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Abstract: SARS-CoV-2 (severe acute respiratory distress syndrome coronavirus 2) is the causative
agent for the novel coronavirus disease 2019 (COVID-19). It raises serious biosecurity questions due
to its high contagious potential, thereby triggering rapid and efficient responses by the scientific
community to take necessary actions against viral infections. Cumulative scientific evidence suggests
that natural products remain one of the main sources for pharmaceutical consumption. It is due
to their wide chemical diversity that they are able to fight against almost all kinds of diseases and
disorders in humans and other animals. Knowing the overall facts, this study was carried out to
investigate the chemical interactions between the active constituents of a promising medicinal plant,
Myracrodruon urundeuva, and some specific proteins of SARS-CoV-2. For this, we used molecular
docking to predict the most appropriate orientation by binding a molecule (a ligand) to its receptor
(a protein). The best results were evaluated by screening their pharmacokinetic properties using
the online tool pkCSM. Findings suggest that among 44 chemical compounds of M. urundeuva,
agathisflavone, which is abundantly present in its leaf, exhibited excellent molecular affinity (−9.3 to
−9.7 kcal.mol−1) with three functional proteins, namely, Spike, MPro, and RBD of SARS-CoV-2. In
conclusion, M. urundeuva might be a good source of antiviral agents. Further studies are required to
elucidate the exact mechanism of action of the bioactive compounds of M. urundeuva acting against
SARS-CoV-2.
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1. Introduction

The severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) is what
causes the pandemic novel coronavirus disease 2019 (COVID-19). It was first identified
in December 2019 in the city of Wuhan, China. The main clinical symptoms of COVID-19
include dry cough, dyspnea, fever, and bilateral pulmonary infiltrates [1]. Since the be-
ginning of its journey, this virus has generated great challenges for all nations worldwide,
and for this reason, it has been identified as one of the major global burdens. SARS-CoV-2
belongs to the family Coronaviridae. It is a single-stranded RNA virus. It has a posi-
tive reading sense, a nucleocapsid, and spike proteins [2]. This newest strain is highly
contagious and potentially fatal, leading to the deaths of a total of 6,125,929 people and
481,521,638 confirmed cases worldwide as of 28 March 2022, according to the COVID-19
Panel of the Center for Systems Science and Engineering (CSSE) at Johns Hopkins Univer-
sity (JHU) (https://coronavirus.jhu.edu/map.html, accessed on 28 March 2022) [3].

SARS-CoV-2 transmits through direct contact through droplets and feces spread by
an infected individual’s cough, sneeze, or even talk and breathe less than one meter away
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to susceptible persons [4]. Its incubation period corresponds to 5 or 6 days (which can be
extended to 14 days). It can damage the alveoli, thereby resulting in acute pneumonia [5].
Injuries to the alveoli can also lead to some severe consequences, including respiratory
distress, septic shock, multiple organ failure, and even the death of the patient through
cardiorespiratory arrest [6]. Besides this, this viral infection is evidently causing liver dis-
ease and neurological problems [7]. However, the susceptibility and severity of COVID-19
depend on the type, age, and histopathological status of patients. For example, in Brazil,
most of the COVID-19 cases were seen in patients with advanced ages. The medicinal
scientists demonstrate that it is due to the reduced power of their immune functions [8].

Natural products are the basis of modern medicine. Over 25% of modern drugs are
derived from nature. Therefore, bioactives from natural sources remain popular for study
and research, especially in the pharmaceutical and biomedical fields. Research evidence
suggests that natural compounds are capable of fighting against SARS-CoV-2 [9]. The
plant Myracrodruon urundeuva F.F. and M.F. Alemo is commonly known as Aroeira do
Serto in Brazil. It is used in traditional Northeastern medicine. It contains many impor-
tant secondary metabolites, including tannins and chalcones, that are great sources for
antioxidant, anti-inflammatory, and neuroprotective agents [10]. Several studies report that
natural medicines can treat viral infections; for example, tea components can fight against
flu, bronchitis [11], and gynecological infectious diseases [12]. Many studies demonstrate
that this type of extract has potential antioxidant, anti-inflammatory, and healing proper-
ties [13]. Certain chemical groups, for example, flavonoids and phenolics, prevent oxidative
stress that results from some diseases, including infections, atherosclerosis, diabetes, and
neurodegenerative diseases [14].

