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Abstract: Coastal wetlands, vital for ecological diversity, have been significantly altered by anthro-
pogenic activities, particularly in the Caribbean. These changes have created a complex mosaic of
habitats and physicochemical conditions, further stressed by climate variability and sea-level rise.
This study, conducted in Las Cucharillas Natural Reserve, a tropical urban coastal wetland in Puerto
Rico, aimed to determine the effects of spatiotemporal variations in phreatic levels and salinity on
soil mesofauna assemblages, crucial bio-indicators of environmental change. In 2020 and 2021, soil
samples were collected from five diverse habitat types during different hydroperiods. Each sample
was taken under four randomly selected plant types and processed using lighted Tullgren–Berlese
extractors. Phreatic level and salinity were also measured. A total of 43 families were quantified,
underscoring distinct habitat differences, similarities, and overall ecosystem diversity. Moderate cor-
relations between phreatic levels, salinity, and mesofauna richness and abundance were determined.
Peak richness and abundance were quantified at shallow (−0.03 to −0.07 m) and slightly moderate
(−0.12 to −0.17 m) phreatic levels where oligohaline salinity (>0.5 to 5.0 ppt) prevails. The study
highlights the adaptability of mesofauna to environmental shifts and their potential as biosensors for
effective coastal wetland management amid climatic and anthropogenic pressures.

Keywords: urban wetland; coastal wetlands; Puerto Rico; hydroperiods; phreatic level; salinity
conditions; soil mesofauna; biodiversity

1. Introduction

Wetlands provide heterogeneous ecological niches for unique soil arthropod assemblages,
with mesofauna communities being the most abundant and diverse [1–3]. Among these, Acari
(mites) and Collembola (springtails) are the most prevalent groups, consisting of microarthro-
pods that range in size from 0.1 to 2 mm. They are present in different soil types, with most
of their assemblages concentrated in hot spot zones or resource patches within the litter sys-
tem, which consists of the loose litter layer and the upper 1–5 cm of the soil [4–6]. In the
ecosystem, mites and springtails significantly influence decomposition processes and nutrient
mobilization, serving as plant litter transformers through (a) fragmentation and comminution,
(b) the ingestion of plant debris, and (c) the deposition of feces, which enhances mineralization
by soil microflora (fungi and bacteria) [7–9]. They also foster the growth and dispersal of
microbial populations and interact at different trophic levels through the litter decomposition
process [10–13]. These microarthropods are sentinel species due to their inherent sensitivity
to environmental modulations, thus facilitating the rapid detection and comprehension of the
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ecological alterations occurring within a given habitat [14,15]. Their responsive dynamics to
environmental fluctuations offer a rich repository of data, critical for interpreting the health and
operational dynamics of ecosystems [4].

Soil mites are predominantly represented by three taxa at varying taxonomic levels: the
suborder Oribatida (fungivores and detritivores), the order Mesostigmata (free-living soil
predators), and the suborder Prostigmata (predators and fungal feeders) [16–18]. Spring-
tails (order: Collembola), which are also fungivores and detritivores, are classified into
two main groups: suborder Arthropleona and suborder Symphypleona [18–20]. The dis-
tribution patterns and interactions of these organisms occur at different spatiotemporal
dynamics [4,8,10,11], which are in turn regulated by scale-dependent variables such as
climate (temperature and precipitation), edaphic properties (including porosity, structure,
nutrients, humidity, pH, and salinity), vegetation (the quality and quantity of resources),
microtopography, and species-specific intra- and interspecific interactions [11]. For ex-
ample, higher soil temperatures and lower humidity may result in decreased population
densities of Mesostigmata mites [21]. Prostigmata mites tend to dominate in soils character-
ized by low nutrient content and low humidity, whereas Oribatid mites and Collembola
(springtails) are typically found in nutrient-rich, humid environments [8,22,23]. The distri-
bution of springtails is associated with soil pore size, relative humidity, and the availability
of food [24]. Soil food web structure and mesofauna assemblages are directly and indi-
rectly affected by plant species, as is the case of the legume Lotus corniculatus and the
non-leguminous forb Plantago lanceolata [25]. A trophic cascade effect is observed whereby
the microtopography alters the soil environment and thus the diversity and composition of
soil fungal communities [26], which may subsequently influence the food resources and
habitat quality for Collembola and Oribatida [23].

