
Citation: Filippov, A.; Romanov, A.;

Skalkin, A.; Stroeva J.; Yarushkina, N.

Approach to Formalizing Software

Projects for Solving Design

Automation and Project Management

Tasks. Software 2023, 2, 133–162.

https://doi.org/10.3390/

software2010006

Academic Editor: Sanjay Misra,

Robertas Damaševičius and

Bharti Suri

Received: 30 December 2022

Revised: 3 March 2023

Accepted: 6 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Approach to Formalizing Software Projects for Solving Design
Automation and Project Management Tasks
Aleksey Filippov * , Anton Romanov , Anton Skalkin, Julia Stroeva and Nadezhda Yarushkina

Department of Information Systems, Ulyanovsk State Technical University, 32 Severny Venetz Street,
432027 Ulyanovsk, Russia
* Correspondence: al.filippov@ulstu.ru; Tel.: +7-908-485-8390

Abstract: GitHub and GitLab contain many project repositories. Each repository contains many
design artifacts and specific project management features. Developers can automate the processes
of design and project management with the approach proposed in this paper. We described the
knowledge base model and diagnostic analytics method for the solving of design automation
and project management tasks. This paper also presents examples of use cases for applying the
proposed approach.

Keywords: design automation; project management; software system; time series; knowledge base;
software repository

1. Introduction

The development of a modern software system is impossible without the construction
and practical use of its architectural description (AD). The AD is in demand at all stages of a
software system life cycle. The AD is the first (earliest) representation of a software system.
The AD can be verified (tested) as a complete system. Moreover, the most significant
requirements and restrictions are stated in the AD, ensuring that everyone considers and
understands the concerns of stakeholders in the project.

Developers must comply with the requirements in the AD without fail in all following
versions of the software system. Compliance ensures the integrity of the project. Devel-
opers can change the AD in the software system development, but only if there are very
solid reasons.

Thus, the AD captures the high-level requirements and their corresponding decisions,
which may not be changed at lower levels of the project, because changes to the AD are
too costly.

The responsibility for the quality of the developed software system lies with the
architects and the project managers. The specifics of the creation of modern software
systems include the intensive use of software engineering in a highly complex computerized
operating environment. The architects and developers consistently apply a heterogeneous
experience when interacting with that environment. Development practice shows that these
conditions contribute to the negative manifestations of the human factor, among which
costly faults and design errors are especially undesirable.

According to the results of research by the Standish Group Corporation, regularly
published since 1994, the success rate of projects has slightly more than doubled from 16%
in 1994 to the present [1].

Developers are involved in three key processes when developing software [2,3]:

1. Understanding the context of some problem area (domain).
2. Designing a domain model and design space.
3. The formation of some understanding of the context as design artifacts.

Software 2023, 2, 133–162. https://doi.org/10.3390/software2010006 https://www.mdpi.com/journal/software

https://doi.org/10.3390/software2010006
https://doi.org/10.3390/software2010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/software
https://www.mdpi.com
https://orcid.org/0000-0003-0008-5035
https://orcid.org/0000-0001-5275-7628
https://orcid.org/0000-0002-5718-8732
https://doi.org/10.3390/software2010006
https://www.mdpi.com/journal/software
https://www.mdpi.com/article/10.3390/software2010006?type=check_update&version=2

Software 2023, 2 134

Designers need to highlight the entities and business processes from the domain in
the first process. Those entities and business processes are important for solving develop-
ment tasks and determine the significant properties of these objects. Designers form the
operational space (OS) of design activity because of their understanding of the domain.

The designers form the conceptual space (CS) of design activity in the second process.
Developers form the CS in the design process because of their mental activity based on
their experience and understanding of the OS.

The developers form the materialization of the contents of the CS as a set of design
artifacts because of the third process.

Currently, there is a large amount of research in software engineering. However,
most of the activities of software developers in designing and constructing software are
based on the experience gained from working on previous projects. Various functional and
non-functional requirements for the software project often affect the development results.
Thus, the formation of a coherent theoretical base to support the design and construction of
any software is a complicated task [2,3]. At the moment, developers are using a basic theory
of software engineering and various theories focused on the development of software in
various classes.

Moreover, developers handle resource limitations when developing any software [4].
The project manager needs to evaluate the status of the project to make timely management
decisions. The quality of management decisions directly affects the quality of the design
artifacts and the quality of the SS.

In most cases, planning problems arise because of the following circumstances [4]:

• The designers did not fully form the CS at the initial stages of the project;
• The designers did not discuss the functional requirements with the customer;
• There is not enough time to conduct usability testing.

Thus, we can define the following objectives of this study:

• It is necessary to develop a model and methods for building a knowledge base to
collect the experience of previous projects to support the processes of software design
and construction;

• It is necessary to develop a method of diagnostic analytics for the evaluation of the
project development processes to improve the quality and efficiency of
management decisions.

Thus, the main problems of the modern development of software systems are as
follows [5–8]:

1. A high level of uncertainty when a project is developed for a new domain or when
using new architectural approaches or technologies.

2. The influence of the external environment on the development process, including an
unexpected reduction in resources.

3. A lack of necessary competencies among team members.
4. The need for the rapid assessment of numerous factors affecting the success of the

project and the quality of project management decisions.

In this paper, we consider the experience of previous projects as a set of design artifacts.
We understand a set of quantitative indicators from the task tracker as the key features of the
project development processes, for example, the number of error notifications, the average
time to close an error notification, the team size, etc.

We present this paper as the following sections. Section 2 contains the review of the
works in this study for a better understanding of the problems and objectives. Section 3
presents a description of the proposed knowledge base model to consider the experience
of previous projects and a description of the diagnostic analytics method to support the
software development process. Section 4 presents examples of use cases for applying the
proposed approach. Section 5 contains discussion. This paper ends with the conclusions.

Software 2023, 2 135

2. State Of The Art

Different researchers studied software design automation in various works. In most cases,
they propose models and methods for representing experience and knowledge to organize
corporate knowledge bases by formalizing design artifacts of various types [3,9–14].

The paper [3] considered the question–answer protocol for the case-based support of
the design process. The author focused on the description of methods for solving various
problems of designing and constructing software with a question-answering method
(WIQA). The WIQA is a complex of methods and means that create and use QA-models
for project tasks solved at the conceptual stage of software system designing. The primary
applications of the WIQA are the iterative creation of QA-nets, the control distribution of
the tasks of the tree in its current state among members of the team, and solving the tasks
using stepwise refinement based on the question–answer analysis.

The authors of the paper [9] considered the software project as a set of different contexts
that compose the description of the software architecture under the ISO/IEC/IEEE 42010:2022
standard [15]. The authors also presented in this paper the following metamodels:

• A metamodel for the scope model kind;
• A metamodel for the user model kind;
• A metamodel for the environment model kind.

The authors of the paper [10] considered a software project as a fragment of an ontology
specific to a domain of this project. That ontology contains a set of the key concepts related
to a software system domain, a set of key concepts extracted from a source code to establish
a semantic relationship between different concepts. In addition, the proposed ontology
contains common knowledge from the General Software Engineering domain as a basis.

In papers [11,12], the authors described an algorithm that forms an ontology of a
software project based on the analysis of a set of UML diagrams to identify various design
patterns. The authors use design patterns that extract during the analysis for searching
projects with structure similarity, considering their linkage to a specific domain.

In paper [13], the authors proposed a mathematical apparatus for representing the CS
using fuzzy logic methods.

The authors of the paper [14] described the fuzzy ontology to structure the knowledge
associated with non-functional requirements via a fuzzy ontology. The approach is based
on the use of the fuzzy ontologies for modeling knowledge that relates non-functional
requirements to design patterns and to the families they belong to. That approach allows
for the representation and maintenance of the knowledge by keeping the flexibility and
fuzziness of modeling.

We also considered papers about the analysis of open-source software repositories
to evaluate the quality of the repository, depending on various design, construction, and
project management practices [16–21].

The authors of the paper [16] studied the impact of using a test-driven development
methodology on various project quality indicators: the number of test files, average com-
mit velocity, number of bug-referencing commits, number of issues recorded, usage of
continuous integration, number of pull requests, and distribution of commits per author.