The computational techniques used in bioinformatics are a gift for modern drug
discovery and development. These reduce time and costs, thus accelerating in vitro and
in vivo studies by facilitating the organization of data and assisting in the right choice
of targets or hypotheses to be tested on the bench [15]. These tools are helpful for the
design and development of new drugs, vaccines, and alternative therapeutics. One of these
techniques is computer simulation through molecular docking studies, which is widely
used in modern drug design. It is due to molecular docking’s ability to predict with a
substantial degree of precision the conformations and orientation of a small molecule (a
ligand) within the binding sites of a macromolecular target (a protein), called a receptor [16].
Thus, in its most primitive form, it reproduces the concept of “key-lock” proposed by Emil
Fischer in 1894, where the “key” (substrate) fits properly into the cavity (active site) of
the “lock” (enzyme or receptor) for the productive biochemical reaction to occur [17]. The
results obtained in these computational assays are given in terms of the free binding energy
(kcal.mol−1) necessary for the ligand–protein interaction to occur easily; in this way, the
molecule that presents the lowest amount of energy needed to bind to the active site will
be the one that, theoretically, will present the best result before the biological activity [18].

Understanding the overall facts, we aimed to identify new promising molecules from
M. urundeuva against SARS-CoV-2 through molecular docking studies, where all possible
active constituents of the plant were screened against four functional proteins of the virus,
namely, Spike, MPro, ACE2, and RBD.

2. Results and Discussion

After selecting 44 chemical constituents of M. urundeuva [19–23], 176 dockings were
performed (Table S1), of which 3 stood out by obtaining a lower binding energy, less than
−9.2 kcal.mol−1. However, by expanding this range to values below −8.5 kcal.mol−1,
a greater number of results were obtained (Table 1; Figure 1A,B) that were considered
satisfactory and corresponded to 8.56% (groups 10, 11, and 12, Figure 2).
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Table 1. Molecular reference parameters, referring to groups 10, 11, and 12, between the selected
chemical constituents of Myracrodruon urundeuva and the target proteins of SARS-CoV-2.

Complex
(Ligand–Protein)

∆Gbind
a

(kcal.mol−1)
Amino Acids That Interact by

Hydrogen Bonding
Amino Acids That Interact by

Hydrophobic Bonding

Agathisflavone/Spike −9.7 His519, His49, Ser967, Asp571 Val42, Asp40, Asp568, Agr567, Agr44,
Lys964, Leus518

Agathisflavone/RBD −9.7 Lys417, Asn33, Asp30, Phe390, Ser494,
Asp405

Ala387, Pre389, Leu455, Tyr495,
Agr403, Asp38, Tyr453, His34, Glu37,

Arg393, Tyr505, Ala386

Agathisflavone/MPro −9.3 Glu166, Phe140 Thr190, Gln189, His41, Met49,
Met165, His164, Cys145, Leu141

Quercetin/Spike −9.0 Arg100, Leu977, Thr573, Phe855,
Tyr741

Gly744, Leu966, Val976, Thr547,
Leu546, Asn978, Thr572, Met740,

Asn856

Gallocatechin gallate /MPro −9.0 Phe140, Thr26, Ser144, His163,
Leu141, Glu166

His172, Asn142, Leu27, Gly143,
Thr25, Cys145, Met49, His41, Arg188,

Asp187, Gln189, Met165

Taxifolin/Spike −9.0 Ile742, Tyr741, Asn978 Ile587, Thr573, Val976, Leu977,
Gly744, Arg1000, Leu966, Thr572,

Luteolin/Spike −9.0 Met740, Phe855, Thr573, Arg1000,
Tyr741

Gly744, Asn856, Gly548, Asn978,
Thr547, Leu546, Val976, Thr527,

Leu966

Quercitrin/MPro −9.0 Asp187, Asn142, Leu141, Ser144,
His163, Glu166, Tyr54

Arg188, Met49, His164, Met165,
Gly143, Cys145, Gln168, His41

Eriodictiol/Spike −8.9 Asn856, Ile742, Tyr741 Ile587, Asn978, Val976, Leu977,
Gly744, Arg1000, Thr572, Thr573

