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Abstract: With archaic coding techniques, there will be a time when it will be necessary to modernize
vulnerable software. However, redeveloping out-of-date code can be a time-consuming task when
dealing with a multitude of files. To reduce the amount of reassembly for Fortran-based projects, in
this paper, we develop a prototype for automating the manual labor of refactoring individual files.
ForDADT (Fortran Dynamic Autonomous Diagnostic Tool) project is a Python program designed
to reduce the amount of refactoring necessary when compiling Fortran files. In this paper, we
demonstrate how ForDADT is used to automate the process of upgrading Fortran codes, process the
files, and automate the cleaning of compilation errors. The developed tool automatically updates
thousands of files and builds the software to find and fix the errors using pattern matching and
data masking algorithms. These modifications address the concerns of code readability, type safety,
portability, and adherence to modern programming practices.
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1. Introduction

Software testing identifies any quality or performance issues within the software. In a
project environment, testing is used as a tool to provide feedback on the software’s current
state and to update the system’s requirements. Often, this requires significant resources or
time to deliver due to the coordination involving testing.

Project assembly such as compiling and building solutions are all necessary tools
in executing the implementation and testing phases of a software development lifecycle.
Notably, studies reveal that software validation and testing may cost upwards of 50% of the
development resources, which indicates how manual code implementation may throttle
software development [1,2]. By extension, since code verification must be performed
frequently to ensure correctness, this inadvertently contributes to a gradual increase in
overhead cost. Defect amplification, defined as a cascading effect of newly generated
errors in each developmental step, may be an unavoidable expense if it is left undetected.
Errors may cost upwards of three times the cost when periodic reviews are not part of the
design [3]. Indubitably, this sort of software testing model is unsustainable in the current
market, and it necessitates a more productive solution.

With respect to how resource-intensive testing may be, one approach to this dilemma
is to apply automation to improve the testing environment. In this case, there is a variety of
study work that demonstrates how automated regression testing can be optimized to fit
this criterion. Recent advances in unit testing utilize fault localization [4], selective fault
coverage [5], and regression algorithms [6] as a field of focus in automation. To this extent,
there is an increasing trend toward automation where developers practice improving
the testing quality of the software. According to a survey studying Canadian software
companies [7], many of the correspondents automate about 30% of the testing phase and
there is a ceiling for the degree of software automation in the testing environment. So, there
is a certain reliance on automation, and manual testing is still frequently used to cover
testing exceptions.
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1.1. Software Testing

There is a current demand to automate diagnostic tools such as a static analyzer [8],
which partially builds a framework that can detect semantic errors for the user, and
direct users to find the underlying errors in the post-analysis. There are commercially
available modular solutions [9,10] which apply applications to check for syntax errors.
These frameworks have features such as visual graphic interfaces that highlight the issues
and identify potential variables in their rigorous testing. There is a current demand to
create an automated system that can determine compilation errors and reduce the time
used to refactor those results.

An alternative approach includes applying test case data generation to assess the
structural integrity of the data coverage as it iterates through each subroutine junction.
As data coverage in testing involves defined specifications to validate with its system
requirements, there is a limit to the quantity of software testing depending on the scope of
the testing method. A dynamic approach to this dilemma is to implement path selection in
which the program processes through selective paths to assess the data coverage [11]. With
this method, test generated data are used to traverse through each junction until each path
has been attempted. Conversely, if a blocked path is encountered, this approach would
recursively navigate until a proper path is found.

1.2. Fortran

Fortran was one of the first high-level programming languages intended for math-
ematical computations used in sciences and engineering. The intuitive abstraction of
mathematical procedures enabled rapid development of numerical solutions to scientific
problems, at a time when most programs were still hand-coded in assembly language.
FORTRAN 77 built up a huge legacy, and many coding projects were developed using it
and continue to use it to this day. Since its first release, five Fortran standards have been
released. Many of the computer models used in scientific research have been developed in
Fortran over many years [12–14].

The Fortran language retains its high performance through its array-oriented design,
strong static guarantees, and its native support for shared memory and distributed memory
parallelism. High-Performance Fortran (HPF) provides high-level parallelization leading
to shorter runtime and higher efficiency [15]. There were about 14,800 citations in Google
Scholar mentioning FORTRAN 77 between 2011 and 2021, showing that Fortran is not
obsolete as many predicted it to be. Fortran is attractive to scientists because of its high-level
array support, low runtime overhead, predictable and controllable performance, ease of
use, optimization, productivity, portability, stability, and longevity [16–18].