The authors of the papers [17,18] analyzed the configuration files for the Docker
environment (Dockerfiles) to find successful design solutions (best practices) in them.

The authors of the paper [17] introduced a novel rule-mining technique. Through this
automated mining, they could extract 16 new rules that were not found during manual
rule collection. In addition, the authors manually collected a set of rules for Dockerfiles
from commits to the files in the Gold Set.

The authors of the paper [18] parsed Dockerfiles specified in a declarative language and
enriched them with information about changes. In addition, they captured the information
of files that were changed in a commit near a Dockerfile change.

In the paper [19], the authors selected project indicators based on the developer survey
and proposed a forecasting method based on a combination of machine learning methods.

Software 2023, 2 136

The proposed method allows for predicting the quality of a project in the future (health
indicators prediction).

In papers [20,21], the authors empirically evaluated the impact of different community
organization and project management styles on project quality.

The authors of the paper [20] investigated the relation between community patterns
and smells, with the purpose of understanding whether the structural organization of a
community might lead to some sort of social debt.

The authors of the paper [21] proposed YOSHI (Yielding Open-Source Health In-
formation), a tool able to map open-source communities onto community patterns, sets
of known organizational and social structure types, and characteristics with measurable
core attributes.

In our opinion, it is necessary to form a knowledge base when solving the problem of
using the experience of previous projects for design automation and project management.
The knowledge base should consider various aspects of the software project and the features
of the development process. Most importantly, all this information must be collected and
analyzed, considering the dynamics of the development of the project during its life cycle.
The following works influenced our study:

• Ralph P. The sensemaking-coevolution-implementation theory of software design [2].
• Sosnin P. Substantially evolutionary theorizing in designing software-intensive

systems [3].
• Bedjeti A.; Lago P.; Lewis G.A.; De Boer R.D.; Hilliard R. Modeling context with an

architecture viewpoint [9].
• Di Noia T.; Mongiello M.; Nocera F.; Straccia U. A fuzzy ontology-based approach for

tool-supported decision making in architectural design [14].
• Schermann G.; Zumberi S.; Cito J. Structured information on state and evolution of

dockerfiles on GitHub [18].
• Xia T.; Fu W.; Shu R.; Agrawal R.; Menzies T. Predicting health indicators for open

source projects (using hyperparameter optimization) [19].

Thus, it is necessary to take a comprehensive approach to data collection. We need
to consider the following:

• Design artifacts;
• The project’s compliance with the requirements and constraints of some domain;
• The influence of various indicators and management decisions to the project

development process;
• Their cumulative influence on each other.

3. Materials and Methods

This section discusses the proposed models, methods, and algorithms for automating
the design and management of software projects.

Modern software development practices are mainly based on iterative (flexible) devel-
opment methodologies that allow the following [3,4]:

1. The ability to quickly respond to changing customer requirements;
2. An operative demonstration of the new software functionality to customers for evalu-

ation, clarifications, and adjustments;
3. An increase in the efficiency of managerial decisions.

Moreover, developers use the Design Thinking methodology (DT) in the software
development process [2–4]. The key feature of DT is the solution of engineering, business,
and other problems, based on a creative, rather than analytical, approach. When using DT,
developers do not solve problems based on critical analysis, but consider them as a creative
process, which allows them to find unexpected and non-obvious solutions.

The DT methodology contains the following stages of solving the problem [2–4]:

1. Problem definition.
2. Researching.

Software 2023, 2 137

3. The formation of ideas.
4. Prototyping.
5. Choosing the best solution.
6. Implementation.
7. Evaluation.

In this article, we consider each iteration of the flexible development process as the
following steps (Figure 1):

1. Planning.
2. Design.
3. Construction.

Figure 1. Flexible development iteration structure.

As you can see from Figure 1, the quality of the planning and design stages affects the
quality of the software design stage:

1. The result of the planning stage depends on the quality of the analysis of functional
and non-functional requirements [4], as well as on the quality of management deci-
sions. We can represent management decisions as a set of tasks for developers and as
a set of team management decisions. The project manager at the planning stage must
consider the limitations of the resources, the limitations of the real world (domain),
and the quality requirements.

2. The result of the design stage depends on the planning stage and the qualifications
of designers. Moreover, the design stage is a creative process in terms of the DT
methodology, which requires the development of automated CS generation tools [2,3].

Software 2023, 2 138

As you can see from the review of publications about the study, the use of methods of
intellectual analysis and knowledge engineering makes it possible to automate the
design stage based on the formalization of the experience of previous projects.

3.1. Knowledge Base Model for Formalizing of the Experience of Previous Projects

The following things influence the development process of a software system [15]:

• A requirement to meet stakeholder needs;
• Project constraints;
• Quality attributes;
• Architectural decisions;
• Aims and goals;
• Stakeholder expectations, etc.

Thus, the development of the software system must be considered within the life cycle,
the requirements, and the set of adopted design decisions. We consider the architecture of
the software system as a set of representations of this architecture: a business representation,
physical representation, and technical representation. The AD comprises design artifacts.
The design artefact is the most primitive construction of an AD.

The AD is formed in the process of software system architecting. The AD can also be
obtained by reworking the architecture description of previous projects [15].

The AD can be used within the life cycle of a software system in the following ways:

• As a basis for the design and construction processes of a software system;
• As a basis for the analysis and evaluation of alternative implementations of an AD;
• As documentation in the development and maintenance processes of a software system;
• To document significant aspects of a software system;
• As input to automated tools for modeling, system simulation and analysis;
• To define a group of software systems that have common properties (for example,

architectural styles, reference architectures, and product line architectures);
• For communication between the teams involved in software system development;
• To provide communication between customers and developers;
• To document the characteristics, properties, and features of a software system;
• As a basis for planning the transition from a legacy architecture to a new one;
• As a guide to operational and infrastructure support and the configuration manage-

ment of a software system;
• To support system planning and activities related to timelines and budgets;
• As a basis for audits, analysis, and evaluation of a software system;
• As a basis for the analysis and evaluation of alternative architectures;
• For reusing the architectural knowledge through points of view, patterns, and styles;
• To educate stakeholders on best practices for architecting and development.

The authors of the following papers [22,23] describe that ontologies can be used in
architecting instead of traditional software system modeling languages (such as UML)
since ontologies allow us to control the logical integrity and consistency of the resulting
model. However, the existing methods of forming ontologies to support and automate the
designing of software systems require the involvement of domain experts and specialists in
knowledge engineering. The manual creation of ontologies requires significant time costs.

The main difficulty in creating knowledge bases to support the software systems
development lies in the need to unify design artifacts. The formats and methods for storing
design artifacts are different, which makes it difficult to analyze and use them in new
software systems’ development.

Considering that the specifics of the design knowledge in an AD lead to the need to
form a knowledge base with a special structure, the knowledge base must include a set of
representations for describing the following [15]:

• The concepts of a domain;
• The features of design artifacts formalized as knowledge base fragments;

Software 2023, 2 139

• The features of the development process as the main stages of a software system life cycle;
• Sets of semantic relations between knowledge base entities;
• Interpretation functions.

Ontologies are based on different description logics (DLs). DLs can guarantee the
logical integrity and consistency of the ontology. DLs have decidability and a relatively low
computational complexity. These features of DL provide a compromise between expres-
siveness and decidability. The Web Ontology Language (OWL) is a family of knowledge
representation languages for authoring ontologies.

The main component of an OWL 2 ontology is a set of axioms—statements that say
what is true in the domain [24,25]. OWL 2 provides an extensive set of axioms, all of which
extend the axiom class in the structural specification. Axioms in OWL 2 can be declarations,
axioms about classes, axioms about object or data properties, datatype definitions, keys,
assertions (sometimes also called facts), and axioms about annotations.

We use the following DL axioms to describe the terminology of the proposed knowl-
edge base [24]:

• > is a special class with every individual as an instance (top);
• ⊥ is an empty class (bottom);
• A v B is the class inclusion axiom (A is a subclass of B);
• A u B v ⊥ is the disjoint classes axiom;
• A u B, R1.A u R2.B is the intersection or conjunction of axioms (classes or roles);
• ∀R.A is the universal restriction axiom;
• ∃R.A is the existential restriction axiom;
• ≤ 1R.A is the functional roles axiom;
• Inv(R1) v R2 is the inverse roles axiom;
• R1 ◦ R2 v R3 is the transitive roles axiom;
• ∃R.Sel f v ⊥ is the irreflexive roles axiom.

