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Abstract: Rapid and accurate pathogen identification is crucial in effectively combating infectious
diseases. However, the current diagnostic tools for bacterial infections predominantly rely on century-
old culture-based methods. Furthermore, recent research highlights the significance of host–microbe
interactions within the host microbiota in influencing the outcome of infection episodes. As our
understanding of science and medicine advances, there is a pressing need for innovative diagnos-
tic methods that can identify pathogens and also rapidly and accurately profile the microbiome
landscape in human samples. In clinical settings, such diagnostic tools will become a powerful
predictive instrument in directing the diagnosis and prognosis of infectious diseases by providing
comprehensive insights into the patient’s microbiota. Here, we explore the potential of long-read
sequencing in profiling the microbiome landscape from various human samples in terms of speed
and accuracy. Using nanopore sequencers, we generate native DNA sequences from saliva and
stool samples rapidly, from which each long-read is basecalled in real-time to provide downstream
analyses such as taxonomic classification and antimicrobial resistance through the built-in software
(<12 h). Subsequently, we utilize the nanopore sequence data for in-depth analysis of each microbial
species in terms of host–microbe interaction types and deep learning-based classification of uniden-
tified reads. We find that the nanopore sequence data encompass complex information regarding
the microbiome composition of the host and its microbial communities, and also shed light on the
unexplored human mobilome including bacteriophages. In this study, we use two different systems
of long-read sequencing to give insights into human microbiome samples in the ‘slow’ and ‘fast’
modes, which raises additional inquiries regarding the precision of this novel technology and the
feasibility of extracting native DNA sequences from other human microbiomes.

Keywords: diagnostic for bacterial infection; long-read sequencing; human microbiome; nanopore
Flongle; native DNA; antimicrobial resistance; taxonomic classification

1. Background

Rapid and accurate identification of pathogens is crucial for effectively treating and
managing infectious diseases. Traditional diagnostic methods for bacterial infections,
such as culture-based techniques, have been largely unchanged in clinical practice for
several decades [1,2]. However, these methods often take several days for identification
and susceptibility testing of bacterial pathogens and are prone to false-negative results
during antimicrobial therapy. For example, a recent study showed that the median time to
pathogen identification for bloodstream infections using traditional culture-based methods
takes around three days [3]. This delay in diagnostic procedures can result in inappropriate
antibiotic therapy, which can negatively affect patient outcomes and lead to antibiotic
resistance development [1]. Furthermore, culture-based techniques may not detect all
bacterial infections, particularly if the patient is undergoing antimicrobial therapy.
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Recent evidence suggests that it is important to have a comprehensive view of the
microbial communities in which the pathogen resides to predict the progress of infection in
clinical settings [4]. The human microbiota, consisting of a vast array of microorganisms,
including bacteria, viruses, fungi, and protozoa, colonizes many different niches within
the human body. Host–microbe interactions within the host microbiota play a vital role in
determining the growth and establishment of pathogenic microbes. These interactions can
range from beneficial to commensal to pathogenic, and a subtle shift in the balance of these
interactions can have profound effects on the host’s health, including inflammatory bowel
disease (IBD) [5] and neurological disorders [6]. Recent research has highlighted the role of
the host microbiota in shaping the host’s immune response to pathogenic microorganisms,
both through direct interactions with the immune system and through modulation of the
host’s innate and adaptive immune responses [7]. Studies have demonstrated that the
host microbiota can provide colonization resistance against invading pathogens, limiting
their growth and preventing their establishment within the host [8]. Furthermore, the
host microbiota can also impact the virulence of pathogenic microorganisms through a
variety of mechanisms, including competition for nutrients, secretion of antimicrobial
compounds, and modulation of the expression of virulence factors [9]. Alterations in
the composition of the host microbiota, such as those caused by antibiotics or changes
in diet, can disrupt these finely balanced host–microbe interactions, leading to increased
susceptibility to infections [10].

Understanding the intricate interactions between the host microbiota and pathogenic
microorganisms is critical for the development of effective treatments for infectious dis-
eases. This knowledge can inform the development of novel therapeutics that target specific
bacterial species or modulate the host’s immune response to promote the restoration of
healthy microbiota and reduce the risk of disease [11]. Alterations in the composition of the
microbiota can disrupt these interactions, leading to increased susceptibility to infections.
Currently, we are in need of novel diagnostic methods that can both identify pathogens
and profile the microbiome landscape in human samples rapidly and accurately. Given
the expanding knowledge of the role of the microbiome in human health, this feature
is a substantial advancement to traditional diagnostic methods that focus primarily on
pathogen identification, such as culture-based diagnosis and MALDI-TOF mass spectrome-
try fingerprinting [1].

Molecular-based diagnostic methods, such as polymerase chain reaction (PCR) and
next-generation sequencing (NGS), can detect a wider range of bacterial pathogens with
greater sensitivity and specificity [12]. In recent years, the development of such technolo-
gies has enabled the rapid and accurate identification of pathogens. Particularly, NGS
can generate vast amounts of sequence data in a short amount of time, providing rapid
and accurate results for pathogen identification that enables clinicians to make informed
decisions about antimicrobial treatments [13]. Several studies have shown the potential of
NGS in clinical settings for the rapid identification of bacterial infections, such as the rapid
identification of a bacterial outbreak in a neonatal intensive care unit [14] and in patients
with sepsis [15]. Despite the potential of NGS, the technology is still not widely available
in clinical settings, and there are several challenges related to quality control measures that
need to be overcome. These challenges include the need for standardized protocols for sam-
ple preparation, sequencing, and data analysis, particularly since these methods produce
short-read DNA sequences in metagenomic samples that require elaborate bioinformatic
reconstructions [16].

Most recently, long-read sequencing technologies are revolutionizing genomics re-
search by producing high-throughput sequencing of DNA reads longer than those obtained
by traditional short-read sequencing methods. Nanopore sequencing is one of the long-read
sequencing technologies, in which a DNA molecule is passed through a nanopore, and
the electrical signal generated by the movement of the nucleotides through the pore is
used to determine the sequence of the DNA molecule [17]. The development of long-read
sequencing has had a significant impact on genomics research and has enabled the study of
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complex genomes, structural variation, and epigenetic modifications with unprecedented
accuracy and resolution [18,19]. Long-read sequencing has the potential to further en-
hance the field of metagenomics by enabling the identification and characterization of
unculturable microbes and the study of host–microbe interactions in complex microbial
communities [20]. A recent study demonstrated the potential of nanopore sequencing as the
clinical diagnosis of bacterial lower respiratory infections by directly sequencing sputum
samples, providing comparable results to culture-based methods, but with significantly
faster turnaround times [21,22].