Apigenin/Spike −8.7 Phe855, Thr573, Arg1000, Tyr741,
Met740,

Asn856, Gly744, Asn978, Leu546,
Thr547, Val976, Thr572, Leu966

Gallocatechin gallate/Spike −8.7 His49, Arg44, Asp40, Asp571, Ser968,
Ser967,

Asp568, Ile569, Arg567, Gly757,
Asn969, Leu754, Gln755

Naringenin/Spike −8.7 Val976, Ser974, Arg983, Ile973,
Asp979, Ser975

His519, Arg567, Thr430, Leu518,
Glu516, Asp571, Asn969,

Cryptochlorogenic acid/Spike −8.6 Arg1000, Ser975, Leu977, Asn978,
Asn856, Ala570, Leu966

Val976, Pro589, Thr573, Phe855,
Thr572

Feruloyl-D-quinic acid/Spike −8.6 Arg1000, Ser975, Leu977, Asn978,
Asp568, Thr549, Gly744

Asn856, Thr572, Ile587, Phe589,
Phe855, Gly548, Thr573

Gallocatechin/Spike −8.6
Phe855, Thr549, Thr573, Thr572,

Leu977, Gly744, Arg1000, Tyr741,
Met740,

Pre589, Ile587, Asn856, Phe541

Our molecular docking process evaluated different spatial conformations of the ligand,
which enabled us to identify the potential bioactive compounds that are most likely able
to couple at the active site of the target protein. For each result, the respective bond-free
energies were obtained in order to consider the lowest possible value due to the spontaneity
of the reaction (∆G < 0) [24].

The spike protein (6VXX) helps SARS-CoV-2 enter human cells [25]. Thus, it is one of
the main therapeutic targets to prevent the entry of viruses into humans (Figure 3). Among
the chemical compounds of the tested herb, agathisflavone is evidently promising for its
anti-inflammatory, antibacterial, and healing properties [26]. Our study also demonstrated
that agathisflavone showed potential interaction capacity with the 6VXX.

The complex formed with agathisflavone obtained a free bond energy equal to
−9.7 kcal.mol−1 (Figure 4). It interacted directly with four amino acids by hydrogen
bond (His519, His49, Ser967, and Asp571) and seven amino acids by hydrophobic bond
(Val42, Asp40, Asp568, Agr567, Agr44, Lys964, and Leus518). Casalino et al. [27] stated
that, by blocking the spike protein or modulating its conformational state through chemical
interactions, it is possible to interfere directly with its binding capacity with the ACE2
receptor (the receptor that is responsible for the entrance of SARS-CoV-2 in humans). Thus,
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the negative value indicates greater spontaneity, stability, and, consequently, the efficacy of
the ligand in inhibiting its receptor [28].

The spike protein has two subunits, namely: S1, which is composed of the receptor
binding domain (RBD) and is responsible for the direct association of this macromolecule
with receptors present on the surface of host cells (ACE2), and S2, which is capable of caus-
ing membrane fusion [29]. Our findings demonstrate that agathisflavone interacted with
the RBD (Figure 5) effectively, where the free bond energy corresponded to −9.7 kcal.mol−1.
It resulted in intermolecular interactions through six bonds by hydrogen intrusion with
the amino acid residues Lys417, Asn33, Asp30, Phe390, Ser494, and Asp405, and twelve
bonds through hydrophobic intrusion with the amino acid residues Ala387, Pre389, Leu455,
Tyr495, Agr403, Asp38, Tyr453, His34, Glu37, Arg393, Tyr505, and Ala386.
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Figure 1. (A) Two-dimensional chemical structure of the chemical constituents of Myracrodruon
urundeuva presenting the best results (groups 9, 10, and 11) through the molecular docking process
(1 (Agathisflavone); 2 (Quercetin); 3 (Gallocatechin gallate); 4 (Taxifolin); 5 (Luteolin); 6 (Quercitrin)).
(B) Two-dimensional chemical structure of the chemical constituents of Myracrodruon urundeuva
presenting the best results (groups 9, 10, and 11) through the molecular docking process (7 (Eriodic-
tiol); 8 (Apigenin); 9 (Naringenin); 10 (Cryptochlorogenic acid); 11 (Feruloyl-D-quinic acid) and 12
(Gallocatechin)).