In coastal wetlands, spatiotemporal variations in the abundance and diversity of soil
mesofauna are influenced by the effects of drying and wetting cycles or hydro-patterns
on soil bio-physicochemical conditions [26]. General hydro-patterns, which are typically
seasonal in water level variation (early dry, dry, early wet, and wet conditions), exhibit
significant variability across and within different wetland types and climate conditions.
Wetting cycles in wetlands include waterlogging or flooding time, frequency, duration,
rate of water rise, and depth [26,27]. These cycles are modified by different water sources,
including in-situ precipitation, freshwater inputs, and seawater flows [28]. The hydrological
regime (wetting cycles) determines the degree of soil salinity, which subsequently shapes
the spatiotemporal patterns of vegetation cover, in addition to the quality and quantity
of the litter. The interplay among these factors is pivotal in shaping the spatiotemporal
distribution and community dynamics of soil mesofauna [20,21]. For example, in the
floodplains of the Netherlands, groundwater levels affect the distribution of Collembola,
with a shift in community composition observable along elevation gradients from regularly
inundated areas to dry, seldom-flooded zones [15,29,30]. A laboratory study examining the
impact of salinity on soil species of Acari (mites) and Collembola (springtails) found that
their reproductive cycles were differentially impacted by increasing salinity levels, with
mites showing less sensitivity and maintaining their reproductive cycle, while reproduction
in springtails significantly decreased [31]. In peatlands from Canada, China, Minnesota
(USA), and northern England, variations in hydro patterns induced spatial and temporal
fluctuations in bio-physicochemical factors that influenced the diversity and abundance of
Acari and Collembola [32].

Although mesofauna communities play an essential role in wetlands’ biological pro-
cesses, there is still a gap in knowledge about how coastal wetlands’ spatio-temporal
dynamics influence mesofauna diversity, especially in the Caribbean. More research is
needed to understand wetland marine–terrestrial–marine connectivity, bio-physicochemical
components, and future climate change scenarios and their effects on mesofauna assem-
blages. Climate change projections for the Caribbean anticipate more frequent extreme
precipitation, rising temperatures, and increased sea levels due to shifts in global and
regional climate patterns, which are expected to have significant impacts on the region’s
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coastal wetland ecosystems [33]. Because Caribbean coastal wetlands have been anthro-
pogenically modified since colonial times, a mosaic of physicochemical conditions, habitats,
and vegetation cover characterizes these ecosystems; with global and regional climate
variability, sea-level rise, land use, and land cover changes acting as additional stressors.

The combined effect between these anthropogenic stressors and the predominant
wetland mosaic environment influences the hydrological regime, bio-physicochemical
components, and soil mesofauna diversity, abundance, and functional relationships among
taxa [33–36]. For instance, sea-level rise impacts coastal soil processes and modifies ecosys-
tems’ net primary production due to variations in salinity, which has direct and indirect
effects on soil mesofauna diversity and function [37]. In a field experiment in the Zhan-
jiang Plain wetland, simulated variations in the phreatic level due to precipitation changes
demonstrated that mesofauna communities were significantly affected by changes in water
level. Slight increases in total abundance were documented under natural water level
dynamics, with significant reductions under constant high water level conditions [38].

Given that mesofauna play an essential role in coastal wetland biological processes
and have specific environmental requirements, determining how weather variability, shifts
in the hydrological regime (wetting cycles), and soil salinity influence their composition
becomes an important tool to understand ecosystem responses to global and regional
climate change, sea-level rise, and increased anthropic use of the region. An in-depth
analysis of their biodiversity serves a dual purpose: elucidating the present ecological
state of the wetland and underwriting adaptive management strategies anchored in a
robust understanding of ecosystem dynamics [39]. Our aim is to determine the effects of
spatiotemporal fluctuations in phreatic levels and salinity on the assemblages of soil meso-
fauna in a tropical urban coastal wetland. We hypothesize that spatiotemporal variability
in phreatic levels and salinity significantly modulates the diversity and abundance of soil
mesofauna. This, in turn, has consequential impacts on the structure and dynamics of the
mesofauna community, altering their interactions within the soil system and thus changing
how they impact their surrounding ecosystem [14].