However, since the FORTRAN 77 language was designed with assumptions and
requirements very different from today’s software requirements, code written using it has
inherent issues with readability, scalability, maintainability, type safety, and parallelization.
The evolutionary process of code development means that models developed in Fortran
often use deprecated language features and idioms that impede software maintenance,
understandability, extension, and verification. As a result, many efforts have been aimed at
refactoring legacy code to address these issues [16,17].

1.3. Fortran Refactoring

Refactoring is the process of changing a software’s internal structure while preserving
its external behavior [19]. Refactoring is usually performed using various operations,
including renaming attributes, moving classes, replacing obsolete structures, splitting
packages, and parallelizing the code [20]. Refactoring allows modification of code artefacts
to address new system requirements [21]. The general benefits of refactoring can be listed
as [22]:

• Improving readability and quality;
• Reducing the maintenance requirements;
• Facilitating design/interface changes;
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• Avoiding poor coding practices;
• Removing outdated constructs;
• Increasing performance and speed; and
• Parallelizing the code [23].

However, if not executed properly, refactoring can cause security risks due to unde-
sirable changes [24]. Preserving code’s behavior is the biggest challenge of automated
refactoring [25]. To successfully refactor a system, we need to do it in small steps, while
designing proper tests to make sure that the behavior of the code is not negatively affected
by internal changes [22].

Fortran has an emphasis on backward compatibility [26]. Anachronistic features
used in older versions worsen code readability and performance [21]. Fortran refactoring
makes the code easier to understand and maintain, while optimizing its performance and
portability [27].

Therefore, we advocate for the refactoring of legacy code as languages evolve to avoid
sedimentary programs with layers of past and present code and upgrading Fortran code
to a modern form, eliminating deprecated features and introducing structure data types.
This assists the maintenance, verification, extension, and understandability of code. These
upgrades produce a more readable Fortran program that includes safeguards to prevent
accidental mistyping of variables and unintentional changes in named constants during
program execution.

In this paper, we focus on a set of modifications to remove the inconsistencies and
troublesome structures that exist in a software evolved through several versions of Fortran.
These modifications address the concerns of code readability, portability, and adherence
to modern programming practices. FORTRAN 77 programs can be made entirely type
safe through program transformations resulting in fewer errors. There are a number of
restructuring and refactoring tools for Fortran [12–17,21–23,25–36]. Some of the modifica-
tions provided in the literature for a modern Fortran code are listed in Table 1 citing the
corresponding references.

Table 1. List of refactoring operations to upgrade a Fortran code.

Refactoring Modification References
Removal of IMPLICIT typing [17,22,33,35,36]

COMMON block elimination [16,17,22,33]

EQUIVALENCE statement elimination [16,17]

Change fixed form to free form [33,35,36]

Conversion of fixed-value variables to parameters [33,35,36]

Removal of GLOBAL variables [33,35]

Use of the INTENT attribute [17,33,35]

Replacement of REAL variables with CHARACTER variables [33]

Elimination of arithmetic IF statements [22,33,36]

Replace old-style DO loops and use END DO statements [21,22,27,33,36]

Use of allocatable arrays, CASE construct, and structures [33,35]

Clear commenting and time/date stamping [33,35]

Elimination of GO TO statements [22,33,36]

Use of individual subroutine files [21]

Remove tabs [35]

Replace obsolete operators and unreferenced labels [36]

Replace statement functions with internal functions [33]
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1.4. Project Description

The ForDADT (Fortran Dynamic Autonomous Diagnostic Tool) project is designed to
reduce the amount of refactoring necessary when compiling Fortran files. In the case where
there are programs that access many files, compilation time becomes exponentially costly
for developers. Rather than focusing on automating the entire environment, the ForDADT
tool is developed to partially automate common error cases from the Fortran program.
This project has been developed to bridge the refactoring and automation processes to help
improve developers’ efficiency when refactoring code. ForDADT is open source, and the
codes are available at https://github.com/LMAK00/fordadt.

Figure 1 demonstrates the manual algorithm for updating outdated syntax in the
system structure. This necessitates a considerable number of resources to meticulously
apply the appropriate fix to each component. It may be explicitly difficult to approach a
solution if these syntax errors scale in proportion to the size of the program file.
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The goal of this design is to develop an automated process of upgrading software
codes composed of different Fortran version standards and adapt those legacy source codes
to a modern design. The ForDADT project removes Fortran errors and updates the codes
written in older versions to version 19.0.5.281. The developed tool automatically updates
thousands of Fortran files and builds the software to find and fix the errors using pattern
matching and data masking algorithms.