The SARS-CoV-2 replicase gene makes the overlapping polyproteins pp1a and pp1ab.
The main protease 3CL (Mpro) cuts them at 11 different places to make shorter nonstructural
proteins that are important for its replication process [30]. If new molecules were added to
or bound to this protease, the structure would change, which would have a direct effect
on the copying process of viral RNA [31]. In this study, agathisflavone resulted in a free
binding energy equal to −9.3 kcal.mol−1 (Figure 6) with two amino acids by hydrogen
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bonding with the amino acid residues Glu166 and Phe140, while eight hydrophobic bonds
were formed with the amino acid residues, namely, Thr190, Gln189, His41, Met49, Met165,
His164, Cys145, and Leu141 of Mpro of the virus.
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Figure 3. Proteins that stood out the most among the best results (groups 10, 11, and 12).

It is important to highlight that, in proteins, hydrogen bonds play a vital role in
stabilizing their three-dimensional structure, influencing the way they unfold and interact
with other molecules, being crucial for their stability. Hydrophobic interactions, on the
other hand, mainly result in increased entropy of water molecules and new hydrogen bonds
that arise when water molecules involving hydrophobic molecules come into contact with
others, thus having specific entropic and enthalpic components. Even if the complexation
of the hydrophobic ligand within the protein results in costs associated with the partial loss
of translational, rotational, and conformational entropies of the ligand, the entropic gain of
the solvent molecules displaced from the site is greater than these [32].
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The discovery of new therapeutic strategies to combat SARS-CoV-2 will also be one
of the major approaches to the reuse of existing antiviral drugs against this virus. These
strategies will also be capable of validating new and existing antiviral drugs against this
deadly virus. For example, the international initiative Solidarity, led by the World Health
Organization (WHO), began to recommend, in 2021, the emergency use of the drugs
baricitinib, molnupiravir, and remdesivir [33,34] against SARS-CoV-2, which reduced the
time and cost of new research since safety tests (preclinical and clinical), formulation
protocols, and large-scale production have already been established. However, when these
drugs were submitted to the molecular docking process to check their potential against
SARS-CoV-2, none of them presented satisfactory results. Table 2 shows that all these drugs
showed binding capacity with the targeted proteins less than or equal to −8.6 kcal mol−1.
Interestingly, the chemical constituents of M. urundeuva belonging to groups 10, 11, and 12
showed better affinities than the abovementioned established drugs.

Table 2. Molecular affinity parameters referring to the drugs baricitinib, molnupiravir, and remdesivir
with the target proteins of SARS-CoV-2.

Compounds
∆Gbind

a (kcal.mol−1)

ACE2 Protein Mpro Protein RBD Protein Spike Protein

Baricitinib −6.8 −7.9 −7.8 −8.0
Molnupiravir −7.2 −6.7 −6.8 −7.9
Remdesivir −7.3 −7.9 −7.6 −7.5

However, prior to starting clinical trials, it is crucial to understand the absorption,
distribution, metabolism, excretion, and toxicity (ADMET) of a drug candidate [35]. A
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survey conducted in 2001 by the Intercontinental Medical Statistics (IMS Health) suggests
that 84% of the 50 most frequently used drugs in Europe and the United States are used via
oral route [36]. This made medicinal scientists more interested in finding new bioactive
principles that could be easily absorbed by the gastrointestinal tract [37]. Our in silico study
demonstrates that the screened chemical compounds of the herb (groups 10, 11, and 12)
showed high intestinal absorption potential in humans, ranging from 55.404 to 94.062%
(except cryptochlorogenic acid and feruloyl-D-quinic acid) (Table 3).

Table 3. Absorption properties of the chemical constituents of Myracrodruon urundeuva belonging to
groups 10, 11, and 12.

Compounds Solubility in Water
(log mol.L−1)

PCaco2 (Log Papp in
10−6 cm.s−1) AIH% P.Skin (log Kp)

Agathisflavone −2.892 0.371 94.062 −2.735
Apigenin −3.178 1.076 91.856 −2.736

Cryptochlorogenic acid −2.854 −0.707 15.087 −2.735
Eriodictiol −3.344 0.787 79.846 −2.736

Feruloyl-D-quinic acid −2.776 −0.576 19.764 −2.735
Gallocatechin gallate −2.895 −0.797 57.176 −2.735

Luteolin −3.173 0.762 81.082 −2.735
Naringenin −3.903 0.634 68.462 −2.735
Quercetin −2.982 0.694 74.84 −2.735
Quercitrin −3.132 −0.476 55.404 −2.735
Taxifolin −3.031 −0.318 70.529 −2.735

Note: PCaco2: permeability of Caco-2 cells; AIH: intestinal absorption potential in humans; P.Skin: skin permeability.