2. Materials and Methods
2.1. Study Area

The study took place over 2.2 ha (research area) within Ciénaga Las Cucharillas Nat-
ural Reserve, a palustrine–estuarine coastal urban wetland on the northern coast of the
Caribbean Island of Puerto Rico. The reserve is in the municipality of Cataño (18 26′25.27′′ N,
66 08′08.39′′ W). The wetland comprises the western side of the San Juan Bay (Figure 1A).
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The average monthly temperature ranges from 31 ◦C to 25 ◦C from May to October
and from 22 ◦C to 28 ◦C from December to March. The area has a humid climate with
an average annual precipitation of 1920 mm. The rainfall distribution is bimodal, with
lower precipitation occurring from December to April–May and two peak periods from
May to June, and September to November [40]. The study was carried out from 2020 to
2021 (Figure 2). In 2020, the wettest month was July, with monthly mean precipitation of
9.64 mm and 24 rainy days. The driest month was May, with monthly mean precipitation
of 0.51 mm and 6 rainy days. In 2021, the wettest month was September, with monthly
mean precipitation of 8.63 mm and 18 rainy days. The driest month was May, with monthly
mean precipitation of 1.78 mm and 13 rainy days.
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Figure 2. (A) The climate diagram illustrates monthly average air temperatures in ◦C (left y-axis,
in red) and average total monthly precipitation in mm(right y-axis, in blue) from January 2017 to
December 2021 (months are represented by letters) at Ciénaga Las Cucharillas Natural Reserve [28].
(B) The graph presents the mean monthly precipitation and the total number of rainy days, using
climatological data from January 2020 to November 2021, sourced from the Toa Baja Levittown, PR
Meteorological Station [40].

Ciénaga Las Cucharillas Natural Reserve is representative of how coastal wetlands in
the Tropics, especially in the Caribbean, have been hydrologically modified from colonial
times to the present. The hydrological modifications include (a) drainage channels for
agricultural use from the 17th century until the mid-20th century [41,42]; (b) the construc-
tion of a flood control channel (La Malaria channel) in the late 1940s, bringing a direct
flow of fresh water to the wetland from the upper and middle parts of the basin; and
(c) restricted seawater exchange due to the dike effect of an outflow water pump structure
at the mouth of the channel [43] (Figure 3). As a result, tidal interaction in this wetland
occurs via deep subsurface flow [44]. Historical and present hydrological modifications
bring about a mosaic of physicochemical conditions, habitats, and vegetation cover.

The reserve is affected by the interplay of marine-terrestrial subsurface connectivity, local
weather conditions, and regional climate variability, impacting water source inputs, including
in situ precipitation, freshwater inputs, and seawater flows. These factors markedly influence
the spatial and temporal patterns of wetting and drying periods, culminating in a unique
regime characterized by variations in the frequency, duration, and timing of inundation. At the
study site, flooding occurs due to the combined effect of regional/local precipitation and tidal
fluctuations. The duration of flooding varies, persisting for either several months or just a few
days, depending on the interplay of climate dynamics.
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Figure 3. La Malaria flood control channel (represented by blue lines) positioned northwest of the
delineated research area (highlighted with a yellow line) at Ciénaga Las Cucharillas Natural Reserve
(outlined with a red line). The location of the outflow water pump structure is indicated by a yellow
square at the channel’s downstream point of discharge.

2.2. Research Area

Four study plots (3, 5, 6, and 10), each encompassing 100 square meters, were es-
tablished in a research area within the natural reserve, with each plot featuring distinct
physicochemical factors and habitat types. The naming of the plots as 3, 5, 6, and 10 refers
to their corresponding pre-established monitoring wells (Figure 4), which have been in
place since 2017. This approach was chosen to maintain consistency with the long-term
phreatic level and salinity monitoring data available from these wells.
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to P10), which have been in place since 2017.
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The plot locations were selected based on geospatial analysis, the presence of predom-
inant plant functional types, and onsite measurements of soil abiotic factors [28]. Each
habitat has a predominant plant assemblage and variations in micro elevations, vegetation
cover, soil type, and salinity (Table 1). Category-4 Hurricane Maria (19–20 September 2017)
caused significant damage and defoliation in the study area. Twenty-seven percent (27%)
of the area was flooded for nearly six months [45].