We represent the knowledge base model for formalizing the experience of previous
projects using the following definition:

B = {B1, B2, . . . , Bi, . . . , Bn},

where Bi is an i-th indexed software project that we can define as follows:

Bi = 〈LB, PB, TB, DB, WB, RB〉, (1)

where LB is the representation of the development process. The representation of the
development process allows for the consideration of the specifics of the project life cycle.
In addition, this view can help a project manager to evaluate the impact of management
decisions on the software project dynamics, for example, how did an increase in the number
of developers affect development activity or project quality, etc.

PB is the representation of the software project structure (directories and files). The rep-
resentation of the software project structure allows for the obtainment of information about
the structure of the files and directories of a software project to classify files into the fol-
lowing types: the source code, documentation, tools to build/compile the code, tests,
an additional data directory, external dependencies (libraries), directory with binaries,
etc. This information allows for the use of the necessary analysis methods for files with
different types, as well as considering the structure of the project when extracting the
design patterns.

TB is the representation of the software project environment (a set of a technology com-
ponents). The representation of the software project environment allows for the extraction
of information about the software system environment: dependencies (libraries), external
components (services), runtime environments, etc. In addition, this representation allows
for the consideration of various architectures styles and design patterns that developers
used in a project. Information about the environment is very important because an incor-

Software 2023, 2 140

rectly configured environment can cause errors in the software system. The environment
information also allows for the researching of only those completed projects that meet the
requirements of the current project.

DB is the representation of domain features. The representation of domain features
allows for the definition of a problem area and the main use cases of a software project.

WB is the representation of the linguistic environment (concepts and terms). The lin-
guistic environment allows for the equation of objects that have different names but have
the same semantics, for example, employee and staff, development and construction, etc.

RB is the set of relations between knowledge base representations. We will discuss
these relationships next.

Let us consider in more detail the components of the project representation in the
knowledge base context (Equation (1)).

The common terminology of the knowledge base is:

> ≡ ∃hasName.String u ∀hasName.Stringu ≤ 1hasName.String,

Project v >,

where hasName is a functional role common to all knowledge base classes. The hasName
role allows us to specify the name of a class individual (object);

Project is a class for describing a software project.
The terminology for the representation of the project development process LB can be

described as the following axioms (Figure 2):

• A set of classes for describing the following:

– Milestone—Milestone;
– Issue—Issue;
– Merge/pull request—Request;
– Branch—Branch;
– Commit—Commit;
– Contributor—Contributor;
– File—File (this is a part of the representation of the software project structure PB).

• The Project class has the following:

– The hasMilestone, hasRequest, hasIssue, and hasBranch roles to specify ties be-
tween a project and a set of its milestones, merge/pull requests, issues, and branches;

– The hasCommits and hasContributors transitive roles to define ties between a
project and a set of its commits and contributors;

– The hasDescription functional role to specify a tie between a project and its description:

Project v ∀hasMilestone.Milestone u ∀hasRequest.Request u ∀hasIssue.Issueu
u ∀hasBranch.Branch u ∃hasBranch.Branchu
u ∃hasCommits.Commit u ∀hasCommits.Commitu
u ∃hasContributors.Contributor u ∀hasContributors.Contributoru
u ∃hasDescription.String u ∀hasDescription.Stringu
u ≤ 1 hasDescription.String

hasBranch ◦ hasCommit v hasCommits

hasCommits ◦ hasContributor v hasContributors.

• The Milestone class has the following:

– The hasRequest, hasIssue, and hasComment roles to specify ties between a mile-
stone and a set of its merge/pull requests, issues, and comments;

– The hasDescription functional role to specify a tie between a milestone and
its description;

Software 2023, 2 141

– The f romProject inverse functional role to define a tie between a milestone and
its project:

Milestone v ∀hasRequest.Request u ∀hasIssue.Issue u ∀hasComment.Stringu
u ∃hasDescription.String u ∀hasDescription.Stringu
u ≤ 1hasDescription.Stringu
u ∃ f romProject.Project u ∀ f romProject.Projectu ≤ 1 f romProject.Project

Inv(hasMilestone) v f romProject.

• The Issue class has the following:

– The hasContributor and hasComment roles to specify ties between an issue and a
set of its contributors and comments;

– The hasDescription functional role to specify a tie between an issue and its description;
– The f romMilestone, f romRequest, f romBranch, and f romProject inverse func-

tional roles to define ties between an issue and its milestone, merge/pull request,
branch, and project:

Issue v ∃hasContributor.Contributor u ∀hasContributor.Contributoru
u ∀hasComment.Stringu
u ∃hasDescription.String u ∀hasDescription.Stringu
u ≤ 1 hasDescription.String

u ∀ f romMilestone.Milestoneu ≤ 1 f romMilestone.Milestone

u ∀ f romRequest.Requestu ≤ 1 f romRequest.Request

u ∃ f romBranch.Branch u ∀ f romBranch.Branchu ≤ 1 f romBranch.Branch

u ∃ f romProject.Project u ∀ f romProject.Projectu ≤ 1 f romProject.Project

Inv(hasIssue) v f romMilestone u f romRequest u f romBranch u f romProject.

• The Request class has the following:

– The hasIssue and hasComment roles to specify ties between a merge/pull request
and a set of its issues and comments;

– The hasDescription functional role to specify a tie between a merge/pull request
and its description;

– The f romMilestone, f romBranch, and f romProject inverse functional roles to
define ties between a merge/pull request and its milestone, branch, and project;

– The hasCommits and hasContributors transitive roles to define ties between a
merge/pull request and a set of its commits and contributors:

Request v ∀hasIssue.Issue u ∀hasComment.Stringu
u ∃hasDescription.String u ∀hasDescription.Stringu
u ≤ 1 hasDescription.String

u ∀ f romMilestone.Milestoneu ≤ 1 f romMilestone.Milestone

u ∃ f romBranch.Branch u ∀ f romBranch.Branchu ≤ 1 f romBranch.Branch

u ∃ f romProject.Project u ∀ f romProject.Projectu ≤ 1 f romProject.Project

u ∃hasCommits.Commit u ∀hasCommits.Commitu
u ∃hasContributors.Contributor u ∀hasContributors.Contributoru

Inv(hasRequest) v f romMilestone u f romBranch u f romProject

hasBranch ◦ hasCommit v hasCommits

hasCommits ◦ hasContributor v hasContributors.

• The Branch class has the following:

Software 2023, 2 142

– The hasCommit, hasRequest, and hasIssue roles to specify ties between a branch
and a set of its commits, merge/pull requests, and issues;

– The f romProject inverse functional role to define a tie between a branch and
its project:

Branch v ∃hasCommit.Commit u ∀hasCommit.Commitu
u ∀hasRequest.Request u ∀hasIssue.Issueu
u ∃ f romProject.Project u ∀ f romProject.Projectu ≤ 1 f romProject.Project

Inv(hasBranch) v f romProject.

• The Commit class has the following:

– The hasContributor functional role to specify a tie between a commit and
its contributor;

– The hasComment and modi f yFile roles to specify ties between a commit and a set
of its comments and modified files;

– The f romBranch and f romProject inverse functional roles to define ties between
a commit and its branch and project;

– The hasMessage and hasDate functional roles to specify a tie between a commit
and its description and date:

Commit v ∃hasContributor.Contributor u ∀hasContributor.Contributoru
u ≤ 1hasContributor.Contributor u ∀hasComment.Stringu
u ∃modi f yFile.File u ∀modi f yFile.Fileu
u ∃ f romBranch.Branch u ∀ f romBranch.Branchu ≤ 1 f romBranch.Branch

u ∃ f romProject.Project u ∀ f romProject.Projectu ≤ 1 f romProject.Project

u ∃hasMessage.String u ∀hasMessage.Stringu ≤ 1hasMessage.Stringu
u ∃hasDate.Date u ∀hasDate.Dateu ≤ 1 hasDate.Date

Inv(hasCommit) v f romBranch u f romProject.