The human colon adenocarcinoma (Caco-2) cells are frequently used to test the disso-
lution and permeation of water-soluble drugs and predict how well they will be absorbed
after oral administration [38]. As suggested by the literature, chemical compounds with
permeability coefficients lower than 1 × 10−6 cm/s, between 1 and 10 × 10−6 cm/s, and
greater than 10 × 10−6 cm/s can be classified, respectively, as poorly absorbed (0–20%),
moderately absorbed (20–70%), and well absorbed (70–100%), respectively [39,40]. The
computational results aim to define the permeability based on this cell type by predicting
the selected constituents’ poor absorption. Regarding dermal permeability, log Kp values
lower than -2.5 imply low absorption in the skin [41].

Another factor observed was the steady-state volume of distribution (VDss) (Table 4), a
theoretical value referring to the total dose that a drug would need to be evenly distributed
at the same concentration of blood plasma [38]. The VDss is considered low for log values
less than −0.15 and high for values above −0.45 [42]. Therefore, the high VDss of the
bioactives agathisflavone, cryptochlorogenic acid, and feruloyl-D-quinic acid indicate their
better distribution in tissues than in plasma. Regarding the permeability of the blood–brain
barrier (BBB), a structure that prevents and/or hinders the passage of substances from the
blood to the central nervous system (CNS), none of the compounds can cross it since their
BBB logs are <0.3 [39].

The Salmonella typhimurium mutation reversal assay, also called the Ames test, is
widely used to check toxicological parameters, especially gene mutations caused by test
substances [43]. Our in silico study suggested that eriodictiol, gallocatechin gallate, narin-
genin, quercetin, quercitrin, and taxifolin showed carcinogenicity, while others remained
noncarcinogenic (Table 5).

On the other hand, the 50% lethal dose (LD50) test predicts how much of a given
substance is needed to kill 50% of a test population [44]. This parameter is necessary to
check the therapeutic index and safety profile of bioactive substances. Our study suggests
that feruloyl-D-quinic acid and naringenin were the most toxic and safe compounds,
respectively. This is because the higher the lethal dose, the less dangerous the chemical is.
In the same sense, our chronic oral toxicity in rats (LOAEL) suggests that agathisflavone,
cryptochlorogenic acid, feruloyl-D-quinic acid, gallocatechin gallate, naringenin, quercetin,
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and taxifolin can be ingested in greater quantities. Feruloyl-D-quinic acid might be used in
a large dose to produce the desired effect without resulting in any potential side effects.
The liver is the major metabolic site in our body. Thus, the safety of this organ is a foremost
concern while developing and installing any drug candidate [45]. Our findings suggest
that all the tested bioactive substances did not show hepatotoxicity. Additionally, these
compounds did not show skin sensitization, suggesting their safety profiles in animals.

Table 4. Distribution properties of the chemical constituents of Myracrodruon urundeuva belonging
to groups 10, 11, and 12.

Compounds VDss (Human) (log L.Kg−1) P.B.H (log BB)

Agathisflavone −0.943 −2.192
Apigenin −0.105 −0.951

Cryptochlorogenic acid −1.495 −1.737
Eriodictiol 0.229 −1.180

Feruloyl-D-quinic acid −1.738 −1.593
Gallocatechin gallate 0.050 −2.209

Luteolin 0.071 −1.199
Naringenin −0.431 −1.449
Quercetin 0.310 −1.377
Quercitrin −0.315 −2.027
Taxifolin 0.547 −1.328

Note: VDss: Apparent volume of distribution at steady state; P.B.H: permeability of the blood–brain barrier.

Table 5. Toxicological properties of the chemical constituents of Myracrodruon urundeuva plant
belonging to groups 10, 11, and 12.