Table 1. Physicochemical factors and plots/habitat characteristics at the study site. Source [28].

Plot 3 5 6 10

Micro-elevation −0.79 −0.72 −0.86 0.1

Habitat Type
Mangrove
woodland
(MMW)

Rehabilitated
mangrove
woodland

(RMW)

Mangrove
woodland

(MWR)

>50 years Shrub
(SM)

6 years grass &
ferns
(GF)

Stage Mature

Rehabilitated;
damaged by
Hurricane

Maria

Natural
recolonization
damaged by
Hurricane

Maria

Mature Early
successional

% Cover
Plants Species

92.6% L.
racemosa

3.2%
Acrostichum sp.
4.2% grasses of

the Poaceae
family

59.9% young
and seedlings L.

racemosa,
33.8% herbs
and vines

4.2% grasses of
the Poaceae

family
2.0%

Acrostichum sp.

46.0% young
and seedlings L.

racemosa,
7.9%

Acrostichum sp.,
13.3% D.

ecastaphyllum,
32.8% grasses of
Poaceae family

40.4% D.
ecastaphyllum

2.2% L. racemosa
(young trees),

0.4%
Acrostichum sp.,

56.9%
Echinochloa sp.

Plant Type Woody, fern,
and grass

Woody, fern,
herbs, and grass

Woody, fern,
shrubs and

grass
Shrubs Woody, fern,

and grass

Soil Type

Mineral
allochthonous embedded in an

organic matrix
(Martín Peña)

Organic (peat)
Autochthonous
(Saladar muck)

Mean Salinity *
Wet Period 3.4 ± 2

O
2.8 ± 1

O
2.4 ± 2

O
2.1 ± 2

O
2.1 ± 2

O

Dry Period 4 ± 0.4
O

12 ± 2
M

11 ± 5
M

7 ± 1
M

7 ± 1
M

* Salinity values: O—oligohaline refers to salinity levels between >0.5 ppt to 5.0 ppt; M—mesohaline refers to
salinity levels between >5.0 ppt to 18.0 ppt.

Plot 3 represents a mature mangrove woodland habitat (MMW), predominantly popu-
lated by Laguncularia racemosa C.F.Gaertn. In contrast, plot 5 is a 25-year-old restoration
mangrove woodland (RMW) with a primary cover of L. racemosa, interspersed with herba-
ceous species from the Cyperaceae, Vitaceae, and Polygonaceae families, as well as grassy
patches from the Poaceae family. Plot 6 features a transitioning mangrove woodland
(MWR) characterized by natural recolonization with young L. racemosa trees and seedlings,
along with Poaceae grasses. Lastly, plot 10 comprises a mature 50-year-old shrub habitat
(SM) dominated by Dalbergia ecastaphyllum (L.) Taub and an adjacent 6-year-old grassland
succession area (GF) primarily consisting of Echinochloa polystachya (Kunth) Hitchc.

The research area is characterized by two soil types: Saladar muck (Sm) series and
Martin Peña (Mp) series [46]. The Saladar muck (Sm) series consists of black, highly
decomposed (peat) autochthonous vegetation materials that reach down to the bedrock



Arthropoda 2024, 2 7

depth in the soil (Table 1). The Martin Peña (Mp) series contains deposits of organic
material close to the surface (0–20 cm), over mineral sediments, which includes silty clay
loam embedded in the peat down to the bedrock depth (20–45 cm). At the study site, the
layers of mineral sediments found in the soil are the result of anthropogenic allochthonous
infills from upper terrestrial sources, which were deposited during land preparation for
shanty town establishment. The MWR, GF, and S habitats are situated on the Saladar muck
(Sm) soil series, whereas the MMW and RMW habitats are situated on the Martin Peña
(Mp) soil series.