In this study, we investigate the potential of long-read sequencing as a futuristic
diagnostic tool to rapidly profile the microbiome landscape of diverse human samples. We
use two different modes to sequence long-read native DNA sequences from diverse human
microbiomes, including saliva and stool samples. The first part consists of a ‘fast’ mode,
which aims to generate a biological interpretation of nanopore sequencing within 12 h
from sampling to data analysis (Figure 1). This fast mode is aimed at providing ultrarapid
analysis of nanopore sequence data such as pathogen identification and antimicrobial
resistance (AMR) under a clinical scenario of tight time constraints where the streamlined
pipeline of a diagnostic tool is essential for effective treatment. This mode is fast and
automatic, and it enables clinicians to make quick identifications and decisions on antibiotic
therapy based on the pathogen and its related microbes without much investment of
time and effort. A ‘slow’ mode is aimed at providing deeper insight into the microbiome
landscape of a patient for prognostic purposes, during which the microbial communities are
analyzed more rigorously. This mode is slow and deliberate, and it engages the researchers
to predict the long-term trajectory of an infection outcome using complex information such
as host–microbe interactions and deep learning-based classification of unknown organisms.
Overall, we aim to provide a comprehensive and insightful view of long-read sequencing
as an innovative diagnostic tool for bacterial infections by rapidly profiling the microbiome
landscape from various human samples.
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extracted with a commercial kit with minimum shearing to obtain high molecular weight DNA. 3. The
extracted DNA is ligated with a library kit provided by Oxford Nanopore that has been optimized
for sequencing native and long-read DNAs in Flongle flow cells. 4. Flongle flow cells are fitted with
an adaptor to a nanopore sequencer for rapid and cost-effective tests, running for at least 12 h to
maximize yield per sample. 5. Basecalling is conducted in real-time for a fast sequencing mode,
during which results can be obtained using cloud-based software tools for taxonomic classification
and AMR analysis. 6. For a slow sequencing mode, user-developed tools can be used to conduct
exploratory analysis on the same nanopore data, including host–microbe interaction assessment and
deep learning-based classification of unidentified reads.

2. Results
2.1. Native DNA Could Be Extracted and Sequenced from the Saliva and Stool Samples

We used the QIAamp DNA Microbiome Kit to extract the native DNA of various
human samples from healthy volunteers (Figure 1). The minimum DNA quantity needed
for native DNA direct sequencing using Flongle flow cells is 500 ng according to the
manufacturer’s protocol, and the lowest DNA concentration achieved for the saliva and
stool samples was 20.5 ng/µL, yielding sufficient quantities for nanopore sequencing
(Table S1). However, the same kit was found to be ineffective for extracting native DNA
from urine, nasal, and vaginal samples sourced from healthy volunteers, failing to provide
the minimum DNA quantities required for nanopore sequencing (Table S1). These findings
suggest that the QIAamp DNA Microbiome Kit may have limited utility for extracting
native DNA from certain human microbiome sources, and alternative DNA extraction
methods may need to be explored for these sample types.

Another disadvantage of using the QIAamp DNA Microbiome Kit to extract native
DNA from various microbiome samples comes from the fragmentation of DNAs during
the extraction step (Figure 1). Fragmentation of DNA during extraction can be caused by a
variety of factors, including mechanical and enzymatic shearing. The QIAamp DNA Micro-
biome Kit uses a bead-beating step to lyse cells, which can result in excessive mechanical
shearing of DNA. Due to the DNA fragmentation, the shortest and the longest estimated
N50 values are 378 bases and 1090 bases, respectively (Table S2, Figure S1). N50 is a statisti-
cal measure commonly used in DNA sequencing to describe the quality of an assembly,
and in the context of long-read sequencing, it is defined as the length of the shortest read
within the set of the longest reads that constitute at least 50% of the sample [23]. Previously,
it was shown that nanopore sequencers can produce long reads of around 10–30 kilobases
(kb) reads in a typical sequencing experiment, while ultralong reads were shown to be
around 3 megabases (Mb) with the N50 value of more than 100 kb [24].

2.2. Fast Sequencing Shows Oral and Gut Microbiomes Have Diverse Microbial Species

In this study, we ran one Flongle flow cell with each sample replicate for at least 12 h,
to exhaust the capacity of nanopores to obtain as many DNA reads in each run as possible
(Figure S2). Depending on the sample, nanopore sequencing using Flongle flow cells was
saturated as early as 3 h (Figure S2; Saliva3_R2) and as late as 20 h (Figure S2; Stool1_R2).
The recommended hours of sequencing for nanopore Flongle can vary depending on the
desired experimental output. For example, a recent study reported using Flongle flow cells
with a sequencing time of 24 h to generate high-quality, near-complete bacterial genomes
of Mycoplasma bovis [25]. Similarly, another study utilized Flongle flow cells in a similar
timeline to achieve high-quality, near-complete SARS-CoV-2 genome assemblies [26].

In this study, we used the high-accuracy basecalling program integrated into the
MinKNOW software (v.4.5.4; 2021; Oxford Nanopore Technologies, Oxford, UK) in real-
time, with a minimum Q-score of 9. The Phred score and Quality score (Q-score) are
both measures of the quality of sequencing data, where the Phred score is a logarithmic
measure of the error probability originated to identify fluorescently labeled DNA bases
by comparing observed and expected chromatogram peak shapes and resolution [27],
widely used in Sanger sequencing and Illumina sequencing. For nanopore sequencing,
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per-nucleotide quality scores are based on the outputs of the neural networks used to
produce the basecall. Q-scores are per-read quality scores, calculated by averaging the per-
nucleotide quality scores and by expressing on the Phred scale [28]. Importantly, Q-scores
consider that the error rate in nanopore sequencing is not constant across the read and can
vary depending on factors such as the sequence context and the quality of the signal.

After a complete sequencing run, we used the basecalled output for the quantitative
and real-time identification of microbiome species from these metagenomic samples using
the cloud-based data analysis platform (Table S3). This data analysis platform leverages
long-read sequencing to enable the comparison of each read against databases containing
reference genomes of bacteria, archaea, viruses, and fungi, achieved by constructing an
indexing scheme that facilitates efficient searches of sequenced reads [29]. It rapidly
classified and identified diverse species in each microbiome sample, even to the resolution
of different strains of bacterial species (Table S3). The data analysis platform also rapidly
determined the most reliable placement of these organisms in the taxonomy tree, assigning
a score to each taxonomic placement (Figure S3).