Compounds T.AMES D.M.T
(log mg.kg−1.day−1)

T.A.O (LD50)
(mol.kg−1)

T.C.O (LOAEL)
(log mg.kg−1.day−1) S.Skin Hep

Agathisflavone No 0.425 2.467 3.285 No No
Apigenin No 0.931 2.376 1.461 No No

Cryptochlorogenic
acid No 1.379 2.219 3.503 No No

Eriodictiol Yes 0.395 2.229 1.893 No No
Feruloyl-D-quinic

acid No 1.428 2.133 3.587 No No

Gallocatechin
gallate Yes 0.481 2.654 4.085 No No

Luteolin No 0.975 2.450 1.833 No No
Naringenin Yes 0.989 3.573 3.556 No No
Quercetin Yes 0.954 2.308 3.134 No No
Quercitrin Yes 0.878 2.930 2.826 No No
Taxifolin Yes 0.886 2.245 3.256 No No

Note: T.AMES: AMES toxicity; D.M.T: maximum tolerated dose in humans; T.A.O: acute oral toxicity in rats;
T.C.O: chronic oral toxicity in rats; S.Skin: skin sensitization; Hep.: Hepatotoxicity.

Prior to the discovery of this new strain (SARS-CoV-2), the genomes of six species of
coronavirus (CoVs) had already been fully sequenced and reported to GenBank (in Novem-
ber 2002). Four of these species, including HCoV-229E, HCoV-NL63, HCoV-OC43, and
HCoV-HKU1, cause only relatively mild autoimmune infections with limiting respiratory
symptoms. The others, SARS-CoV-1 and MERS-CoV, are highly pathogenic and capable of
provoking severe acute respiratory syndrome with high mortality rates [46].

Its variants are classified according to the lineage and mutation of its components.
As a result, viruses belonging to the same lineage but containing different subsets of
mutations can be classified as different variants. The variants are characterized by their
transmissibility, disease severity, and ability to escape humoral immunity [47].

Currently, the omicron EG.5 variant is the latest to be labeled as a “variant of interest”
by the World Health Organization (WHO), joining the current ranks of XBB.1.16 and XBB.1.5.
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The new designation, made as part of an initial risk assessment, reflects its “notable increase”
in global prevalence during the second half of 2023 (https://www.who.int/docs/default-
source/coronaviruse/09082023eg.5_ire_final.pdf, accessed on 4 September 2023) [48]. The
potential of variants to escape naturally induced immunity and vaccine-induced immunity
makes it a priority to develop next-generation vaccines and drugs that trigger broadly
neutralizing activity against current and potential future variants.

Thus, with the aid of computational biology to obtain experimental results in vitro,
the analyses carried out during this research were able to identify a promising bioactive
principle for the treatment of COVID-19, coming from a native plant of the Brazilian
caatinga and cerrado; its inhibitory capacity of the proteins vital for the development
of SARS-CoV-2 can produce positive reflexes for the patient and for society in terms of
improvement and quality of life.

Nowadays, the world’s largest pharmaceutical industries have research programs
in the area of natural products, as they offer several advantages, for example, the large
number of chemical structures and saving time and resources. In this context, regarding
M. urundeuva, for presenting great pharmacological use, its bark has anti-inflammatory,
astringent, antiallergic, and healing properties, the roots are used in the treatment of
rheumatism, and the leaves are indicated for the treatment of ulcers [49], this plant becomes
a promising source of raw material.

3. Materials and Methods
3.1. Selection of Chemical Compounds of Myracrodruon urundeuva

Searches were made in national and international databases for selecting chemical com-
pounds of M. urundeuva, namely: Scientific Electronic Library Online (Scielo), Capes journal
portal, Regional Portal of the Virtual Health Library (Bireme), National Center for Biotech-
nology Information (PubMed), Thomson Reuters (Web of Science), Elsevier Group (Scopus),
Science Direct, and Google Scholar. For this, we used published papers using the common
keyword “Myracrodruon urundeuva”, which was then paired with “phytochemicals”, “chem-
ical constituents”, or “phytochemistry”. After this, the selected chemical structures were
acquired through the PubChem platform (https://pubchem.ncbi.nlm.nih.gov/, accessed
on 10 August 2022) [50] for further molecular optimization.