2.3. Data Collection

Sampling in this study was conducted based on hydroperiod conditions to encompass
a wide range of phreatic levels and weather conditions, as depicted in Figure 5 [26,27].
Soil samples, including litter layers, were collected on five dates, each chosen to represent
distinct hydroperiod conditions: moderate dry (18–25 June 2020), flood (23 October 2020),
moist/between floods (19 March 2021), and wet (9 June 2021). This methodology was
designed to provide a comprehensive understanding of soil mesofauna responses under
diverse environmental stresses.
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Figure 5. (A) Schematic diagram of the wetland hydrodynamics showing the phreatic level (m) on the
date of sampling, adapted from [26]. (B) Overview of local total rainy days, precipitation (cm), mean tidal
daily range, and mean phreatic level (m) for the 14-day period leading up to and including the sampling
date [27]. These conditions have an influence on the wetland’s hydrodynamics at the time of sampling.

The hydroperiod classification utilized in this study was predominantly predicated on
the phreatic level values recorded at the sampling time. This approach was adopted due
to the direct influence of these values on the soil environment (reflecting soil antecedent
patterns of drying/wetting cycles) [38,47]. Additionally, local rainy day conditions and the
mean tidal daily range in the 14 days preceding the sampling date were also considered.
These factors are pertinent as they significantly affect the dry and wet cycles of the wetland,
as well as the site’s phreatic level at the sampling time. For instance, during prolonged
dry periods, bimodal high tide reaches the study site in 20 min, whereas it takes up to 2 h
during wet periods [48].

The conditions were categorized as “moderate dry” and “moist” at phreatic levels
of −0.56 m and −0.38 m, respectively. Furthermore, “wet” and “flood” conditions were
identified at phreatic levels of −0.12 m and at or above the ground level (0 m). It is
noteworthy that the moist sampling period, which took place on 19 March 2021, occurred
amidst flooding events. Specifically, the site experienced flooding both a week before and
after the sampling date, although the week of the sampling itself was dry. The sampling
for this period was conducted immediately following the first flood event. Additionally,
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the Flood sampling date, which was on 23 October 2020, coincided with the receding of
floodwaters. Prior to this date, the wetland had been subjected to significant climatic
events, including tropical storms Isaias and Laura, followed by a prolonged rainy period
that lasted until the end of October 2020. This resulted in approximately three months of
flooding at the site, spanning from August 2020 to October 2020 [49,50].

Sampling was carried out from 7:00 a.m. to 10:00 a.m. to ensure consistent condi-
tions across habitats in terms of soil temperature, water content, and tidal influence (as
this timeframe corresponds to the transition from high to low tide; see Table 2). Five
plant species were chosen based on their functional type and presence in all habitats [18]:
D. ecastaphyllum (shrub), E. polystachya (grass), Poaceae family (grass), A. danaeifolium
(woody herb), and L. racemosa (tree). D. ecastaphyllum was present in two plots (6 and 10),
and E. polystachya was present in plot 10, while the three other species were present in plots
3, 5, and 6. In each habitat type, three plants per functional type were chosen. Three soil
samples, including litter layers, per plant were collected on every sampling date. Each sam-
ple measuring 7.62 cm diameter × 5 cm depth was separated into a loose litter (relatively
undecomposed) and an old litter (partly to fully decomposed). The phreatic level was mea-
sured on site. The samples were taken to the laboratory, their fresh weight was determined,
and they were placed in lighted Tullgren–Berlese extractors for one week. The extracted
arthropods were preserved in 70% ethanol solution and placed under each extractor. The
collected micro-arthropods were taxonomically identified to the lowest category possible,
either class, subclass, order or suborder, and family [51,52]. For each sample, they were
identified and counted using an Amscope SF2TRA stereoscopic binocular microscope or a
Nikon Eclipse 80i microscope. After extraction, the samples were oven-dried at 60 ◦C for a
period of seven days. A subsample was mixed with distilled water (1:1) and homogenized
to determine salinity using an EcoSense® conductivity meter [52].

Table 2. Description of tide conditions at the time of sampling, detailing the tidal phase (low or high)
corresponding to the sampling events. Data were obtained from [53].