The gut microbiomes contained the greatest number of species, while the oral micro-
biome contained varying amounts of microbial species (Table S3). For example, the Stool1
and Stool2 samples had more than 1000 and 500 known microbial species present, respec-
tively. The most abundant species consists of Lactobacillus ruminis in Stool1 and Megamonas
funiformis in Stool2. Among these abundant species, it was notable that the gut microbiome
from Stool1 contained most bacteria species widely known to be beneficial [30], whereas
that from Stool2 had most bacterial species recently found to be commensal [31]. For the
saliva samples, both the diversity and number of microbial species were lower and the role
of each species in the host–microbe interaction was less obvious (Table S3). The most abun-
dant bacterial species include Haemophilus parainfluenzae in Saliva1 and Saliva2, whereas
Rothia mucilaginosa in Saliva3. It was notable that the saliva microbiome from Saliva1 and
Saliva2 contained most bacteria species widely known to be beneficial [32], whereas that
from Saliva3 had most bacterial species recently found to be harmful [33]. Another notable
observation includes the presence of viruses in these microbiome samples despite the use
of an extraction kit that was not optimized for viral DNA extraction. The DNA reads that
were classified as bacteriophage were of particular interest as the role and impact of these
biological entities are just starting to get noticed in microbiome studies [34,35]. The most
abundant virus species include Faecalibacterium phage in Stool1, crAss-like phage [36] in
Stool2, Streptococcus phage in Saliva1 and Saliva2, and Shigella phage in Saliva3 (Table S3).
These first analyses show the diversity and abundance of microbial communities in human
samples could be rapidly profiled—however, we conducted more in-depth analyzes of the
host–microbe interaction types subsequently (see below).

In the saliva and stool samples, varying amounts of human DNAs were present despite
the host DNA depletion step of the QIAamp DNA Microbiome Kit. In the stool samples,
the microbiome DNA was enriched compared to the human DNA, with almost 100% of
reads classified as bacterial species in Stool1 (Table 1). However, the saliva samples tend to
have a lower percentage of the microbiome DNA in the sequencing output, with almost
90% of reads classified as eukaryotic species in Saliva1 and Saliva2 (Table 1). The third
saliva sample diluted with 1000 µL of PBS solution had a better percentage content of the
microbiome DNA, which shows that the quantity of a sample does not always correlate
with the quality of reads in long-read sequencing. We studied these human DNA reads
to assess if they could provide valuable information about the host, such as some genetic
markers that could give alternative insight into the host–microbe interactions, but the yield
output of a Flongle flow cell with a maximum 2.8 Gb was not enough to generate any
significant coverage. However, more high-throughput flow cells such as MinION and
PromethION with a maximum output of 50 Gb and 290 Gb per flow cell, respectively, may
be utilized to generate genomic data of the host and microbiome simultaneously, which may
provide the most comprehensive view of the host–microbe interactions, given the recent
findings of the interdependence of microbiome genomes and human genomes [37,38].
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Table 1. The real-time analysis of nanopore reads with the cloud-based platform (EPI2ME) and
its integrated software for sequence similarity-based taxonomic classification (WIMP). For each
microbiome replicate, the data retrieved (Yield Data) in megabases, the average quality score from
EPI2ME, the average sequence length, the total number of reads, and the number of reads classified
into any operational taxonomic unit (OTU) are reported. The Superkingdom column gives the
percentage of reads that have been classified into the kingdoms - Eukaryota, Bacteria, and Viruses.

Sample_Replicate Yield Data
(Mbases)

Average
Quality Score

Average
Sequence

Length
Total Reads Reads

Classified Superkingdom

Saliva1_R1 33.1 11.56 734 45,079 43,820
Eukaryota: 89%

Bacteria: 11%
Viruses: <1%

Saliva1_R2 25.0 11.12 847 29,462 29,059
Eukaryota: 95%

Bacteria: 5%
Viruses: <1%

Saliva2_R1 223.2 12.40 729 306,111 293,219

Eukaryota: 81%
Bacteria: 19%
Viruses: <1%
Archaea: <1%

Saliva2_R2 66.1 10.92 672 98,330 94,121
Eukaryota: 86%

Bacteria: 14%
Viruses: <1%

Saliva3_R1 22.8 11.29 497 45,827 33,609

Bacteria: 89%
Eukaryota: <11%

Viruses: <1%
Archaea: <1%

Saliva3_R2 10.7 11.47 445 24,099 17,798
Bacteria: 90%

Eukaryota: <10%
Viruses: <1%

Stool1_R1 37.3 11.70 428 87,146 50,254

Bacteria: 100%
Eukaryota: <1%

Viruses: <1%
Archaea: <1%

Stool1_R2 58.3 11.63 451 129,091 74,810

Bacteria: 100%
Eukaryota: <1%

Viruses: <1%
Archaea: <1%

Stool2_R1 15.9 11.21 431 36,832 22,744

Bacteria: 97%
Viruses: 2%

Archaea: <1%
Eukaryota: <1%

Stool2_R2 21.1 11.04 566 37,172 22,425

Bacteria: 98%
Viruses: <1%
Archaea: <1%

Eukaryota: <1%

2.3. Slow Sequencing Shows Complex Host–Microbe Interaction Types

We investigated the microbial species from these microbiomes further by assigning
each microbial species or strain as a harmful, beneficial, or commensal organism in the
oral or gut microbiome (Tables S4 and S5). This assessment of the host–microbe interaction
was initially conducted by matching the name of each organism to the list generated
by the previous studies to have a positive, negative, or neutral impact on the human
host [32,39–45]. The ten most abundant species in each microbiome sample are shown
with the host–microbe interaction type as beneficial, harmful, or commensal in Table
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S4. This curated list shows that the ten most abundant species are consistently present
in most replicates of the saliva samples. For example, the most abundant species of
beneficial bacteria are found to be Haemophilus parainfluenzae in all the saliva replicates. In
contrast, the most abundant species of harmful bacteria are found to be Neisseria subflava
in Saliva1_R1, whereas Prevotella melaninogenica in Saliva1_R2 and Saliva2. In Saliva3, the
most abundant harmful bacteria are found to be Rothia mucilaginosa in both replicates.
Despite the difference in order, the ten most abundant species mostly match between two
replicates of the microbiome sample. However, there was much more variation in the ten
most abundant species in the stool samples. For example, the most abundant species of
beneficial bacteria is Lactobacillus ruminis in both replicates of Stool1, whereas Akkermansia
muciniphila in Stool2_R1. Bifidobacterium adolescentis is found in all stool samples as one
of the most abundant beneficial bacteria. In both replicates of Stool1, the most abundant
harmful bacteria is found to be Acidaminococcus intestini, which has been isolated from
different clinical samples [46]. In both replicates of Stool2, the most abundant harmful
bacteria is found to be Desulfovibrio piger, which are sulfate-reducing bacteria that may
contribute to gastrointestinal diseases such as IBDs due to the production of hydrogen
sulfide that is toxic to the gut epithelium [47].

