the same reason,
since more collapse will generate denser regions; on the other side, walls, and filaments
span a much larger range of densities, where walls shift for low densities and filaments
towards high densities.

A more quantitative way to describe the PDFs behaviour is to look at the moments
of the PDFs [9], such as the mean < δ >, the standard deviation σ , the skewness S, and
kurtosis K defined, respectively, as:

• σ =
√
< (δ− < δ >)2 >

• S =
√
< (δ− < δ >)3 >/σ3

• K =
√
< (δ− < δ >)4 >/σ4 − 3

The latter two moments quantify the asymmetry and flatness in the distribution, and
they have zero values for a perfect Gaussian distribution.

Looking at the moments in Figure 2 highlight, in a more emphasized way, the non-
Gaussianties evolution of each cosmic web category, and they provide a quantitative
way to understand the non-Gaussianities in the initial density field, which is generated
with Gaussian fluctuations; this is confirmed by its low skewness (Smatter

z=127 ≈ 0.1), while,
for the categories, they already have larger skewness, so their initial distributions are
non-Gaussians, unlike the matter field.

The density means clearly show that the filaments and nodes evolve towards high-
density regions, while the walls and voids shift towards the low-density regions, and it is
remarkable that nodes and filaments are the most non-Gaussian categories since they have
the largest skewness and kurtosis.
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Figure 1. Evolution wrt to the cosmic epoch of the probability density function of each cosmic web
environment; the top left panel is for the whole matter field, while the bottom right panel is the P(δ)
of all categories at z = 0.
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Figure 2. Evolution of each of the four moments of the density field for each category wrt scale factor
a = 1

1+z ; for the mean density, we plot the absolute value on a logarithmic scale, but the mean density
for voids and walls are always negative.

3.4. Cosmological Dependence of CW Environment

Another remarkable property of the cosmic web is its dependence on cosmological
parameters; to account for this dependence, we use the 2000 Latin hypercube Quijote
simulations, which have the same dynamical properties of the fiducial model but with
varying cosmological parameters such that Ωm ∈ [0.1, 0.5], Ωb ∈ [0.03, 0.07], h ∈ [0.5, 0.9],
ns ∈ [0.8, 1.2], and σ8 ∈ [0.6, 1.0]. For each of the 2000 cosmologies, we compute the cosmic
web categories at z = 0, and their corresponding observables. In Figure 3, we show some
illustrations of some of the observables, and it clearly shows that the cosmic web properties,
whether the geometrical (i.e., mass and volume fractions), or dynamical (moments) depend
on the cosmological parameters. In addition, σ8 and Ωm appear to have the highest impact.
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Figure 3. Scatter plots of some cosmological parameters with colour maps corresponding to the
values of the observable written on the top of each panel.

4. Cosmological Parameters Inference

The results in the previous section show the dependence of the cosmic web cate-
gories on the cosmological parameters, and they motivated us to investigate cosmological
parameter extraction using the cosmic web properties.

4.1. Method

To perform the cosmological parameters’ inference, we employ a simple deep neural
network, to predict the five cosmological parameters given a physical observable.

We train the network on 1800 simulations, and we test it on 200 simulations with
cosmologies totally different from the ones it had trained on, the details of the architecture
can be found in Appendix A.

As a physical observable to feed to the network, we use the power spectrum up to
the Nyquist frequency kN = π

Ng
L = 3.2 h·Mpc−1; thus, our input is the power spec-

trum of a category (or a combination of categories) and our output layer is the five
cosmological parameters.

4.2. Performance Evaluation and Results

To evaluate the performance for every parameter, we have two methods:

• Visually, by plotting a predicted vs. true value scatter plot: the less scattered around
the identity line, the better the performance is (cf. Figure 4).

• Quantitatively by computing the relative squared error RSE =
∑

ntest
i=1 (yi

pred−yi
true)

2

∑
ntest
i=1 (yi

true−<ytrue>)2

where ytrue and ypred are, respectively, the true and predicted parameter, and < ytrue >
is the average of the true parameters; the RSE allows us to compare different inference
results: the lower the RSE, the better the performance is (cf. Table 1).

Table 1. Relative squared error for each cosmological parameter using different categories, the last
line is when we combine all the categories, and we obtain the best results except for Ωb, the best
results for each parameters are written in bold.

Category RSEΩm RSEΩb RSEh RSEns RSEσ8

Matter 0.0098 0.4507 0.5097 0.1085 0.0022
Voids 0.0405 0.4003 0.4322 0.0388 0.0034
Walls 0.0802 0.9419 0.8534 0.0340 0.0027

Filament 0.0105 0.3760 . 0.3975 0.0569 0.0018
Nodes 0.0047 0.5115 0.5379 0.1555 0.0055

All 0.0041 0.6317 0.3565 0.0198 0.0016
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Figure 4. Ground truth vs. predicted values scatter plot; using the column, we can compare how
the fit changes for one parameter using different categories. Horizontally, we can compare given
category predictions for different parameters.

5. Discussion

The results show that, after segmenting the matter field into the four categories of
the cosmic web, we obtain additional information of the dependence on the non-linear
dynamics on the cosmological model. This is clearly shown in the results of Figure 3, which
shows that different quantities of the cosmic web adopt different values when we change
the cosmological parameters.

In addition, this was confirmed when we used deep neural networks to extract cos-
mological parameters using information from the cosmic web categories, in particular the
power spectrum. This is shown in Table 1 where the RSE for each parameter is the lowest
when we include all the cosmic web information, except for Ωb, which is best predicted
by the filaments.

Moreover, looking vertically at Table 1 and Figure 4 demonstrates that every parameter
is better predicted by a particular category; for instance, ns is better predicted by large-scale
structures (voids and walls), and this can be understood since ns tilts the shape of the
linear P(k), which coincides with the full non-linear P(k) up to k ≈ 0.1 and corresponds
to a large-scale structure such as walls and voids. For Ωb, the filaments appear to be the
best tracers for it; this may imply that filaments span a scale that is in the order of the
Baryon acoustic oscillations (≈100 Mpc·h−1), causing them to be the most sensitive to
the density of baryons. The degradation of the accuracy of Ωb prediction when using all
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the categories combined can be justified by the fact that other categories (particularly the
walls) are insensitive to Ωb, so they play the role of a redundant information for Ωb when
combining all the power spectra.

On the other hand, Ωm and σ8 always have a low RSE; this is well in agreement with
Figure 3, which shows that cosmic web properties have regular behaviour with respect to
Ωm and σ8.
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Appendix A. DNN Architecture

We employ a multi-layers perceptron (MLP) architecture, and the architecture is:

• Input layer: working with one field, our input layer has 500 points (number of P(k)
points); when we combine all the fields, we stack all the power spectra creating an
input of 2500 points

• Hidden layers: In the case of one field, the hidden layers have 1024 neurones each;
in the case of combined fields, we use hidden layers with 2048 neurones. We also
use a dropout layer [10] of 0.3 rate between every two hidden layers; the number of
hidden layers was individually tuned for every observable and is summarized in the
table below.

Table A1. Summarizing architecture for different observables, we employ Adam [11] optimizer.

Observable Hidden Layers Learning Rate

P(k)—matter 2 5 × 10−6

P(k)—voids 2 1 × 10−6

P(k)—walls 3 1 × 10−5

P(k)—filaments 3 5 × 10−6

P(k)—nodes 3 1 × 10−6

P(k)—all 3 1 × 10−6

Figure A1. Exampe of a network with two layers of 1024 neurones with a dropout rate of 0.3.
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