Sampling Date Sampling Time * Tide (m) Tide Description

18 June 2020
7:00 0.22 High

10:00 0.05 Low

25 June 2020
7:00 0.48 High

10:00 0.23 Low

23 October 2020
7:00 0.31 High

10:00 0.14 Low

19 March 2021
7:00 0.29 High

10:00 0.15 Low

9 June 2021
7:00 0.22 High

10:00 0.10 Low
* Sampling occurred in the morning, between 7:00 a.m. and 10:00 a.m.

2.4. Data Analysis

Non-parametric statistical methods, including the Wilcoxon/Kruskal–Wallis test fol-
lowed by post hoc Dunn tests, were employed to discern habitat variations and analyze
the impact of phreatic levels and salinity on the diversity and abundance of mesofauna.
We meticulously evaluated these environmental factors to elucidate their influence on the
distribution and composition of mesofauna. Our analysis focused on the data collected
for the primary taxa of mites (the suborder Oribatida, the order Mesostigmata, and the
suborder Prostigmata) and two suborders of springtails (Arthropleona and Symphypleona),
which are predominant in mesofauna communities and serve as bioindicators of ecosystem
changes. The assessment extended to examining the distribution patterns and occurrence of
mesofauna families along the gradients of phreatic levels and salinity to gain insights into
the adaptive mechanisms and preferred habitats of these soil-dwelling microarthropods.
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Normalized abundance values [54], representing the number of individuals per square
meter (m2), and categorized phreatic and salinity levels provided a structured approach to
our analysis. These categories were defined as follows:

Phreatic Level Categories:

• High: 0.09 to 0.11 m
• Shallow/near surface: −0.03 to −0.07 m
• Slightly moderate: −0.12 to −0.17 m
• Moderate: −0.36 to −0.43 m
• Deep: −0.51 to −0.64 m

Salinity Categories [55]:

• Freshwater: 0 to 0.5 ppt
• Oligohaline: >0.5 to 5.0 ppt
• Mesohaline: >5.0 to 18.0 ppt
• Polyhaline: >18.0 to 33.0 ppt

Taxonomic families of mesofauna were classified as “dominant”, “common”, or “rare”
based on their relative abundance, enabling us to compare community structures across
habitats using the Bray–Curtis similarity index and non-metric multidimensional scaling
(NMDS) [56–59]. The dominant taxa were defined as those with a relative abundance of
10% or greater, common taxa had a relative abundance between 1% and 10%, and rare taxa
were characterized by a relative abundance of less than 1% [55].

Spearman’s Rho correlation analysis delineated the significant correlations between
these factors and the mesofauna composition. Furthermore, a general regression model
was employed to elucidate the relationships and to determine the significance and intensity
of the effects of the phreatic level and salinity variables. All statistical analyses were
conducted through the utilization of SAS JMP® Pro 16 and R Studio 4.3.1® (R Core Team,
2023) statistical software.

3. Results
3.1. Variations in Habitat Phreatic Level and Salinity

Overall, significant variations in phreatic levels were observed among the different
hydroperiods (p < 0.05). These hydroperiods can be ranked based on phreatic level measure-
ments as follows: flood > wet > moist > moderate dry (Table 3). From a habitat perspective
(Table 4), substantial differences in phreatic levels were identified. During the flood period, the
water level was above the soil surface for mature mangrove woodland (MMW) and natural
recolonization mangrove woodland (MWR), whereas it remained near the soil surface for
rehabilitated mangrove woodland (RMW), early successional grass and ferns (GF), and the
mature shrub habitat (SM). In the moist period, the RMW exhibited the lowest phreatic levels,
while GF, the MWR, and the SM displayed higher values, which were significantly different
from the phreatic levels in other habitats (p < 0.0001). However, during the moderate dry
period, no significant differences in phreatic levels were observed between the MMW and
the MWR, as well as between the SM and GF. Similarly, no significant differences were noted
among GF, the MWR, and the SM during the wet period.

Table 3. Phreatic level (m) (mean ± std) between habitats and hydroperiods. Values not connected
by the same letter indicate significant differences (p < 0.05).