A current dilemma with most available compilers is that they can detect several errors
before responding with a “catastrophic error” and terminating the system build. In the
case where a file has million lines of code, detecting a few lines of syntax errors at a time is
not a suitable solution if the user must recompile the application a multitude of times until
the file meets the build requirements. We tested our tool using a real commercial software
including thousands of files and millions of lines of code and evolved throughout decades.
The manual and file-based algorithms are impractical and prone to errors for software of
this scale.

The project is written in Python which checks for certain pattern matches in the Fortran
files to report the errors found. Every software update will be made in a series of steps [12]:

1. Identify and save the current program;
2. Apply a specific update;
3. Verify the new program version by comparison with the previous one;
4. Accept/reject the change; and
5. Document the change.

https://github.com/LMAK00/fordadt
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In its current form, it can detect some of the common errors and produce a general
set of solutions to solve those issues. The use of Python with Fortran and interfacing
them together has been realized successfully using different tools such as f90wrap and
F2PY [37,38]. ForDADT operates based on two subcomponents:

1. A file reader that identifies errors and creates an error log file; and
2. A file solution which extracts the error log file and fixes the issues of files.

The purpose of this paper is to develop an automation tool that can identify the relative
syntax errors in the file and implement a suitable patch for each element and eliminate the
necessity to continuously recompile the solution.

2. Methodology

A common issue when porting legacy Fortran source files to a modern compiler is
that the previous coding standard may not completely conform with the current practices.
There are cases where implementing one of the following changes listed in Section 1.3 may
cause a cascading effect of compiler errors. For example, when a file has million lines of
code, manually correcting a few lines of syntax errors at a time is not a suitable solution if
the user must recompile the application a multitude of times until the file satisfies the build
requirements. To this extent, there is an opportunity to apply analytic tools to improve the
quality control testing and minimize the manual code tracing in the system build.

Findings in related works reveal that automation has a net positive effect in reducing
the project’s timeframe and cost [2]. There is a significant improvement in quality control
resulting from reducing the number of errors in the testing process. This approach requires
a manual process of reworking solutions to fix the issues. The ForDADT project was
developed to challenge the possibility of automation in this sort of model.

This project can be divided into two fundamental parts: (1) error checker and (2) code
analysis. ForDADT addresses obsolete Fortran statements by extracting the necessary
source code segments as partial input data for the code analysis to process. The focus on
this design is to mitigate the degree of programmer intervention with the Python program.
Figure 2 shows the project flow diagram.
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With automation, ForDADT strives to improve productivity for program developers by
automating the debug process cycle to reduce the amount of necessary refactoring. Menial
errors can be corrected to a standardized template which helps with code readability as
well as ensuring that the errors encountered in the previous iteration are properly fixed.
Table 2 compares the features of manual and automated testing operations for basic and
complex tasks.
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Table 2. Cross-analysis between manual and automated testing operation.

Task Manual Operation Automated Operation

Basic Simple fix to clean the error
Easy to trace the error file

Standardized solutions
Fixes all errors at once

Optimum for large file compilations

Complex
Time consuming to check

May cause cascading issues
Difficult to trace for large files

Time consuming to scan every file
Automated corrections are explicitly stated

May not be reliable for non-standard operations

2.1. Build Path

The project relies on an output file produced by the Intel® Fortran compiler which
natively identifies the build error in the output terminal. The BuildLog file produced by
the compiler is then used as a reference to identify the errors in the current build. The
initial process for error checking is to extract the relevant data from the output file. If a
BuildLog file is provided by the Integrated Development Environment (IDE), the program
will run the html2text [11] application to convert the data into a readable text file for the
automation process. The html2text application extracts meaningful error data from the
IDE’s source html output file and translates the html file to a text file for post-processing. If
a BuildLog file does not exist, a corresponding BuildLog compatible with the program will
be provided.

2.2. Error File Automation

This initial step generates a pseudo-BuildLog file which stores the resulting data for
later processing. Pattern matching algorithms are used to identify Fortran coding patterns
and determine the existing errors in the files. With post-pattern matching analysis, this
framework reduces the necessity of a native compiler and acts as a standalone program.

The program runs calculations to compile the presented data into proper Fortran
software syntax. A subroutine is run to match the error cases from the analysis which
searches for the individual file and the file index. There are variations in the error case
categories, but all calculations rely on detecting the provided error case and applying an
appropriate solution for each individual error.