3.2. Determination of the Active Site

The active sites of the SARS-CoV-2 proteins were determined using the GASS-WEB
server, a tool that works with calculations using the method of genetic algorithms looking
for corresponding residues stored in databases such as the Catalytic Site Atlas (CSA),
National Center for Biotechnology Information (NCBI), and Protein Data Bank (PDB). The
models undergo calculations of root-mean-square deviation (RMSD) comparing the model
and the residues surveyed. This methodology was able to identify 90% of the catalytic
active sites cataloged [51]. The methodology of searching for the active site by similarity
can be observed by Izidoro, Melo-Minardi, and Pappa [52].

3.3. Molecular Docking Study

The 3D structures of four viral proteins were obtained from the Protein Data Bank
(PDB) (http://www.rcsb.org/, accessed 16 September 2022) [53] with the respective codes
6VXX (protein S or spike), 1R42 (angiotensin-converting enzyme, ACE2), and 6LU7 (main
protein Mpro), while RBD (Spike/ACE2 interaction site) was designed by Barros et al.
(2020) [54]. They were then prepared by removing all water molecules and other groups,
such as ions, using the Chimera v. 13.1 software [55]. In addition, polar hydrogen atoms
were added, Gasteiger partial charges were calculated, and nonpolar hydrogens were
mixed in both parts (ligand and protein) using the Autodock Tools (ADT) program, version
1.5.6. Docking was later performed through the Vina AutoDock program [56]. With the
LIGPLOT program, used to automatically generate 2D schematic representations of the
protein–ligand complexes from the standard input of PDB files, we obtained illustrations

https://www.who.int/docs/default-source/coronaviruse/09082023eg.5_ire_final.pdf
https://www.who.int/docs/default-source/coronaviruse/09082023eg.5_ire_final.pdf
https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/
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of the points of interactions by hydrogen bridges and hydrophobic bonds between the
chemical constituents and amino acid residues of the viral proteins [57].

3.4. ADME-TOX Prediction

The prediction of pharmaceutical parameters was performed using the online tool
pkCSM (pharmacokinetics) (https://biosig.lab.uq.edu.au/pkcsm/, accessed on 12 Febru-
ary 2023) [58]. Our in silico study also evaluated the ADMET profiles of the bioactives,
which include absorption (Caco-2 permeability, water solubility, human intestinal ab-
sorption, P-glycoprotein substrate, P-glycoprotein I and II inhibitors, skin permeability),
distribution (VDss), unbound fraction, BBB and CNS permeability, metabolism (cytochrome
P450 inhibitors, CYP2D6/CYP3A4 substrate), excretion (renal OCT2 substrate, total drug
clearance), and toxicity (Rat LD50, Ames toxicity, Tetrahymena pyriformis toxicity, minnow
toxicity, maximum tolerated dose, chronic oral toxicity in rats, hepatotoxicity, skin sensiti-
zation) [59].

4. Conclusions

SARS-CoV-2 has been evidently producing negative biomedical and epidemiological
effects on a global scale, directly impacting all dimensions of life, such as social, economic,
political, and cultural spheres. Current immunity obtained by vaccines is quite effective
in COVID-19, despite its unavoidable health problems such as unequal access to immu-
nizers and the emergence of new variants, which reinforce the need for the search for
new and effective alternative treatment options. Knowing this fact, we performed this
study using 44 phytochemicals from a hopeful medicinal herb called M. urundeuva. Our
findings reveal that the agathisflavone of the plant showed good molecular affinity (−9.3 to
−9.7 kcal.mol−1) with the vital proteins (Spike, RDB, and MPro), suggesting its potentiality
against this deadly pathogen. This molecule also exhibited better binding affinity than
the reference antiviral drugs used in SARS-CoV-2. Further, pharmacokinetic profiling of
agathisflavone also demonstrates that it has a high degree of solubility and low toxicity.
It also did not show skin sensitization or carcinogenicity in our in silico ADMET study.
However, our findings are based on computational evaluation; therefore, it would be
highly appreciable to perform in vivo studies to verify the efficacy and elucidate their exact
mechanisms against this virus.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ddc2040039/s1, Table S1: Molecular affinity parameters per-
formed by the vina method in ∆Gbind (kcal.mol−1) between the chemical constituents of the
M. urundeuva plant with the proteins ECA2, MPro, RBD and Spike of the novel coronavirus COVID-19.
References [19–23] are cited in the supplementary materials.
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