Due to the extensive list of microbial species in the nanopore dataset, there were
many microbes that were missing from the initial list of host–microbe interaction types,
particularly in the gut microbiome which contained thousands of species. Thus, we further
searched the most recent scientific literature to assess the impact of each microbial organism
in these microbiomes (Table S5). In cases when there is contradicting evidence, we flagged
the organisms as inconclusive. Furthermore, if the assessment level was higher than that
of the genus, it was immediately assessed as inconclusive (as there is too much diversity)
unless there was overwhelming evidence otherwise (Table 2).

Table 2. Assessment of host–microbe interaction types for each microbe species per microbiome
replicate. Each read in the microbiome replicate was classified in the taxonomical level of genus,
species, and strain for prokaryotes and virus for mobile genetic elements. These microbiomes were
categorized as beneficial, harmful, commensal, and inconclusive depending on the type of host–
microbe interaction defined in the previous literature. The number sign, #, is used to abbreviate the
word “number”.

Sample_Replicate # Genus # Species # Strain # Virus Reads Length Beneficial Harmful Commensal Inconclusive

Saliva1_R1 125 164 105 5 135 1597 31 101 52 146

Saliva1_R2 57 105 56 1 154 2767 16 75 35 62

Saliva2_R1 285 424 250 10 403 717 57 226 103 370

Saliva2_R2 134 198 127 3 249 790 36 135 56 164

Saliva3_R1 327 467 270 8 56 532 61 231 122 404

Saliva3_R2 227 285 184 3 43 470 47 174 87 250

Stool1_R1 514 686 426 9 76 485 82 115 246 705

Stool1_R2 702 921 603 8 82 526 92 144 275 1057

Stool2_R1 283 338 207 2 64 456 49 71 161 287

Stool2_R2 359 416 266 6 50 662 66 92 184 392

The comprehensive assessment of the host–microbe interaction types in the micro-
biome community is summarized in the bar chart of relative diversity (Figure 2). It shows
that the oral microbiome tends to contain more diverse organisms that are known to be
harmful than the gut microbiome. Moreover, a significant number of microbes exhibit
inconclusive roles within the gut and oral microbiomes, underscoring the imperative to
explore the impact of these microbes on microbiome communities in order to comprehen-
sively map the landscape of the human microbiome. A bacterial species that have been
isolated from a human gut may be beneficial or pathogenic depending on the individual or
the health condition of the individual, leading to conflicting or inconclusive information
about the host–microbe interaction type. Furthermore, one species may have many strains
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with completely different characteristics. In our dataset, there are some bacterial species
such as Escherichia coli with dozens of strains, with a huge diversity in their genomic and
functional characteristics. Therefore, even if one sequenced species was considered as one
interaction type, there is no guarantee that the actual strain that was sequenced possesses
the same interaction type.
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(a) The stacked bars visually depict the species diversity within each replicate, with classification
into beneficial, harmful, or commensal categories in the host microbiome based on existing literature.
Any microbial species that have missing or conflicting information is categorized as inconclusive.
(b) The pie charts depict the same classification of host–microbe interaction, with mean percentages
for each interaction type within the saliva and stool samples. Components may not sum to totals
because of rounding.

We found some microbes whose presence in the gut and oral microbiomes was par-
ticularly intriguing (Tables S4 and S5) [48]. Cellulolytic bacteria (in Caldicellulosiruptor)
were sequenced in the microbiomes of Stool1 and Stool2_R2. No evidence was found
for its host–microbe interaction type, but cellulolytic bacteria are important for mammals
including humans, as they allow the digestion of plant materials and gain nutrients from
plants. A previous study even shows the potential for these microbes to have antibacterial
properties against pathogenic bacteria [49], which makes it difficult to assess their host–
microbe interaction type as commensal or beneficial (list of cellulolytic bacteria includes
Caldicellulosiruptor bescii DSM 6725, Caldicellulosiruptor changbaiensis, Caldicellulosiruptor
obsidiansis OB47, and Caldicellulosiruptor saccharolyticus DSM 8903). We also found some
plant bacteria, both beneficial and pathogenic to plants, whose role in human health has not
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been investigated. However, a plant pathogen that is also pathogenic to humans was found
in Stool2_R1, such as Pantoea ananatis, whose presence is uncommon in the human micro-
biome [50]. There are some zoonotic bacteria found in the sample, including Pasteurella
multocida [51]. Some bacteria have a natural affinity towards antimicrobial resistance, in-
cluding Clostridium boltae, which is a commensal in the human gastrointestinal tract but
also acts as a reservoir for antimicrobial resistance [52].

During the assessment, we noticed that defining the host–microbe interaction types as
harmful, beneficial, or commensal is only a vague indicator of the microbial characteristics
and should not be considered as an absolute measure. For example, Corynebacterium
matruchotii, an oral microbe that is crucial in biofilm structure and may aid in the prevention
of caries, has also been hypothesized to cause supragingival calculus formation if present
in the oral microbiome [53]. The formation could lead to periodontal diseases, highlighting
the dual nature of the host–microbe interaction as both beneficial and harmful. Many of the
microbes that are commensal can also be harmful to immunocompromised patients [54],
and the microbial pathogenicity or virulence can undergo changes due to the changes
in the microbial DNA, the antimicrobial resistance, the surrounding environment, or the
susceptibility of humans to particular diseases [55–57]. For example, Acinetobacter baumannii
was pathogenic since the 1990s but its pathogenicity level has now increased to a critical
level [55]. Furthermore, the composition of the microbiota is as important as the type, since
the interplay between different microbes also changes the extent of beneficial or harmful
effects [58].

2.4. Oral and Gut Microbiomes Have Numerous AMR Genes

We found numerous and diverse antibiotic resistance genes in all the microbiome
samples, summarized in Table S6 and shown as a heatmap in Figure S4. There are several
genes that are attributed to the antimicrobial resistance to a wide range of antibiotics, includ-
ing beta-lactam, aminoglycoside, tetracycline, macrolide, and fluoroquinolone (Table S7).
Bacteria can develop resistance against these antibiotics through multiple mechanisms.
These antimicrobial resistance genes can be categorized into four Comprehensive Antibiotic
Resistance Database (CARD) models depending on the type of resistance mechanisms: pro-
tein variant model, protein homolog model, protein wild type model, and rRNA mutation
model (Figure S5).