• The Contributor class has the following:

– The hasIssue, hasCommit, and hasRequests roles to specify ties between a contrib-
utor and a set of its issues, commits, and requests;

– The f romProject inverse functional role to define a tie between a contributor and
its project:

Contributor v ∀hasIssue.Issue u ∀hasCommit.Commit u hasRequest.Requestu
u ∃ f romProject.Project u ∀ f romProject.Projectu ≤ 1 f romProject.Project

Inv(hasContributor) v f romProject.

As you can see in Figure 2, dashed lines are used to illustrate some entities and
relationships. Such entities and relationships may not be contained in an indexed repository
and therefore may not be represented in the knowledge base.

We describe the PB representation of a software project structure as the following axioms:

• A set of classes for describing the following:

– Directory—Directory;
– File—File;
– Commit—Commit (is a part of the representation of the project development

process LB);

Software 2023, 2 143

• The Commit class has the hasSourceDirectory and hasBuildFile functional roles to
define ties between a commit and its source directory and build file:

Commit v ∃hasSourceDirectory.Directory u ∀hasSourceDirectory.Directoryu
u ≤ 1hasSourceDirectory.Directoryu
u ∃hasBuildFile.File u ∀hasBuildFile.Fileu ≤ 1hasBuildFile.File.

• The Directory class has the following:

– The include irreflexive role to specify ties between a directory and a set of its
subdirectories;

– The includeFile role to define a ties between a directory and a set of its files:

Directory v ∀include.Directory u ∀ includeFile.File

∃include.Sel f v ⊥.

Let us see the representation of a software project environment TB as the following axioms:

• A set of classes for describing the following:

– Architecture styles or design patterns—Arch. The Arch set is defined using an
enumerated class. The enumerated class contains a list of architectural styles and
design patterns for which we develop the search and analysis method;

– Third-party dependencies of a software project (libraries, frameworks, external
services, database management systems, etc.)—Dependency;

– File—File (this is a part of the representation of the software project structure PB):

Arch ≡ {MVC, DependencyInjection, Facade}.

• The File class has the hasArch and hasDependency roles to specify ties between a file
and a set of its architecture styles or design patterns and third-party dependencies:

File v ∀hasArch.Arch u ∀hasDependency.Dependency.

• The Dependency class has the hasGroup, hasName, and hasVersion functional roles to
define the dependency properties (group, name, and version):

Dependency v ∃hasGroup.String u ∀hasGroup.Stringu ≤ 1hasGroup.Stringu
u ∃hasName.String u ∀hasName.Stringu ≤ 1hasName.Stringu
u ∃hasVersion.String u ∀hasVersion.Stringu ≤ 1hasVersion.String.

We describe the representation of the domain features DB by the following axioms:

• A set of classes for describing the following:

– Domain entities—Entity;
– Domain business processes—Process;
– File—File (this is a part of the representation of the software project structure PB).

• The File class has the hasEntity and hasBusinessMethod roles to specify ties between
a file and a set of its entities and business processes:

File v ∀hasEntity.Entity u hasBusinessMethod.Process.

• The Entity class has the hasProcess role to define a tie between an entity and a set of
its business processes:

Entity v ∀hasProcess.Process.

Software 2023, 2 144

We can represent the representation of the linguistic environment WB as the follow-
ing axioms:

• A set of classes for describing the following:

– Domain concepts—Concept. Concepts describe various entities and processes of
some domain;

– Terms that describe a domain concept—Term. Terms allow us to associate the names
of various software project objects with the concepts of the linguistic environment;

– Domain entities—Entity (this is a part of the representation of domain features DB);
– Domain business processes Process (this is a part of the representation of domain

features DB).

• The Entity and Process classes have the hasConcept functional role to specify a tie
between an entity or process and its concept:

Entity v ∀hasConcept.Conceptu ≤ 1 hasConcept.Concept

Process v ∀hasConcept.Conceptu ≤ 1hasConcept.Concept.

• The Concept class has the hasTerm role to define ties between a concept and its terms:

Concept v ∀hasTerm.Term.

Figure 2. ER diagram of the LB representation of the software development process.

Software 2023, 2 145

The classes of all the representations of the proposed knowledge base are declared
as disjoint:

Project uMilestone u Issue u Request u Branch u Commit u Contributoru
u Directory u File u Arch u Dependency u Entity u Process u Concept u Term v ⊥.

It is necessary to develop a function to map the project of a software system to
the model of the proposed knowledge base. That function can be represented as the
following definition:

FB : URL→ Bi,

where
URL is a unified resource locator of a software project repository on the Internet;
Bi is the representation of a software project as a fragment of the proposed knowledge base.

The Section 3.2 describes the function FB. At the moment, we implement the function
FB algorithmically. Currently, the function FB supports projects in the Java language or the
Spring framework only. In the future, we plan to form a metamodel to unify the behavior
of the indexer that implements the function FB. The metamodel will make it possible to
implement universal (in most cases) algorithms for formalizing projects for most structural
and object-oriented programming languages.

3.2. Formalizing the Experience of Previous Projects

It is necessary to implement the mapping function for formalizing the experience of
previous projects as fragments of the proposed knowledge base. The mapping function is
based on an algorithm that comprises the following steps.

We consider the ng-tracker task tracker [26] as an example of data for indexing for the
knowledge base population. This project is written in Java with the Spring Boot framework.
For compactness, we consider only the ‘ru.ulstu.conference’ package and associated with
that package issue #57 (‘Creating classes for the Conference module’) from the milestone
#681923 (‘Conferences’).

Step 1. Extraction of the representation of the project development process LB.
Representation of the project development process LB is formed from two sources [27]:

• The project-hosting API (GitLab, GitHub, etc.);
• The project Git repository.

The Git repository of a project is the preferred source, because it is more stable in
terms of API changing and is always available to use. However, it is impossible to extract
information about the stages of the development process (milestones, issues, merge/pull
requests) only from a git repository.

We developed a software module to work with the GitLab REST API [28]. The follow-
ing HTTP requests are used for interactions between the module and the GitLab API:

1. GET https://gitlab.com/api/v4/projects/romanov73%2Fng-tracker/milestones (ac-
cessed on 29 December 2022)
This HTTP-request is used to obtain the list of the ng-tracker project milestones.

2. GET https://gitlab.com/api/v4/projects/romanov73%2Fng-tracker/milestones/
681923/issues (accessed on 29 December 2022)
This HTTP-request is used to obtain the issues of the milestone #681923 (‘Conferences’).

3. GET https://gitlab.com/api/v4/projects/romanov73%2Fng-tracker/issues/57/
related_merge_requests (accessed on 29 December 2022)
This HTTP-request is used to obtain the merge request of the issue #57 (‘Creating
classes for the Conference module’).

After that, the JGit library [29] is used to extract the following information from
each commit:

• The SHA hash;
• The date;

Software 2023, 2 146

• The message (description);
• The branch;
• The contributor;
• The diff (changes).

If there are no milestones and/or issues in the project, then the module extracts only
information about commits using the JGit library.

Figure 3 demonstrates the fragment of the LB representation extracted from the issue
#57 of the milestone #681923 of the ng-tracker project.

All examples of representations of the knowledge base are illustrative. In fact, a pri-
mary key is generated for each entity, and all relationships between entities are formed
based on these keys.

Figure 3. Example of the LB representation fragment.

Step 2. Extraction of the representation of a software project structure PB.
The process of the structural analysis of a software project directory is used to create

the representation of a software project structure PB [30]. The indexer module contains
typical paths for finding the source code root path and various environment files for
different programming languages and build systems. Figure 4 demonstrates the fragment
of the PB representation extracted from the ng-tracker project.

As you can see from Figure 4, the following entities of the PB representation that are
also presented in the LB representation are marked in gray: the entities with type ‘File’ and
the entity ‘0428bad0’ with type ‘Commit’.

Step 3. Extraction of the representation of the software project environment TB.

Software 2023, 2 147

To extract the representation of the software project environment TB, an expert must
manually configure the ArchT and DepT components for each programming language,
framework, application type, and other features of the software project environment. We
will consider this task and the prospects for its automation in more detail in one of the
following papers.