The pattern-matching step uses regular expressions to note the intrinsic functions
denoted in the Fortran compiler. In the current state, the error file can detect common
syntax errors that are not caught when porting over to Intel®Visual Fortran Compiler (ifort)
and flag the syntax errors for post-processing in the automation process. The generated
BuildLog file is a short form version of the existing template produced from the Visual
Studio IDE. For continuity purposes, the internal and standalone BuildLog files are both
expressed in a similar template so that the standalone application can digest input files into
the automation process.

The resulting code from the following extraction is a set of variables to be checked
for validity. An example of this is the variable validation step in the post-analysis of the
automation process. The previous implementation of the Fortran compiler did not re-quire
variable declaration. In contrast, this is a required element for the builder in the current
implementation.

Table 3 shows the description of the encountered compiler errors. For each syntax
error, ForDADT analyzes the properties of the source code if there are conflicting elements.
Examples are provided to show the common issues that may occur in the code. The
error/warning causes are highlighted in red.
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Table 3. List of common syntax errors from Fortran compiler with the causes highlighted in red.

Code Compiler Error/Warning Message Example
6186 This character is not valid in a format list. FORMAT(A5,TL,J)

6222 This IMPLICIT statement is not positioned correctly within the scoping unit.
SUBROUTINE
INTEGER XL
IMPLICIT NONE

6239 This is an invalid DATA statement object. SUBROUTINE
DATA XL

6278 This USE statement is not positioned correctly within the scoping unit.
SUBROUTINE
INTEGER XL
USE LIBRARY

6362 The data types of the argument(s) are invalid. CALL(XR)

6401 The attributes of this name conflict with those made accessible by a USE statement. USE MFI, ONLY: XL
INTEGER XL

6404 This name does not have a type, and must have an explicit type.
SUBROUTINE
IMPLICIT NONE
XL = 1

6418 This name has already been assigned a data type.
INTEGER XL
. . .
INTEGER XL

7319 This argument’s data type is incompatible with this intrinsic procedure; procedure
assumed EXTERNAL. CALL(XR)

3. Implementation

This section details ForDADT’s implementation of the automation procedure. The
error analysis executes by extracting individual lines of code from the existing Fortran
files and scans each line of code for certain keys used in its verification assessment. The
initial search extracts these Boolean flags and stores them in a routine checklist that notes
the priority order of the lines of code. Each line of code must consider the argument flags
in the checklist such as continuation lines, Fortran spacing rules, and a variety of general
Fortran code structures for ForDADT to diagnose the compiler errors in the automation
step. For instance, to identify Fortran declaration flags, the program uses Python’s built-in
text processing modules to denote the string literals of each line of code. The program
uses string-searching algorithms such as regular expressions (regex) [39] to search for
string patterns which are then separated into meaningful segments for diagnosis. Using
this approach, the program can detect key violation occurrences in the routine check and
send the appropriate data to the error file. To illustrate the pattern matching procedure, a
simplified example of this design is visualized with the following Figure 3.
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To understand how the algorithms are applied to identify the syntax errors in Fortran’s
coding language, the Fortran code analysis can be sorted into separate compositions:
compiler directive alignment, variable verification, and syntax correction. In this step,
ForDADT scans for local Fortran type files for code analysis. If an appropriate Fortran
file extension (.f, .f90, and .for) is found, the analyzer checks for indexing flags that are
incompatible with the current Fortran system requirements.

3.1. Compiler Directive Alignment

A prior feature of Fortran type casting defaults variable statements into INTEGER and
REAL arguments depending on the initial letter of the variable. This previous design is
inconvenient since it may lead to unexpected compiler behavior from mistyped declarations.
The “IMPLICIT NONE” statement declaration can remedy this issue by explicitly defining
variables in the source code, preventing variable conflicts from occurring. Consequently, all
implicitly declared data types must be specified in the local file. As a result, the syntax order
must be reordered to accommodate these changes. An example of this is given in Figure 4,
which presents how the algorithm manages improper indexing in the local source code.
The order of the precedent indices is crucial to the Fortran subprogram syntax such that
the statements must be ordered in the following sequence: subroutine block, “IMPLICIT
NONE” statement, and module “USE” statement. The algorithm logs each index of the
above statements and conditionally flags those misplaced indices for post-analysis.
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Figure 4. The algorithm for finding Fortran compiler error 6278 (USE statement positioned incorrectly).