One of the antibiotics, named aminoglycoside, is widely used to fight against bacteria,
especially aerobic Gram-negative bacteria. Aminoglycoside inhibits peptide elongation at
30S ribosomal subunit, resulting in inaccurate mRNA translation which can halt protein
synthesis or alter amino acid compositions at certain points [59]. However, when some
mutations occur in the 30S ribosomal subunit, aminoglycosides no longer interact with the
target [60]. In all the microbiome samples, the AMR genes conferring resistance to amino-
glycoside were the most prevalent (Figure 3a). For instance, at least 60% of the AMR genes
are related to the resistance against aminoglycoside in Saliva3_R2 (Table S6). Particularly,
we found Mycobacterium tuberculosis in one of the saliva samples (Saliva3_R2), which is
known to cause tuberculosis and it had 16S rRNA variant genes that confer multidrug
resistance to streptomycin and amikacin, which belong to the family of aminoglycoside,
posing a potential threat as these antibiotics are commonly used to treat tuberculosis [61].
In one of the stool samples (Stool1_R1), Campylobacter jejuni, known to cause gastroenteritis
was found. It had ant(6)-Ib genes, which encode a family of aminoglycoside nucleotidyl-
transferase named ANT(6)-Ib. The expression of ant(6)-Ib can exacerbate the antimicrobial
resistance in Campylobacter jejuni, as aminoglycosides and macrolides are the effective way
to treat this disease [62].
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Figure 3. The Comprehensive Antibiotic Resistance Database (CARD) resistance ontology in each
microbiome replicate based on (a) antibiotic category and (b) taxon conferring resistance to antibiotics.
Antibiotics are classified based on their mechanism of action, spectrum of activity, or chemical
structure. The antibiotic category shows all resistance pathways linking the gene to antibiotic
molecules. The heatmap scale shows the number of alignments to the antibiotic category or the taxon
conferring resistance to antibiotics.

As shown in our microbiome samples, many conventional antibiotics as well as
some newer antibiotics are no longer effective in certain types of bacteria due to the
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spread of antimicrobial resistance. Recently, the World Health Organization (WHO) has
designated antimicrobial resistance as one of the top threats against public health and
published a list of pathogens that are in urgent need of novel antibiotics [2]. The WHO
list is divided into three levels of priority (critical, high, and medium) according to the
severity of antimicrobial resistance and the urgency for novel antibiotics. We compared the
WHO list with the microbial species present in each microbiome sample, and we found
three bacterial species (Neisseria gonorrhoeae, Shigella flexneri, Streptococcus pneumoniae) that
matched the list (Table 3). In all the saliva samples, we found Neisseria gonorrhoeae included
in the high-priority category (Table 3), which are found to be resistant to cephalosporin
or fluoroquinolone (Table S5). Fluoroquinolones are one of the most important antibiotics
listed by the WHO, as they inhibit DNA replication by preventing the ligase activity of
the bacterial DNA gyrase and topoisomerase IV [63]. In Gram-negative bacteria, plasmid-
mediated resistance genes produce proteins that can bind to the bacterial DNA gyrase,
protecting it from the action of quinolones [64].

Table 3. The AMR-conferring taxa and their characteristics in the oral and gut microbiome of the
human samples. Multidrug therapy implies that this pathogen requires multiple antibiotics to treat
the related disease. N/A is used to abbreviate the phrase “not applicable”.

Gram-Positive

Phylum Taxon Colony Spore Respiration Disease Antimicrobial
Therapy

Actinomycetota Bifidobacterium
bifidum Rod No Anaerobic N/A N/A

Actinomycetota Bifidobacterium
longum Rod No Anaerobic N/A N/A

Actinomycetota Cutibacterium
acnes Rod No Anaerobic Skin infections Benzoyl

peroxide

Actinomycetota Mycobacterium
leprae Rod No Aerobic Hansen’s

disease
Multidrug

therapy

Actinomycetota Mycobacterium
smegmatis Rod No Aerobic N/A N/A

Actinomycetota Mycobacterium
tuberculosis Rod No Aerobic Tuberculosis Multidrug

therapy

Actinomycetota Mycobacteroides
abscessus Rod No Aerobic Lung disease Macrolide

Actinomycetota Mycobacteroides
chelonae Rod No Aerobic Skin infections Macrolide

Actinomycetota Streptomyces
cinnamoneus Filamentous Yes Aerobic N/A N/A

Actinomycetota Streptomyces
rishiriensis Filamentous Yes Aerobic N/A N/A

Bacillota Clostridioides
difficile Rod Yes Anaerobic Colon

infections Glycopeptide

Bacillota Enterococcus
faecium Cocci No Facultative anaerobic Urinary tract

infections Glycopeptide

Bacillota Enterococcus
faecium Rod No Facultative anaerobic N/A N/A

Bacillota Lactobacillus
reuteri Rod No Anaerobic N/A N/A

Bacillota Staphylococcus
aureus Cocci No Facultative anaerobic Skin infections Oxazolidinone
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Table 3. Cont.

Bacillota Streptococcus
agalactiae Cocci No Facultative anaerobic

Group B
Streptococcal

(GBS) infections
Ampicillin

Bacillota Streptococcus
pneumoniae Diplococci No Facultative anaerobic Pneumonia Multidrug

therapy

Bacillota Streptococcus
pyogenes Cocci No Facultative anaerobic

Group A
Streptococcal

(GAS)
Infections

Amoxicillin

Bacillota Streptococcus
suis Cocci No Facultative anaerobic Zoonotic

disease Aminopenicillin

Gram-Negative

Phylum Taxon Colony Spore Respiration Disease Antimicrobial
therapy

Bacteroidota Bacteroides
fragilis Rod No Anaerobic Inflammatory

bowel disease Nitroimidazole

Bacteroidota Bacteroides
vulgatus Rod No Anaerobic Inflammatory

bowel disease Nitroimidazole

Bacteroidota Capnocytophaga
ochracea Rod No Facultative anaerobic Capnocytophaga

infection
Multidrug

therapy

Bacteroidota Parabacteroides
distasonis Rod No Anaerobic N/A N/A

Bacteroidota Prevotella
intermedia Rod No Anaerobic Periodontal

infections Nitroimidazole

Campylobacterota Campylobacter
jejuni Rod No Microaerophilic Gastroenteritis Macrolide

Campylobacterota Helicobacter
pylori Helical No Microaerophilic Stomach ulcers Multidrug

therapy

Chlamydiota Chlamydia
psittaci Cocci No Anaerobic Psittacosis Macrolide

Pseudomonadota Escherichia coli Rod No Facultative anaerobic Escherichia coli
infection Tetracycline

Pseudomonadota Haemophilus
parainfluenzae Cocci No Facultative anaerobic Pneumonia Cephalosporin

Pseudomonadota Klebsiella
pneumoniae Rod No Facultative anaerobic

Klebsiella
pneumoniae

infection
Carbapenem

Pseudomonadota Neisseria
gonorrhoeae Diplococci No Anaerobic Gonorrhea Cephalosporin