For example, to determine the usage of the MVC pattern for Spring projects, it is
necessary to find the @Controller annotation on a class and the @GetMapping, @PostMapping,
@RequestMapping, etc. annotations for its methods (Listing 1). To determine structural
design patterns, it is necessary to consider the project structure information from the
PB representation.

Listing 1. Fragment of the MVC controller of the ng-tracker project.
@Controller ()
@RequestMapping(value = "/conferences")

@ApiIgnore

public class ConferenceController {

...

@GetMapping("/conferences")
public void getConferences(ModelMap modelMap) {

modelMap.put("filteredConferences",

new ConferenceFilterDto(conferenceService.findAllDto ()));

}

...

}

Figure 4. Example of the PB representation fragment.

Software 2023, 2 148

The component for extracting the third-party dependencies DepT works with the
configuration files of build automation tools and extracts the name and version of the
dependency libraries from them. For example, for Java projects the following files are
scanned: build.gradle, pom.xml, etc. If a build.gradle file is found, then Gradle is specified
as the project build automation tool. Then, the names and versions of the dependency
libraries are extracted from the dependencies section of this file (Listing 2).

Listing 2. Fragment of the build.gradle file of the ng-tracker project.
dependencies {

compile group: 'org.springframework.boot',

name: 'spring -boot -starter -web'

compile group: 'org.springframework.boot',

name: 'spring -boot -starter -security '

...

compile group: 'org.postgresql ', name: 'postgresql ',

version: '42.2.5 '

compile group: 'org.liquibase ', name: 'liquibase -core',

version: '3.6.3 '

...

}

Figure 5a demonstrates the fragment of the TB representation with a set of archi-
tectural styles extracted from the ng-tracker project, and Figure 5b shows a set of the
third-party dependencies.

In Figure 5, we mark entities that were used in other representations (Figures 3 and 4)
in gray.

Step 4. Extraction of the representation of domain features DB.
The representation of domain features DB is formed by searching in the source tree

of the project for classes that describe the data models and business logic [27]. Each
programming language and framework requires an indexer configuration to find the
corresponding language/framework operators and constructions. For example, for Spring
Boot projects, classes that describe data models are marked with the @Entity annotation
(Listing 3), and business logic classes are marked with the @Service annotation (Listing 4).

Listing 3. Fragment of the entity class of the ng-tracker project.
@Entity
@Table(name = "conference")

@DiscriminatorValue("CONFERENCE")

public class Conference extends BaseEntity

implements UserActivity , EventSource {

...

}

Listing 4. Fragment of the business logic class of the ng-tracker project.
@Service
public class ConferenceService extends BaseService {

...

public List <Conference > findAll () {

return conferenceRepository.findAll(

new Sort(Sort.Direction.DESC , "beginDate"));

}

...

}

Moreover, similar classes can be found by searching for specific keywords in class
names and their paths or by analyzing class methods. When the classes are found, the names
of the entity classes are determined as the entities of the D representation. After that, public
methods in which entities are used as arguments or return values are extracted from the
business logic classes.

Software 2023, 2 149

Figure 5. Example of the TB representation fragment: (a) a set of architectural styles; (b) a
set of the third-party dependencies.

Figure 6 demonstrates the example of the DB representation fragment.
Step 5. Formation of the the linguistic environment WB.

Software 2023, 2 150

We form the linguistic environment by analyzing various text descriptions that are
contained in the project repository and represented by terms of natural language using
statistical [31] and linguistic [32] analysis methods.

Figure 7 demonstrates the example of the fragment of the WB representation of the
linguistic environment.

As you can see from Figure 7, one entity or business process of the DB representation
can correspond to several concepts of the terminological environment.

Figure 6. Example of the DB representation fragment.

Thus, the resulting knowledge base is a source of design experience, based on which
it is possible to form methods for automating the building of the CS to support the de-
sign stage.

We associate objects of various representations of the proposed knowledge base with
commits. Commits contain information about creating, changing, or deleting objects.

Software 2023, 2 151

The key position of the ’Commit’ object allows us to consider the development process of
the software project in a dynamic way. The presentation of information about the project in
a dynamic way allows for the use of various methods of diagnostic and predictive analytics
to improve the quality and efficiency of the decision making of project managers.

Figure 7. Example of the fragment of the WB representation of the linguistic environment.

3.3. Diagnostic Analytics Method for Decision Support in Project Management

Using knowledge engineering methods in modeling and analyzing time series makes
it possible to consider the limitations and features of some domain. Moreover, knowledge
engineering methods allow us to choose the type of model and its parameters to improve
the quality of time series analytics [33].

The data source of the proposed diagnostic analytics method is the knowledge base.
The model of the knowledge base is presented in the previous section (Equation (1)).
In our study, the key entity of the knowledge base is the ’Commit’ object. The objects of
the LB representation of the development process (Figure 2) and the objects of the other
representations (Figure 8) have ties with the Commit object.

Software 2023, 2 152

Figure 8. ER diagram for the ’Commit’ object.

As you can see from Figure 8, the key position of the ’Commit’ object allows us to
extract a set of time series of various indicators from the knowledge base based on a set of
project commits with the required frequency and discreteness using the aggregation function.

We describe the function for extracting a set of time series from the knowledge base
using the following definition:

FTS : Bi × Period→ TS,

where
Bi is a knowledge base fragment for the i repository;
Period are settings for extracting a set of time series: period and discreteness;
TS = {TS1, TS2, . . . , TSi, . . . , TSn}, ∀|TSi| = m is a set of time series of n indicators (one
time series for each indicator) with length m extracted from the knowledge base;
TSi is a time series of the i-th indicator.

Next, we classify a set of time series based on expert rules into time series that have
positive and negative impacts on the quality of the development process:

FCl : TS→ Dyn,

where
FCl is a function for time series classification;
Dyn = {TSpos

1 , TSneg
2 , . . . , TSpos

i , . . . , TSpos
n } is a set of time series with a positive or negative

dynamic of the project development.
Then, we apply the following function to extract knowledge from time series:

FSt : Dyn→ St,

where FSt is a function of the time series knowledge extraction. The algorithm of time
series knowledge extraction contains the following steps:

1. The evaluation of the indicator value using a set of expert ’if-then’ rules. Each rule
defines a range of values. The indicator is assigned some linguistic value when an
indicator value belongs to a certain interval.

2. The modification of state values based on the mutual influence of indicators on each
other. For example, if the number of contributors increases, the state for the number
of commits indicator should be changed to a lesser value.

Software 2023, 2 153

St = {〈i, {statei
1, statei

2, . . . , statei
m}〉} is a set of states (trends) for indicators that

are presented by the analyzed time series. Linguistic values represent the set of states,
for example, few, medium, or many.

The project manager can form recommendations based on a set of states in the planning
phase when starting a new iteration of the development process.

4. Results

This section presents the currently implemented functions for the design automation
and project management of software systems. Work on the project is in progress, and we
are constantly adding new functionality to the software platform.

4.1. Information Retrieval of Software Projects

The popular web services for hosting software projects use information retrieval based
on text processing methods that do not consider the specifics of design artifacts [34].

We have developed an information retrieval subsystem that allows for the searching
of software projects, considering the specifics of a software project from the knowledge
base (Equation (1)). We use the Neo4j graph database management system for organizing a
knowledge base. Neo4j has a high speed of query execution [35].

Let us represent the search query as the following definition:

Q = 〈LQ, DQ〉,

where LQ is a set of parameters for information retrieval by the following indicators of the
development process from the representation of the project development process LB:

• The number of contributors;
• The number of commits.

DQ is a set of parameters for information retrieval by the following domain features from
the representation of domain features DB:

• The name of the entity;
• The name of the business process;
• The number of entities;
• The number of business processes.

We represent the information retrieval function as:

F : Q× B→ B̃, B̃ ⊂ B,

where
B̃ is a subset of projects that match query parameters;
B is a set of indexed projects of the knowledge base.

Currently, the user sets query parameters using a special form component that uses a
separate input element for each parameter. We form a Cypher query based on the form
component data. We use the ‘UNION’ operator to join all the atoms of the condition in the
resulting Cypher query.

The following definition represents the function for calculating the relevance of project
B̃i to query Q:

Rel =

∣∣B̃i ∩Q
∣∣

|Q| ,

where∣∣B̃i ∩Q
∣∣ is the number of matching parameters in project Bi and query Q;

|Q| is the number of parameters in query Q.
An index graph is formed and saved in Neo4j for each project in the indexing process.