3.2. Variable Verification

The implementation of the variable verification algorithm is a critical step for ForDADT.
To properly differentiate procedure statements in the source file, variable identification
is necessary to classify Fortran declaration statements into valid variables defined by the
local file. In this scenario, all variables must be explicitly declared due to the “IMPLICIT
NONE” declaration, whereas any undeclared variables will be flagged in the error output
file. Figure 5 shows the pseudocode of the extraction process used to detect variable
declarations in the following steps.
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Figure 5. The short-form algorithm for finding Fortran compiler error 6404 (explicit type missing).

3.2.1. Variable Generation

The initial search scans for local variable statements and stores the named variable
into a list. This is accomplished by using regex string manipulation to identify potential
variables in the file, in which each line of code is flagged when a declaration (e.g., INTEGER,
REAL, . . . ) is found. External linking files such as module subprograms also need to be
traversed to capture any variable statements declared in the subprogram. If an external file
declaration statement is found in the local file, ForDADT’s readError subroutine executes
the search for the selected external file in the root directory and produces a BuildLog file
identical to the error file. The code then transverses through the external file and adds
the external type declarations to the variable generation list from the local Fortran file
using addLibraryVariables and addLibraryFiles functions. Figure 6 shows a snapshot of a
BuildLog file showing extrinsic and undeclared variables and their location.

Software 2022, 1, FOR PEER REVIEW 9 
 

 

Algorithm 2: Finding Fortran error 6404 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

varList ← to store declared variables 
exList ← to store library variables 
for i in range of Fortran file do 
   A ← list[i] 
   if “C” or “*” or “!” in A then 
      skip the comment line 
   end if 
   if variable declaration in A then 
      varList ← internal variable declarations 
      exList ← external variable declarations 
   end if 
   strip all the excess data from files 
   varIndex ← 0 
   while varIndex ≠ end of line do 
      if varIndex ≠ varList and varIndex ≠ exList then 
         write “error#6404” + varIndex to file 
      end if 
      increment varIndex 
   end while 
end for 

Figure 5. The short-form algorithm for finding Fortran compiler error 6404 (explicit type missing). 

3.2.1. Variable Generation 
The initial search scans for local variable statements and stores the named variable 

into a list. This is accomplished by using regex string manipulation to identify potential 
variables in the file, in which each line of code is flagged when a declaration (e.g., INTE-
GER, REAL, …) is found. External linking files such as module subprograms also need to 
be traversed to capture any variable statements declared in the subprogram. If an external 
file declaration statement is found in the local file, ForDADT’s readError subroutine exe-
cutes the search for the selected external file in the root directory and produces a BuildLog 
file identical to the error file. The code then transverses through the external file and adds 
the external type declarations to the variable generation list from the local Fortran file 
using addLibraryVariables and addLibraryFiles functions. Figure 6 shows a snapshot of 
a BuildLog file showing extrinsic and undeclared variables and their location.  

 
Figure 6. Snapshot of a BuildLog file generated by checkError6404 that shows the location of extrin-
sic and undeclared variables. 

Figure 7 shows an example of removal of IMPLICIT NONE and explicit declaration 
performed by ForDADT in one of the software files. 

Figure 6. Snapshot of a BuildLog file generated by checkError6404 that shows the location of extrinsic
and undeclared variables.

Figure 7 shows an example of removal of IMPLICIT NONE and explicit declaration
performed by ForDADT in one of the software files.
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A sample program in Figure 9 demonstrates the pruning process that occurs during 
the selective data masking. Data masking hides specific data elements inside dataset [40]. 
With the selective data masking mentioned above, the process considers Fortran internal 
attributes such as user comments, conditional statements, and compiler directive state-
ments in the regex’s case matching algorithm. This masking procedure is illustrated in 
three steps:  
1. The initial regex pattern matching [41] that prunes the internal directives; 
2. The program truncates the string objects into legal identifiers; and 
3. The verification phase that matches the variable lines (e.g., N, M, FIB1, FIB2, FIBN in 

Figure 9) to the lines of code. 

Figure 7. Snapshot of a sample program showing the process of removing implicit declaration and
adding external variable declarations.

3.2.2. Selective Data Masking

The next phase is to remove the implicit function calls from the source file. These
implicit functions must be specifically pruned due to exception function parameters that
are not caught by the authentication process. An example of this is parameter settings such
as format descriptors which are implicitly understood by the Fortran compiler but not by
ForDADT. ForDADT performs selective function masking to remove these function calls
from the verification process. As the function calls are not required in this set of algorithms,
these functions must be mitigated from the computation data to prevent malformed variable
declarations in the detection phase.