Pseudomonadota Neisseria
meningitidis Diplococci No Anaerobic Meningitis Cephalosporin

Pseudomonadota Pasteurella
multocida Cocci No Facultative anaerobic Subcutaneous

infection Aminopenicillin

Pseudomonadota Salmonella
enterica Rod No Facultative anaerobic Salmonellosis Fluoroquinolone

Pseudomonadota Shigella flexneri Rod No Facultative anaerobic Shigellosis Fluoroquinolone

Pseudomonadota Vibrio cholerae Rod No Facultative anaerobic Cholera
infection Tetracycline

Spirochaetota Borrelia
burgdorferi Helical No Anaerobic Lyme disease Tetracycline
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In some microbiome samples, we found some bacteria of a medium priority category
from the WHO list, including Shigella which are also resistant to fluoroquinolone (Table S5).
One of the stool samples (Stool2_R1) contains the same genus of bacteria named Shigella
flexneri (Table 3). The point mutations in the DNA gyrase (gyrA) give rise to fluoroquinolone
resistance, and we found the gyrA genes that confer resistance to fluoroquinolone in these
bacteria (Table S6). It is intriguing to observe that the saliva and stool microbiomes all
had these genes because they are known to cause cross-resistance to fluoroquinolones.
For instance, recent research shows the Mycobacterium tuberculosis strain with the gene
variant gyrA exhibits cross-resistance to six different fluoroquinolones, whereas the strain
which does not have mutations in gyrA shows resistance specifically to the particular
fluoroquinolones [65]. Another bacteria that matched the medium priority category is
Streptococcus pneumoniae (Table 3), which is no longer susceptible to penicillin (Table S5).
Bacteria can acquire resistance by synthesizing an enzyme such as beta-lactamase that
attacks the beta-lactam ring of penicillin molecules. There are also other ways to become
penicillin-resistant through mechanisms that decrease the binding affinity of the antibiotics.
In all the saliva microbiome samples, Streptococcus pneumoniae has mutated variants of
PBP1a, PBP2b, and PBP2x (Table S4). These penicillin-binding proteins (PBPs) are targeted
by beta-lactam antibiotics [66], thus these mutations in the PBPs can lead to resistance
against penicillin.

In the AMR analysis, we noticed that a wide variety of nonpathogenic bacteria have
numerous and diverse AMR-related genes (Figure 3b). For example, Mycobacterium smeg-
matis are nonpathogenic bacteria but they are one of the most abundant bacteria that confer
resistance to antibiotics in both the oral and gut microbiomes. Haemophilus parainfluenzae
and Bacteroides fragilis are other examples of nonpathogenic bacteria that are present across
all the microbiomes. These nonpathogenic bacteria are potential reservoirs for AMR-related
genes through horizontal gene transfer, which is the primary mechanism for the spread
of antibiotic resistance in bacteria [67]. Nonpathogenic bacteria which are in the same
genus as pathogenic bacteria are of particular concern as their horizontal gene transfer
is facilitated. For example, both Mycobacterium tuberculosis and Mycobacterium smegma-
tis with AMR-related genes are present in both the oral and gut microbiomes with high
abundance [68].

2.5. Deep Learning-Based Classification of Unidentified Microbes Predicts Mobilome

The fast-sequencing mode of the nanopore data involves the taxonomic classification
of metagenomic sequences in real time. This fast mode is enabled by a cloud-based platform
integrated into the sequencing software, and it utilizes the benefits of long reads to enable
rapid species identification and quantification from metagenomic samples based on the
sequence similarity algorithm [29]. However, this sequence similarity-based approach does
not fully exploit the potential of nanopore sequencing to produce long-read DNAs that
can be regarded as a long stretch of DNA from a microbe, or even an individual. During
the fast sequencing analysis, we noticed that there were many ‘unclassified’ reads in the
classification results based on the sequence similarity algorithm. On average, the oral
microbiome had around 10,000 unclassified reads and the gut microbiome had around
40,000 unclassified reads. We assumed that these unclassified reads are unidentifiable as un-
explored organisms in the human microbiome, and we had a hypothesis that many of these
unidentified reads are from mobile genetic elements such as bacteriophages and lasmids.

To test this hypothesis that these unidentified reads derive from mobile genetic ele-
ments, we searched for a different type of taxonomic algorithm that can classify a sequence
without the presence of similar sequences in the search database. We found that deep
learning-based algorithms can place de novo sequences in taxonomic categories with high
accuracy when trained with a huge diversity and quantity of genetic sequences, exploiting
the fact that different species have their specific patterns and characteristics engraved
in their genetic information [69]. For example, eukaryotic genomes tend to have more
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noncoding regions compared to prokaryotic genomes, whereas bacteriophages are recently
found to adapt alternative genetic coding to increase fitness and evolvability [70,71].

In the slow sequencing mode, we analyzed each unidentified read using a deep
learning-based approach to assign taxonomic classification at the superkingdom level
(Figure 4). The heatmaps show the predicted phylum of all the samples for each superk-
ingdom, revealing the stool samples have more diversity in the four superkingdoms than
the saliva samples as expected (Figure S6). The heatmap of the virus superkingdom is of
particular interest, which is labeled with the predicted host phylum of each read. According
to the deep learning-based approach, the oral and gut microbiomes are expected to have
diverse viruses against archaea, bacteria, and eukaryotes, including against Actinobacteria,
Crenarchaeota, and Arthropoda. Another interesting observation is that many DNA reads
are still unknown even after the deep learning-based classification that does not utilize
any database for inference. This reveals that some de novo reads in these microbiomes
are completely devoid of any known patterns and characteristics, which is an intriguing
observation to be investigated further.
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Figure 4. Superkingdom of unidentified reads predicted by the deep learning-based algorithm
(BERTax) in each microbiome sample (a) Saliva1, (b) Saliva2, (c) Saliva3, (d) Stool1, and (e) Stool2.
The two replicates per sample were combined for this exploratory analysis. Components may not
sum to totals because of rounding.

Followingly, the predicted classification of unidentified reads from each microbiome
sample is separated into four superkingdoms of archaea, bacteria, eukaryotes, and viruses,
and summarized into the bar charts at the genus level (Figures S7–S12). The deep learning-
based classification of this dataset at the genus level shows an intriguing range of diversity
in the classification. Particularly, the diversity at the genus level of the eukaryotic organisms
was rich in all the microbiome samples, but this may be due to the training dataset of
the deep learning-based approach having a bias towards eukaryotic genomes [69]. The
statistical summary of this analysis shows that many of the unidentified reads are classified
into the virus category according to the deep learning-based algorithm (Table S8). This
number is overrepresented as compared to the previous taxonomic classification of viruses
based on sequence similarity (Table S3). The bar chart of the predicted virus at the genus
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level (Figure S12) is particularly interesting as they reveal the unexplored territory of
mobilome in the human microbiome that is yet to be discovered for novel therapeutic tools
and bacteriophage therapy [72–75]. We noticed some inconsistencies in the prediction at
the different levels of superkingdom, phylum, and genus, thus this deep learning-based
approach should be regarded more as an exploratory tool rather than a diagnostic tool.