Figure 9 demonstrates the graph for the ng-tracker project.

Software 2023, 2 154

Figure 9. Example of the Neo4j graph for the ng-tracker project.

As you can see from Figure 9, the graph contains the following nodes:

• The ‘Project’ node.
• The ‘Entity’ node. These nodes are formed based on the set of project entities from the

DB representation (Figure 6).
• ‘Process’ node. This type of node is formed based on DB representation processes

associated with a specific entity.
• The ‘Metric’ node: ‘Contributors’, ‘Commits’, ‘Entities’, and ‘Processes’. The values of

‘Contributors’ and ‘Commits’ metric nodes are formed based on the aggregation of
data by the number of changes and contributors of the LB representation (Figure 3).
The values for ‘Entities’ and ‘Processes’ metric nodes are formed based on the number
of ‘Entity’ and ‘Process’ nodes.

All graph nodes have ‘id’ and ‘name’ properties. Metric nodes also have value
properties with double types to store the value of the metric.

The following types of relations are used in the graph:

• A ‘hasEntity’ relation for a ‘Project’ and an ‘Entity’ nodes connection;
• A ‘hasProcess’ relation for an ‘Entity’ and ‘Process’ nodes connection;
• A ‘hasMetric’ relation for a ‘Project’ and ‘Metric’ nodes connection.

Software 2023, 2 155

Listing 5 demonstrates an example of the Cypher query to find projects with rele-
vance calculation and sorting in a descending order of relevance. Such a Cypher query is
generated automatically based on the user search parameters.

Listing 5. Example of the Cypher query of the information retrieval subsystem.
call {

match (p:Project) -[:hasEntity]->(e:Entity)

where toLower(e.name) =~ 'conference '

return p as project , 1 as weight

union all

match (p:Project) -[:hasMetric]->(m:Metric {name: 'COMMITS '})

where m.value > 1 and m.value < 5

return p as project , 1 as weight

}

with * return project.name , sum(weight) * 1.0 / 2 as relevant

order by relevant desc

The linguistic environment WB is used when generating a search query. When the
user specifies in a search query the name of an entity or process, it is necessary to find a
correspondence between each query term and the terms of the linguistic environment WB.
If the term from the query matches the term of the WB representation, then the following
needs to occur (Figure 7):

1. It needs to transit from the term to concept by the ‘hasTerm’ relation.
2. Then, it needs to transit to the the entity or business process by the ‘hasConcept’ relation.

If we could obtain the entity or business process, then the corresponding term in the
search query is replaced with the name of the entity or business process.

We plan to add support for additional search parameters for the information retrieval
subsystem. We also plan to use fuzzy logic methods to represent quantitative data as
linguistic values. For example: a small project, an average size of a development team, etc.

Thus, the proposed information retrieval subsystem allows for the automation of the
research phase at the design stage by reducing the time costs and search space.

4.2. Generating Use Case Diagrams in UML Notation

The platform currently implements the function for generating use case diagrams in
UML notation to automate the building of the CS.

We represent a use case diagram in UML notation as the following definition:

UCD = 〈AUCD, SUCD, PUCD, RUCD〉,

where AUCD is a set of actors that perform certain roles in a given system;
SUCD is a set of system boundaries that define the limits of the system;
PUCD is a set of use cases that represent a business functionality;
and RUCD = 〈RUCD

I , RUCD
E , RUCD

G , RUCD
A 〉 is a set of relations:

• RUCD
I is an include relationship, a use case that includes the functionality described in

another use case as a part of its business process flow;
• RUCD

E is an extend relationship, where the child use case adds to the existing function-
ality and characteristics of the parent use case;

• RUCD
G is a generalization relationship, a parent–child relationship between use cases;

• RUCD
A is an association relationship, a relationship between actors and use cases.

At the moment, we generate diagrams based only on the hierarchy of the entities and
business processes of the representation of domain features DB (Equation (1)):

FUCD : DBi → UCD.

Software 2023, 2 156

The proposed algorithm creates a use case diagram as a set of commands for the Plan-
tUML system [36]. Now only actors, use cases, and association and include relationships
are formed in the resulting use case diagram.

The entities and business processes of the DB representation (Figure 6) of the ng-tracker
project are used to generate a use case diagram.

The use case diagram generation algorithm contains the following steps:

1. Create an actor with the name ’User’: AUCD
1 :

:User:

2. Create a root use case: PUCD
1 . Specify the name of the project as the name for a root

use case:

(ng-tracker)

3. Connect a root use case with an association relation with an actor: PUCD
1 RUCD

A AUCD
1 :

:User: - (ng-tracker)

4. Form a use case for each entity and connect it with an inclusion relation with the root
use case:

∀ED
i → PUCD

1i , ED
i ∈ DB, PUCD

1i RUCD
I PUCD

1 .

Specify the name of an entity as the name of a use case:

(ng-tracker)..>(Conference):include

(ng-tracker)..>(ConferenceUser):include

5. Obtain a list of business processes (PEi) for each entity. Create a use case for each
business process from PEi and connect it with an inclusion relation with a parent use
case (entity Ei):

∀PEi
j → PUCD

ij , PEi
j ∈ DB, PUCD

ij RUCD
I PUCD

1i .

Specify the name of a business process as the name of a use case:

(Conference)..>(findAll):include

(Conference)..>(save):include

(Conference)..>(findOne):include

(Conference)..>(createByTitle):include

(Conference)..>(findAllActive):include

(Conference)..>(create):include

(Conference)..>(delete):include

(Conference)..>(getActiveConferenceByUser):include

(Conference)..>(findAllActiveByCurrentUser):include

(ConferenceUser)..>(getAllParticipation):include

(ConferenceUser)..>(getAllDeposit):include

(ConferenceUser)..>(saveOrCreate):include

Figure 10 demonstrates an example of the use case diagram for the ng-tracker project
generated with the PlantUML system.

We plan to add the following improvements to the subsystem for generating use
case diagrams:

• Use additional information from the knowledge base to improve the quality of the
generated diagrams;

• Add extend and generalization relations support;
• Use natural language processing methods and linguistic environment WB to generate

more correct (in terms of UML notation) names for use cases.

Thus, the subsystem for use case diagram generation can automate the formation of
the CS at the planning stages for customer requirements definition or at the design stage to
consider the experience of previous projects.

Software 2023, 2 157

Figure 10. Example of the use case diagram for the ng-tracker project generated with the
PlantUML system.

4.3. Diagnostic Analytics of Software Projects

For example, the tabbychat project [37] contains the experience of previous projects,
and the ng-tracker project is currently being developed. We generated recommendations for
the ng-tracker project based on data from the tabbychat project. We chose these repositories
because the projects are written in Java and have comparable indicators.

We use the data of the following representations as initial data for the software
project diagnostics:

• The representation of the development process LB (Figure 3);
• The representation of domain features DB (Figure 6).

Table 1 presents the time series extracted from these projects.

Software 2023, 2 158

Table 1. Time series extracted from analyzed repositories.

Project Indicator
(Number)

Month

1 2 3 4 5

tabbychat

Commits 57 64 76 117 130

Contributors 3 4 6 6 6

Entities 7 7 7 7 7

Processes 158 164 164 164 164

ng-tracker

Commits 251

Contributors 1 1 8 8 8

Entities 5 5 18 18 19

Processes 115 129 206 271 273

We extracted the set of states from the analyzed repositories after applying the method
for decision support in project management (Section 3.3). The set of states is presented
in Table 2. We took the value ranges for the team size indicator from the development
guidelines [38]. We approximated the value ranges for the number of commits indicator to
a time interval of 1 month based on the paper [39]. We selected empirically the ranges for
the number of entities and business processes indicators.

Table 2. States of indicators of analyzed repositories.

Project Indicator
(State)

Month

1 2 3 4 5

tabbychat

Commits middle middle few few few

Contributors middle middle few few few

Entities few few few few few

Processes middle middle middle middle middle

ng-tracker

Commits few few few few few

Contributors few few middle middle middle

Entities few few middle middle middle

Processes middle middle few few few

The invited expert proposed the following recommendations for the ng-tracker project
based on the analysis of indicator states:

An increase in the number of entities with a decrease in the number of implemented business
processes indicates the lack of progress in the development of new project functionality. Developers
should create more business methods.