The variable verification addresses this problem by procedurally stepping each line of
code to prune the function calls from the automation process. For instance, Figure 8 shows a
representation of how the function masking works for the verification step. The procedure
iterates in reversive order and tracks the string indices of the logic and mathematical
operators. If a closed parenthesis is followed by a function name, then the function call
will be removed from the line of code. The operator characters are used as a condition
statement to detect the beginning of the function name to assist in this process.
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A sample program in Figure 9 demonstrates the pruning process that occurs during
the selective data masking. Data masking hides specific data elements inside dataset [40].
With the selective data masking mentioned above, the process considers Fortran internal
attributes such as user comments, conditional statements, and compiler directive statements
in the regex’s case matching algorithm. This masking procedure is illustrated in three steps:

1. The initial regex pattern matching [41] that prunes the internal directives;
2. The program truncates the string objects into legal identifiers; and
3. The verification phase that matches the variable lines (e.g., N, M, FIB1, FIB2, FIBN in

Figure 9) to the lines of code.
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through the exhaustive list of keywords such as internal functions, declaration identifiers, 
and user-defined keywords, any undeclared variable detected is sent to the error file for 
processing. Figure 10 shows a list of intrinsic functions and keywords stored as a tuple. 

 
Figure 10. List of intrinsic functions and keywords used for variable verification. 
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the issue occurs. Once ForDADT acknowledges the corresponding data from the error 
BuildLog file, it checks for match cases for the appropriate solution in the application. For 
instance, to detect Fortran error #6404, ForDADT scans through the error file until it de-
tects a text line with the code test.for(35) error #6404: [var1], and extracts the relevant data. 
ForDADT executes an appropriate solution based on the Fortran file (test.for), line num-
ber (35), error code (6404), and variable (var1). This retrieved result is then matched with 
the appropriate error code and inserts the correct declaration identifier into the variable 
block that removes the obstructing issue detected by ForDADT. 
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The ForDADT validation method searches each Fortran file with a set of execution 

rules specific to the Fortran compiler error in question. The typical case structure in this 

Figure 9. Fibonacci subroutine written in FORTRAN 77 and the pruned results.

3.2.3. Variable Verification

In the variable verification phase, the stored variables are used to compare each
string in the file. The match list includes the variable generation from the above phase
as well as a list of intrinsic Fortran variables and functions to be cross-matched in the
verification process. An intrinsic list is necessary in the verification step because ForDADT
must oversee references to the functions undetected by the data masking algorithm. After
cycling through the exhaustive list of keywords such as internal functions, declaration
identifiers, and user-defined keywords, any undeclared variable detected is sent to the
error file for processing. Figure 10 shows a list of intrinsic functions and keywords stored
as a tuple.
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3.3. Syntax Correction

The syntax correction phase of the research work relies on the created error file. The
error file indicates the source file, index line, and the variable declaration statement where
the issue occurs. Once ForDADT acknowledges the corresponding data from the error
BuildLog file, it checks for match cases for the appropriate solution in the application. For
instance, to detect Fortran error #6404, ForDADT scans through the error file until it detects
a text line with the code test.for(35) error #6404: [var1], and extracts the relevant data.
ForDADT executes an appropriate solution based on the Fortran file (test.for), line number
(35), error code (6404), and variable (var1). This retrieved result is then matched with the
appropriate error code and inserts the correct declaration identifier into the variable block
that removes the obstructing issue detected by ForDADT.



Software 2022, 1 310

4. Algorithms

The ForDADT validation method searches each Fortran file with a set of execution
rules specific to the Fortran compiler error in question. The typical case structure in this
error detection phase involves two different scenarios: (a) general compiler directives and
(b) specific syntax errors for which the project uses string matching to analyze the target file.
The code extraction process generates a set of requirements appropriate to the scope of the
target compiler error. For instance, the error detection considers two case types (directives
or position rules) of compiler errors. This includes misplaced directive declarations that
do not follow the order precedence for variable declarations which are flagged for error
analysis in the code extraction process.

The main code that runs the program checks if a BuildLog exists in the file directory
and runs the appropriate subroutines. The html2text [11] is necessary to convert the
generated BuildLog file from the Visual Studio IDE.