3. Discussion

The development and implementation of rapid and accurate diagnostic tools for bac-
terial infections are essential in combating the current crisis of antimicrobial resistance
(AMR) effectively. This requires a shift away from traditional culture-based techniques
towards molecular-based diagnostic methods, which can provide faster and more accurate
results, leading to better patient outcomes. Here, we focused on the ability of nanopore
sequencing to generate long-read native DNAs from metagenomic samples of various hu-
man microbiomes. Nanopore sequencing enables direct analysis of DNA/RNA sequences
by sensing changes in an electric current as they pass through a protein nanopore [76].
This new sequencing technology is revolutionizing genomics, as it can produce long-read
DNA/RNA sequences allowing genomic analysis of microbes at individual levels. We
explored the potential of nanopore sequencing as a futuristic diagnostic tool in clinical
and laboratory setting [76,77], which could provide ultrarapid profiling of the human
microbiome through real-time analysis such as species identification and antimicrobial
resistance [2].

We further explored the potential of nanopore sequencing to be utilized in two dif-
ferent modes as a diagnostic tool: fast sequencing and slow sequencing. The fast mode
enables real-time analysis of pathogen identification, metagenomic analysis of microbial
communities, and antimicrobial resistance analysis. This mode is rapid and direct, requir-
ing minimal inputs of human expertise and curation. In this fast analysis, we classified
thousands of microbial species in the saliva and stool samples, with the most cost-effective
but a lower-yield and single-use version of nanopore flow cells [78]. Furthermore, we
rapidly identified the ten most abundant species that are known to be beneficial, harmful,
or commensal in the oral and gut microbiome using the previously curated list. The slow
mode enables in-depth analysis of host–microbe interactions and deep learning-based
classification of unidentified reads. This mode is deliberate and exploratory, requiring the
most advanced bioinformatic skills and expertise in microbiome research. A thorough
exploration of host–microbe interaction types underscore the existing knowledge gaps
regarding the impact of numerous microbes identified within the oral and gut microbiomes.
Additionally, we evaluated a largely unexplored dataset of unclassified DNA reads from
the sequence similarity-based analysis by utilizing a deep learning-based algorithm that
does not require a match in the database to predict the superkingdom, phylum, and genus
of these reads. The analysis further uncovers the potential existence of diverse organisms
belonging to bacteria, archaea, and eukaryotes, with a significantly higher proportion of
reads predicted to originate from virus genomes.

In this study, we aim to provide an exploratory application of nanopore sequencing
as a future diagnostic tool for bacterial infection, which has resurfaced in the scientific
community as an urgent global health issue due to the uncontrolled spread of antimicrobial
resistance [79]. Nevertheless, it is important to acknowledge several caveats that were
encountered during this exploratory application. Firstly, there are still debates about the
accuracy of nanopore sequencers at simplex sequencing, which depends on the nanopore
version, chemistry, and basecalling algorithms. According to the manufacturer, we used the
flow cell version and chemistry (R9.4.1 and SQK-LSK110, respectively) with the expected
raw-read accuracy of 98.3% modal. Regarding the accuracy of read classification, a recent
study investigated that the taxonomic classification of long-read DNAs is satisfactory
through controlled experiments using mock microbial communities [80]. This study further
demonstrated that the expected microbial species corresponded at anticipated abundances,
with the limit of detection observed at 4 reads and 5000 bp in length. However, we still
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had difficulties in determining the confidence level of very rare species, despite setting
a high Q-score threshold while using the high-accuracy basecalling. Since the current
state-of-the-art sequencing technologies cannot provide ground truth about the presence of
these rare species in metagenomic samples, we utilized two replicates per sample to build
confidence in the results of species identification.

Secondly, we used a specialized microbiome kit for extracting native DNA from
different human microbiomes. While the kit was successful in extracting sufficient amounts
of DNA from saliva and stool samples, it was not effective for extracting DNA from urine,
nasal, and vaginal samples (Table S1). Alternative extraction methods that can extract small
quantities of microbial DNA more efficiently may be necessary for these types of samples.
Finally, the extracted DNA from some saliva samples using this kit still had a substantial
fraction of human DNA despite having a host DNA depletion step. We suggest using other
methods of human DNA depletion to enrich the microbiome DNA against the human
DNA [81]. Adaptive sampling has emerged as a cutting-edge approach for selectively
reducing host DNA content in human samples [82]. Adaptive sampling is a technique in
nanopore sequencing that allows for selective sequencing of specific genomic regions of
interest, optimizing the sequencing process by focusing on relevant regions and reducing
sequencing time and cost [83]. It involves real-time analysis of the sequencing data and
adjustment of the sequencing parameters to increase the coverage of targeted regions.

Lastly, our data exhibited some limitations, including instances where certain species
were not consistently detected across samples or replicates, as well as the identification of
species without established associations with the human microbiome. These discrepancies
may be attributed to the current limitations in detection thresholds and error rates inherent
in this particular version of the nanopore sequencing platform. It is anticipated that future
advancements in long-read sequencing technology will enhance the detection threshold
and accuracy of species identification. Additionally, incorporating validation through
alternative sequencing methods such as next-generation sequencing (NGS) or polymerase
chain reaction (PCR) can help mitigate the potential for false-negative results, particularly
in identifying rare species. In future studies, it is important to account for other factors
that contribute to variation in human microbiome compositions, including gender, age,
medication usage, and dietary supplements. Considering these additional sources of
variation will provide a more comprehensive understanding of the factors influencing the
human microbiome and its relationship with health and disease [84].

4. Conclusions

In conclusion, rapid and accurate pathogen identification and microbial profiling
are essential in combating infectious diseases effectively, and the development of new
technologies, such as nanopore sequencing, offers great promise as innovative diagnostic
tools. The main advantages of nanopore sequencing as a diagnostic tool include a cost-
effective sequencer ($1000) and flow cell ($100 per sample) and flexible adaptation of
downstream analysis as a fast mode (<12 h to pathogen identification) and a slow mode
(several weeks) depending on the type of information needed. Nevertheless, addressing the
existing challenges and ensuring the extensive utilization of these technologies in clinical
settings necessitates further efforts and advancements.