The expert made this conclusion, since the ’number of entities’ indicator was stable
in the tabbychat project, while this indicator increased in the ng-tracker project. Moreover,
in the ng-tracker project, there is a decrease in the number of implemented business methods.

In the future, we plan to add a [40] decision support module to the diagnostic
analytics subsystem, which allows for the automatation of generating recommendations
based on expert knowledge.

5. Discussion

The proposed approach to design automation and project management makes it
possible to formalize various features of existing software projects. The knowledge base
formed in analyzing existing projects makes it possible to search, extract, and analyze
design and management solutions that can be used by designers to form the CS in the
design process and by project managers in the initial states of the project.

Software 2023, 2 159

In Section 2, we analyzed various works that described software design automation.
In most cases, the authors of these studies proposed models and methods for representing
experience and knowledge to organize corporate knowledge bases by formalizing design
artifacts of various types [3,9–14].

We also considered papers about the analysis of open-source software repositories
to evaluate the quality of the repository, depending on various design, construction, and
project management practices [16–21].

The main difference of the proposed approach from the existing ones is considering
the various features of software projects:

• Development process features;
• Structure features;
• Environment features;
• Domain features;
• Project in dynamic representation.

Considering the dynamics of the project allows us to evaluate the impact of manage-
ment decisions on the quality of design artifacts and the development process. Moreover,
information about the dynamics of the project development can be used in predictive
analytics methods to predict the occurrence of specific events.

Such a multimodal representation of the project allows us to find hidden patterns and
dependencies between the various features of the project. We can use formalized features
of various projects as a data set for data mining and machine learning methods.

We presented in the ‘Results’ section of this article some use cases of using the pro-
posed approach.

The Information retrieval of projects allows us to more accurately find projects for
research. The current implementation allows to search for projects, considering the do-
main features. For example, such projects can be used to research data models and/or
business processes for a new (unknown) domain. In addition, the proposed information
retrieval method allows us to consider the size of the team and the size of the project.
This search options allows us to search only training or demonstration projects or only
large projects. In the future, we plan to add a search for projects by dependencies and
architectural solutions.

The method for generating use case diagrams allows us to assess the functionality of
the project when making management decisions or choosing a project for research. In the
future, we plan to add support for generating the following structural UML diagrams:

• A class diagram;
• A composite structure diagram;
• A component diagram;
• A deployment diagram;
• A package diagram.

The method for the diagnostic analytics of a project allows us to extract and compare
the development trends of the current project with other successful or unsuccessful projects.
In the future, we plan to automate the process of project analysis, extracting the project
development trend, and generating recommendations to support decision-making.

We do not fully use all views of the knowledge base. For example, the representation
of the software project structure PB (Figure 4) can be used to find projects with a similar
structural organization. Some researchers suggest that the way developers organized a
project affects its success and code maintainability [41].

The disadvantages of the proposed approach are as follows:

• The need for expertise to adapt the approach to different programming languages
and technologies;

• The need for expertise to consider the features of the development process;
• The need to use the project-hosting API (GitHub, GitLab) to extract information about

the development process: stages, tasks, merge requests, etc.

Software 2023, 2 160

We plan to add the following features:

• Support for fuzzy logic;
• Generating new types of design artifacts;
• The automatic generation of project management recommendations;
• Data mining methods.

6. Conclusions

This article discusses an approach to the design automation and project management
of software projects. Design automation improves the quality of software projects by
considering successful and unsuccessful design decisions based on the experience of
previous projects.

We proposed the knowledge base model to solve the problem of design automation.
The knowledge base allows for the formalization of various design artifacts and various
indicators of the development process. The generated knowledge base can also be used as
a source of a set of time series.

We proposed the diagnostic analytics method to support the project development
process. The proposed method is based on the analysis of multiple time series to form rec-
ommendations for improving the quality and efficiency of project management decisions.

Author Contributions: Conceptualization, A.F. and A.R.; methodology, A.F. and A.R.; software, A.F.,
A.R., A.S. and J.S.; validation, A.F., A.R., A.S. and J.S.; formal analysis, A.F. and A.R.; investigation, A.F.
and A.R.; resources, A.S. and J.S.; data curation, A.F. and A.R.; writing—original draft preparation,
A.F. and A.R.; writing—review and editing, N.Y.; supervision, N.Y.; project administration, N.Y.;
funding acquisition, N.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation in the framework of the state task no.075-00233-20-05 “Research of intelligent predictive
multimodal analysis of big data, and the extraction of knowledge from different sources”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AD Architectural Description
OS Operational Space of Design Activity
CS Conceptual Space of Design Activity
DT Design Thinking Methodology
DL Description Logic
HTTP HyperText Transfer Protocol
REST Representational State Transfer
API Application Programming Interface
SHA Secure Hash Algorithms
MVC Model–view–controller
UML Unified Modeling Language

References
1. Chaos Reports 1994–2017. Available online: http://www.standishgroup.com (accessed on 2 February 2023).
2. Ralph, P. The sensemaking-coevolution-implementation theory of software design. Sci. Comput. Program. 2015, 101, 21–41.

[CrossRef]
3. Sosnin, P. Substantially evolutionary theorizing in designing software-intensive systems. Information 2018, 9, 91. [CrossRef]
4. Ferreira Martins, H.; Carvalho, de Oliveira, A., Jr.; Dias Canedo, E.; Dias Kosloski, R.A.; Ávila Paldês, R.; Costa Oliveira, E. Design

thinking: Challenges for software requirements elicitation. Information 2019, 10, 371. [CrossRef]

http://www.standishgroup.com
http://doi.org/10.1016/j.scico.2014.11.007
http://dx.doi.org/10.3390/info9040091
http://dx.doi.org/10.3390/info10120371

Software 2023, 2 161

5. Hoda, R.; Murugesan, L.K. Multi-level agile project management challenges: A self-organizing team perspective. J. Syst. Softw.
2016, 117, 245–257. [CrossRef]

6. da Silva, F.Q.; Costa, C.; Franca, A.C.C.; Prikladinicki, R. Challenges and solutions in distributed software development project
management: A systematic literature review. In Proceedings of the 5th IEEE International Conference on Global Software
Engineering, Princeton, NJ, USA, 23–26 August 2010; pp. 87–96.

7. Niazi, M.; Mahmood, S.; Alshayeb, M.; Riaz, M.R.; Faisal, K.; Cerpa, N.; Khan, S.U.; Richardson, I. Challenges of project
management in global software development: A client-vendor analysis. Inf. Softw. Technol. 2016, 80, 1–19. [CrossRef]

8. Engwall, M.; Jerbrant, A. The resource allocation syndrome: The prime challenge of multi-project management? Int. J. Proj. Manag.
2003, 21, 403–409. [CrossRef]

9. Bedjeti, A.; Lago, P.; Lewis, G.A.; De Boer, R.D.; Hilliard, R. Modeling context with an architecture viewpoint. In Proceedings of
the IEEE International Conference on Software Architecture (ICSA-2017), Gothenburg, Sweden, 3–7 April 2017; pp. 117–120.

10. Wongthongtham, P.; Pakdeetrakulwong, U.; Marzooq, S.H. Ontology annotation for software engineering project manage-
ment in multisite distributed software development environments. In Software Project Management for Distributed Computing;
Mahmood, Z., Ed.; Springer: Cham, Switzerland, 2017; pp. 315–343.

11. Namestnikov, A.; Guskov, G. Ontological mapping for conceptual models of software system. In Proceedings of the Open
Semantic Technologies for Intelligent Systems Conference, Minsk, Republic of Belarus, 16–18 February 2017; pp. 16–18.

12. Guskov, G.; Namestnikov, A.; Yarushkina, N. Approach to the search for similar software projects based on the UML ontol-
ogy. In Proceedings of the International Conference on Intelligent Information Technologies for Industry, Varna, Bulgaria,
14–16 September 2017; pp. 3–10.