Figure 11 illustrates a sample of the directive compiler flags that are passed to For-
DADT. The proper order of precedence is as follows: (1) function declaration block (sub-
routine), (2) implicit typing (IMPLICIT NONE), and (3) external module importing. The
automation process can note erroneous declarations and allocate resources to fix the issues
using Boolean flags. Misplaced declarations are flagged by ForDADT, which updates the
BuildLog file used for postprocess identification.
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       SUBROUTINE FIBONACCI(*) 
       IMPLICIT NONE 
       USE FORMULA1 
       INCLUDE ‘ARGS1.INS’ 
       INCLUDE ‘ARGS2.INS’ 
       … 
       INTEGER N, M, FIB1, FIB2, FIBN 
       … 
100    CONTINUE 
       END 
      … 
       IMPLICIT NONE 
       SUBROUTINE SUB_A(*) 
       INCLUDE ‘ARGS3.INS’ 
       USE FORMULA2, ONLY: FCALC 
       … 
       IF(FLAG .EQ. 0) THEN 
          CALL CALC(NI) 
       ENDIF 
       FORMAT (5X,’String’, F8.6) 
       END 

Figure 11. Sample program with Boolean flags marking proper placement. The blue font indicates 
flagged compiler directives and red font marks incorrect placement. 

The Readerror.py subprogram does not rely on the IDE to produce an error file but 
recreates an identical BuildLog file (Figure 12). To facilitate a substitute error file, it is 
necessary to use pattern matching analysis to process the error output file from the pro-
gram.  
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(B) 

Figure 12. (A) Typical error output BuildLog html file. (B) BuildLog text output from ForDADT. 

Figure 11. Sample program with Boolean flags marking proper placement. The blue font indicates
flagged compiler directives and red font marks incorrect placement.

The Readerror.py subprogram does not rely on the IDE to produce an error file
but recreates an identical BuildLog file (Figure 12). To facilitate a substitute error file,
it is necessary to use pattern matching analysis to process the error output file from
the program.

With the converted BuildLog text file, the subprogram calls variations of fixError####
subroutines to fix the files. Each subroutine initializes by checking for a match case in the
text file; for instance, it checks to find “error #6278”, which notifies the program of which
Fortran file and index line where the issue occurs. In the case of subroutine, fixError6278, it
checks for a misplaced “IMPLICIT NONE” call in the Fortran file and realigns the statement
to the correct index line. Figure 13 demonstrates the pseudocodes for cleaning compiler
errors 6278, 6418, 6362-7319, and 6222. The required inputs to the codes are the directory
and list of the Fortran files. Precondition of the codes are existence of the Fortran files in
the directory and proper format of BuildLog file.
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(A) Algorithm 3: Fixing Fortran error 6278 (B) Algorithm 4: Fixing Fortran error 6418 
1 for i in range of Fortran file do 1 for i in range of Fortran file do 
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13       for iii in range of fileIndex do 13                if “,” in fileLines[ii] then 
14          if iii = implicitIndex then 14                   write fileLines[ii] to file 
15             write “” to file 15                else 
16          else if iii = fileIndex then 16                   write “C Deliberately left commented” to file 
17             write fileLines[iii] to file 17                end if 
18             write “IMPLICIT NONE” to file 18             else 
19          else 19                 write fileLines[ii] to file 
20             write fileLines[iii] to file 20             end if 
21          end if 21          end for 
22       end for 22       end if 
23    end if 23    end if 
24 end for 24 end for 

(C) Algorithm 5: Fixing Fortran error 6362-7319 (D) Algorithm 6: Fixing Fortran error 6222 
1 for i in range of Fortran file do 1 for i in range of Fortran file do 
2    A ← list[i] 2    A ← list[i] 
3    index1 ← A.find(“error#6362”) 3    Index ← A.find(“error#6222”) 
4    index2 ← A.find(“error#7319”) 4    if index ≠ −1 then 
5    if index1 ≠ −1 or index2 ≠ −1 then 5       filename ← Fortran file name from error line 
6       Var ← variable name from error line 6       fileLines ← list from filename 
7       filename ← Fortran file name from error line 7       fileIndex ← index number from error line 
8       fileLines ← list from fileName 8       for ii in range of fileLines do 
9       for ii in range of fileLines do 9          if ii = fileIndex and “IMPLICIT NONE” in fileLines[ii] then 
10          if “REAL/INTEGER” + var in fileLines[ii] then 10             write a new line to file  
11             write a new line to file  11          else 
12          else 12             write fileLines[ii] to file 
13             write fileLines[ii] to file 13          end if 
14          end if 14       end for 
15       end for 15    end if 
16    end if 16 end for 
17 end for   

Figure 13. The pseudocodes for cleaning Fortran compiler errors: (A) 6278 (USE statement posi-
tioned incorrectly), (B) 6418 (name already assigned), (C) 6362 (invalid data types of arguments) 
and 7319 (procedure assumed external), and (D) 6222 (incorrectly positioned IMPLICIT state-
ment). 