5. Methods
5.1. Preparation of Non-Invasion Human Microbiome Sample

Human microbiomes were obtained from female healthy volunteers who provided
written informed consent between March 2022 and July 2022. For the saliva samples
(Saliva1_R1, Saliva1_R2, Saliva2_R1, Saliva2_R2, Saliva3_R1, and Saliva3_R2), saliva col-
lected with sterile medical swabs were transferred to 1000 µL of PBS solution (P5119; Sigma-
Aldrich, Darmstadt, Germany). For the stool samples (Stool1_R1, Stool1_R2, Stool2_R1,
Stool2_R2), stool collected with sterile medical swabs was transferred to 1000 µL of PBS
solution. For the urine, nasal, and vaginal samples (Urine1_R1, Urine1_R2, Nasal1_R1,
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Nasal1_R2, Vaginal1_R1, and Vaginal1_R2), each sample was collected with sterile medical
swabs and transferred to 1000 µL of PBS solution.

5.2. Microbiome DNA Extraction and Quality Control

Microbiome DNAs were extracted from the human samples on the same day of col-
lection using the microbiome-specific kit (QIAamp DNA Microbiome Kit; Qiagen, Hilden,
Germany). The DNA extraction was performed according to the manufacturer’s protocol.
The only modification to the protocol was to conduct all the centrifuge steps at the speed
of 12,300× g instead of 20,000× g. The extracted DNA samples were quantified for the
quantity (ng/µL) and quality (A260/A280 and A260/A230) using a spectrophotometer
(NanoDrop 2000; Thermo Scientific, Waltham, MA, USA). The A260/A280 acceptable ratio
was kept at 1.8–2.0, and the A260/A230 acceptable ratio was kept at 2.0–2.2 for the quality
control for nanopore sequencing (Table S1). The quality-controlled DNA samples were
kept at 4 ◦C until further treatment or analysis was performed.

5.3. Preparation of Sequencing Library Using Native DNA Ligation

The library ligation step was PCR-free without the need of primer choices, as we
aimed to sequence native DNA from human microbiome samples to fully take advantage
of long-read sequencing. The sequencing library was prepared from at least 500 ng of
high molecular weight genomic DNA extracted from the human microbiome samples
using the native DNA ligation kit (SQK-LSK110; Oxford Nanopore Technologies, Oxford,
UK) according to the manufacturer’s protocol. For Flongle flow cells, an expansion kit
(EXP-FSE001; Oxford Nanopore Technologies, Oxford, UK) was additionally needed to
prepare the sequencing mix. The NEBNext FFPE Repair Mix (M6630) and NEBNext Ultra
II End repair/dA-tailing Module (E6056) reagents were prepared in accordance with the
manufacturer’s instructions. The sample purification was performed using magnetic beads
(Agencourt AMPure XP; Beckman Coulter, Orange County, CA, USA) and a magnetic
separator (DynaMagTM-2 Magnet; Thermo Fischer Scientific, Waltham, MA, USA).

5.4. Nanopore Sequencing Using MinION and Flongle Adapter and Flow Cell

A Flongle flow cell (FLO-FLG001; Oxford Nanopore Technologies, Oxford, UK) was
used for each sample, which was inserted into the Nanopore MinION sequencer (Mk1B
MIN-101B; Oxford Nanopore Technologies, Oxford, UK) using the Flongle adapter (ADP-
FLG001; Oxford Nanopore Technologies, Oxford, UK). Flongle flow cells were first checked
for the minimum number of pores (at least 50 pores) before being primed with 119 µL of the
priming mix prepared in accordance with the manufacturer’s instructions. In the priming
step, some liquid was left in the P200 pipette tip to ensure no air bubble was inserted. A
total of 29 µL of the sequencing mix was loaded onto the Flongle flow cell immediately
afterward, following the manufacturer’s protocol. Finally, Flongle flow cells were sealed
using the adhesive on the seal tab and the platform lid, and nanopore sequencing was
performed for at least 12 h to obtain a maximum read output.

5.5. Real-Time High-Accuracy Basecalling and Cloud-Based EPI2ME Analysis

The MinKNOW software was used for raw data acquisition. The raw signal data
in FAST5 files were basecalled real-time into the DNA reads in FASTQ files using the
high-accuracy mode of the Guppy basecaller (v.5.1.13), integrated within the MinKNOW
software.

For the rapid downstream analysis, a cloud-based analysis platform providing rapid
analysis workflows called EPI2ME was used. Using the EPI2ME platform (v.3.5.7; Oxford
Nanopore Technologies, Oxford, UK), species identification with the WIMP workflow
(v.2021.11.26) such as fungi, bacteria, viruses, or archaea, was conducted in real-time based
on the Centrifuge classification engine [29,84]. Next, antimicrobial resistance analysis was
conducted in real-time with the ARMA workflow (v.2021.11.26.) to identify the genes
responsible for antibiotic resistance in the DNA reads, based on the CARD database.
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5.6. In-Depth Microbiome Analysis of Classified Reads

The WIMP workflow utilizes long reads from nanopore sequencing to rapidly identify
and quantify microbial species from metagenomic samples. The WIMP results from each
sample were downloaded as CSV files, which were processed into classified and unclas-
sified categories. The classified reads from the WIMP workflow were saved separately,
and the identified species were further categorized into four host–microbe interaction
types (beneficial, commensal, harmful, and inconclusive). The initial list of host–microbe
interaction types for several microbial species was curated by pooling a number of studies
on the oral microbiome [32,39–41] and the gut microbiome [43,44]. However, many of
the microbial species in the oral and gut microbiomes were missing from this curated
list, which further required an extensive literature review on each microbial species to
determine the host–microbe interaction type. When assessing these bacteria into different
interaction types, the exact region in the human body was considered. For example, a
commensal in the human gut may be assessed as a pathogen in the human skin.

5.7. In-Depth Microbiome Analysis of Unclassified Reads

The unclassified reads from the WIMP workflow based on the sequence similarity
search were saved separately and analyzed with other methods. These latest algorithms
for species identification include the BERTax taxonomic classification [85]. The BERTax
taxonomic classification is a deep learning approach based on natural language process-
ing [86] to classify the superkingdom and phylum of DNA sequences taxonomically. It
achieves the assignment of unknown sequences to biological clades with shared ancestry in
data-dependent training without the need for a genome similarity search of large genome
databases. BERTax was shown to perform comparably to the state-of-the-art methods for
sequences with close relatives in the database and superior for new species [69]. The un-
classified reads from the human microbiome samples were run with the BERTax algorithm
to assign the superkingdom, phylum, and genus given the patterns of DNA sequences.
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