13. Bechberger, L.; Kühnberger, K.U. A thorough formalization of conceptual spaces. In Proceedings of the Joint German/Austrian
Conference on Artificial Intelligence, Dortmund, Germany, 25–29 September 2017; pp. 58–71.

14. Di Noia, T.; Mongiello, M.; Nocera, F.; Straccia, U. A fuzzy ontology-based approach for tool-supported decision making in
architectural design. Knowl. Inf. Syst. 2019, 58, 83–112. [CrossRef]

15. ISO/IEC/IEEE 42010:2022. Software, Systems and Enterprise–Architecture Description. Available online: https://www.iso.org/
standard/74393.html (accessed on 27 November 2022).

16. Borle, N.C.; Feghhi, M.; Stroulia, E.; Greiner, R.; Hindle, A. Analyzing the effects of test driven development in GitHub.
Empir. Softw. Eng. 2018, 23, 1931–1958. [CrossRef]

17. Henkel, J.; Bird, C.; Lahiri, S.K.; Reps, T. Learning from, understanding, and supporting devops artifacts for docker. In Proceedings
of the 42nd International Conference on Software Engineering (ICSE-2020), Seoul, Republic of Korea, 5–11 October 2020; pp.
38–49.

18. Schermann, G.; Zumberi, S.; Cito, J. Structured information on state and evolution of dockerfiles on GitHub. In Proceedings of
the 15th international conference on mining software repositories, Gothenburg, Sweden, 28–29 May 2018; pp. 26–29.

19. Xia, T.; Fu, W.; Shu, R.; Agrawal, R.; Menzies, T. Predicting health indicators for open source projects (using hyperparameter
optimization). Empir. Softw. Eng. 2022, 27, 1–31. [CrossRef]

20. De Stefano, M.; Pecorelli, F.; Tamburri, D.A.; Palomba, F.; De Lucia, A. Splicing community patterns and smells: A preliminary
study. In Proceedings of the 42nd international conference on software engineering workshops, Seoul, Republic of Korea,
27 June–19 July 2020; pp. 703–710.

21. Tamburri, D.A.; Palomba, F.; Serebrenik, A.; Zaidman, A. Discovering community patterns in open-source: A systematic approach
and its evaluation. Empir. Softw. Eng. 2019, 24, 1369–1417. [CrossRef]

22. Bhatia, M.P.S.; Kumar, A.; Beniwal, R. Ontologies for software engineering: Past, present and future. Indian J. Sci. Technol. 2016, 9,
1–16. [CrossRef]

23. Isotani, S.; Bittencourt, I.I.; Barbosa, E.F.; Dermeval, D.; Paiva, R.O.A. Ontology driven software engineering: A review of
challenges and opportunities. IEEE Lat. Am. Trans. 2015, 13, 863–869. [CrossRef]

24. Rudolph, S. Foundations of description logics. In Proceedings of the 7th International Summer School on Reasoning Web.
Semantic Technologies for the Web of Data, Galway, Ireland, 23–27 August 2011; pp. 76–136.

25. OWL 2 Web Ontology Language. Structural Specification and Functional-Style Syntax (Second Edition). Available online:
https://www.w3.org/TR/owl2-syntax/ (accessed on 2 February 2023).

26. Ng-Tracker Repository on GitLab. Available online: https://gitlab.com/romanov73/ng-tracker (accessed on 2 February 2023).
27. Filippov, A.; Romanov, A.; Iastrebov, D. An Approach to Data Mining of Software Repositories in Terms of Quantitative Indicators

of the Development Process and Domain Features. In Proceedings of the International Conference on Intelligent Information
Technologies for Industry, Istanbul, Turkey, 31 October–6 November 2022; pp. 346–357.

28. GitLab REST API Documentation. Available online: https://docs.gitlab.com/ee/api/rest/ (accessed on 2 February 2023).
29. Eclipse JGit Official Website. Available online: https://www.eclipse.org/jgit/ (accessed on 2 February 2023).
30. Pecherskikh, A.A.; Romanov, A.A.; Beresnev, I.I. An approach for searching software system projects with similar structure.

Autom. Control. Process. 2022, 3, 20–26. [CrossRef]
31. Namestnikov, A.M.; Filippov, A.A.; Avvakumova, V.S. An ontology based model of technical documentation fuzzy structuring.

In Proceedings of the 2nd International Workshop on Soft Computing Applications and Knowledge Discovery (SCAKD 2016),
Moscow, Russia, 18 July 2016; pp. 63–74.

http://dx.doi.org/10.1016/j.jss.2016.02.049
http://dx.doi.org/10.1016/j.infsof.2016.08.002
http://dx.doi.org/10.1016/S0263-7863(02)00113-8
http://dx.doi.org/10.1007/s10115-018-1182-1
https://www.iso.org/standard/74393.html
https://www.iso.org/standard/74393.html
http://dx.doi.org/10.1007/s10664-017-9576-3
http://dx.doi.org/10.1007/s10664-022-10171-0
http://dx.doi.org/10.1007/s10664-018-9659-9
http://dx.doi.org/10.17485/ijst/2016/v9i9/71384
http://dx.doi.org/10.1109/TLA.2015.7069116
https://www.w3.org/TR/owl2-syntax/
https://gitlab.com/romanov73/ng-tracker
https://docs.gitlab.com/ee/api/rest/
https://www.eclipse.org/jgit/
http://dx.doi.org/10.35752/1991-2927_2022_3_69_20

Software 2023, 2 162

32. Yarushkina, N.; Filippov, A.; Grigoricheva, M.; Moshkin, V. The Method for Improving the Quality of Information Retrieval
Based on Linguistic Analysis of Search Query. In Proceedings of the International Conference on Artificial Intelligence and Soft
Computing (ICAISC-2019), Zakopane, Poland, 16–20 June 2019; pp. 474–485.

33. Romanov, A.A.; Filippov, A.A.; Voronina, V.V.; Guskov, G.Y.; Yarushkina, N.G. Modeling the Context of the Problem Domain of
Time Series with Type-2 Fuzzy Sets. Mathematics 2021, 9, 2947. [CrossRef]

34. Rahman, M.M.; Chakraborty, S.; Kaiser, G.; Ray, B. A case study on the impact of similarity measure on information retrieval
based software engineering tasks. arXiv 2018, arXiv:1808.02911. Available online: https://arxiv.org/pdf/1808.02911.pdf (accessed
on 27 November 2022).

35. Holzschuher, F.; Peinl, R. Performance of graph query languages: Comparison of Cypher, Gremlin and native access in Neo4j. In
Proceedings of the Joint EDBT/ICDT 2013 Workshops, Genoa, Italy, 18–22 March 2013; pp. 95–204.

36. PlantUML. UML Diagram Generator. Available online: https://plantuml.com (accessed on 27 November 2022).
37. Tabbychat. Plugin for Minecraft. Available online: https://github.com/killjoy1221/tabbychat (accessed on 2 February 2023).
38. The 2020 Scrum Guide: Scrum Team. Available online: https://www.scrumguides.org/scrum-guide.html#scrum-team (accessed

on 27 November 2022).
39. Grönlund, M.; Jefford-Baker, J. Measuring Correlation between Commit Frequency and Popularity on GitHub; School of Computer

Science and Communication (CSC): Stockholm, Sweden, 2017.
40. Romanov, A.; Yarushkina, N.; Filippov, A. Application of time series analysis and forecasting methods for enterprise decision-

management. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland,
12–14 October 2020; pp. 326–337.

41. Zhu, J.; Zhou, M.; Mockus, A. Patterns of folder use and project popularity: A case study of GitHub repositories. In Pro-
ceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Torino, Italy,
18–19 September 2014; pp. 1–4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math9222947
https://arxiv.org/pdf/1808.02911.pdf
https://plantuml.com
https://github.com/killjoy1221/tabbychat
https://www.scrumguides.org/scrum-guide.html#scrum-team

	Introduction
	State Of The Art
	Materials and Methods
	Knowledge Base Model for Formalizing of the Experience of Previous Projects
	Formalizing the Experience of Previous Projects
	Diagnostic Analytics Method for Decision Support in Project Management

	Results
	Information Retrieval of Software Projects
	Generating Use Case Diagrams in UML Notation
	Diagnostic Analytics of Software Projects

	Discussion
	Conclusions
	References