5. Discussion 
The initial development of the ForDADT project involved using ifort to compile a list 

of Fortran errors and a file solution that resolves the issues from the BuildLog. However, 
this setup does not consider cascading issues when compiler errors occur. In this case, the 
program runs into the issue of continuously reiterating its execution until all errors are 
fixed. Due to the manual process of compiling ifort repeatedly, this configuration can be 
exponentially expensive when dealing with copious number of files and thus creates a 
necessity to redesign the compiler. 

Available tools such as Phortran [42] and fprettify [Error! Reference source not 
found.] provide auto formatting for modern Fortran. What ForDADT promises beyond 

Figure 13. The pseudocodes for cleaning Fortran compiler errors: (A) 6278 (USE statement positioned
incorrectly), (B) 6418 (name already assigned), (C) 6362 (invalid data types of arguments) and
7319 (procedure assumed external), and (D) 6222 (incorrectly positioned IMPLICIT statement).

5. Discussion

The initial development of the ForDADT project involved using ifort to compile a list
of Fortran errors and a file solution that resolves the issues from the BuildLog. However,
this setup does not consider cascading issues when compiler errors occur. In this case, the
program runs into the issue of continuously reiterating its execution until all errors are
fixed. Due to the manual process of compiling ifort repeatedly, this configuration can be
exponentially expensive when dealing with copious number of files and thus creates a
necessity to redesign the compiler.
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Available tools such as Phortran [42] and fprettify [43] provide auto formatting for
modern Fortran. What ForDADT promises beyond available tools is automating the error
fixing by avoiding the compiler constraints for large-scale software. ForDADT has a more
modular solution to construct the BuildLog, and, by using an experimental Fortran reader,
it can reproduce compiler errors without the use of ifort. Pattern analysis method used in
the findError function (Figure 14) is critical to ForDADT as it helps detect issues identical
to the compiler.
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In the instance of findError6404, the program checks for declared variables, and
pattern analysis is used excessively to sort the Fortran files into compatible data. By
isolating keyword function statements such as IF/ELSE and FORMAT, it is possible to sort
statements into individual variables and check if those are properly declared (Figure 14).
ForDADT simplifies the compilation process for detecting error cases in Fortran, designed
to identify general syntax errors.

Figure 15 shows the computation time of error fixing for six different codes based on
the number of lines in the code.
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Figure 15. (A) Computation time of the ForDADT error reader for different errors based on the
number of processed lines. (B) Time comparison for catching errors 6186 and 6404.

The time complexity for the error fixing subroutines is O(n) as they mainly follow a
linear search algorithm. Computations were performed on AMD Ryzen 5900X, 12-Core
Processor @ 3.70 GHz, and 32 GB RAM. Figure 15A illustrates that ForDADT’s error
algorithms each compile in a linear time such that it is proportional to the lines of code
in the file. There is small variation from the linear approximation for the error sets 6186,
6222, 6278, and 6418. Error 6404 takes in account external file declarations when dealing
with source variables in the file. As each subroutine may need different sets of external file
declaration, the computation time of the file in question increases, as seen in Figure 15B.

6. Conclusions

In this paper, we documented the development of a prototype tool to automate the
manual labor of refactoring the individual files. ForDADT is a Python program used
to process Fortran files and automate the cleaning for compilation errors. ForDADT
project removes Fortran errors and updates the codes written in older versions to version
19.0.5.281. Automating common error cases from the Fortran program reduces the amount
of refactoring necessary when compiling. This project has been developed to bridge
the refactoring and automation processes to help improve developers’ efficiency when
refactoring code. The developed tool automatically updates thousands of Fortran files and
builds the software to find and fix the errors using pattern matching and data masking
algorithms. These upgrades produce a more readable Fortran program that includes
safeguards to prevent accidental mistyping of variables and unintentional changes during
program execution.

In our future work for this project, we will aim to create a dynamic analysis application
to assist immediate error detection and notify developers when syntax errors can be
corrected. This adaptive error modeling has potential applicability for a better suited robust
design in error proofing the automation process.
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