Hydroperiod Phreatic Level (m)

Moderate Dry Flood Moist Wet

−0.49 ± 0.06 D −0.01 ± 0.07 A −0.44 ± 0.12 C −0.12 ± 0.03 B
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Table 4. Phreatic level (m) between habitats among hydroperiods. Values not connected by the same
letter indicate significant differences (p < 0.05).

Hydroperiod Phreatic Level (m)

Habitats Moderate Dry Flood Moist Wet

GF −0.51 B −0.05 D −0.36 A −0.12 B

MMW −0.41 A 0.11 A −0.43 B −0.07 A

MWR −0.41 A 0.09 B −0.36 A 0.12 B

RMW −0.54 C −0.03 C −0.64 C −0.17 C

SM −0.51 B −0.05 D −0.36 A −0.12 B

Furthermore, significant negative correlations between phreatic levels with salin-
ity within habitats were identified, as illustrated in Table 5 and Figure 6. Specifically,
when the phreatic level was near the surface (with mean values of −0.03 ± 0.10 m and
−0.11 ± 0.10 m), freshwater and oligohaline conditions tended to prevail. Conversely,
when the phreatic level was lower, at approximately −0.44 ± 0.10 m and −0.57 ± 0.08 m
(mean values), mesohaline and polyhaline conditions became more dominant.

Table 5. Spearman’s Rho correlation analysis showing significant correlations between the phreatic
level and salinity within the habitats.

Phreatic Level by Salinity

Habitats Spearman ρ Prob > |ρ|

GFM −0.5 <0.0001
MMW −0.8 <0.0001
MWR −0.8 <0.0001
RMW −0.6 <0.0001

SM −0.7 <0.0001
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The salinity conditions varied across the habitats throughout the different hydrope-
riods. During the moist and moderately dry periods, mesohaline (salinity ranging from
>5.0 to 18.0 ppt) and polyhaline (salinity ranging from >18.0 to 30.0 ppt) conditions were
prevalent, with significantly higher salinity levels observed across all habitats (see Figure 7).
The MWR, MMW, and RMW exhibited the highest mean salinity levels during the moist
period. In contrast, during the wet and flood periods, the salinity levels predominantly
ranged from oligohaline (salinity >0.5 to 5.0 ppt) to freshwater (salinity ranging from
0 to 0.5 ppt) for all habitats.
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Salinity variations between habitats across different hydroperiods were also assessed
and quantified (Figure 8). The salinity differences between the MMW, MWR, and RMW
during the moist period, ranging from high mesohaline to polyhaline levels, were found
to be statistically insignificant. However, when considered collectively, they exhibited a
notable contrast with GF and the SM, which had significantly lower mesohaline salinity
levels. In contrast, during the moderate dry period, the SM and GF presented a range
of salinity from oligohaline to low mesohaline, which was notably different from the
mesohaline and polyhaline conditions found in the MWR and RMW. During the flood
period, the MMW and MWR exhibited freshwater salinity significantly different from the
oligohaline conditions observed in the other habitats. During this period, the phreatic
level in both habitats was above the soil surface. In the wet period, the predominantly
low mesohaline salinity in the MMW was also significantly distinct from the oligohaline
conditions found in the other areas.
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3.2. Mesofauna Diversity and Abundance between Habitat Types

A total of 7478 microarthropods representing 43 families were identified. The micro-
fauna was characterized by 21 families of oribatid mites (suborder Oribatida), 10 families
of prostigmatid mites (suborder Prostigmata), 8 families of mesostigmatid mites (order
Mesostigmata), and 4 families of springtails (order Collembola). Overall, the suborder Ori-
batida had the highest number of families. The order Collembola, specifically the suborder
Symphypleona (with 1 family), had the fewest families represented (Figure 9).
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Figure 9. Total number of families identified by taxa (represented by number in captions). Within
these categories, 43 families comprising 7478 organisms were documented.

The analyses revealed significant variations in both mesofauna richness and abun-
dance among the different habitats, as illustrated in Figure 10. Among the habitats, the SM
and the RMW exhibited the highest mesofauna richness, while GF displayed the highest
mesofauna abundance. Both findings were statistically distinct from the other habitats.
Conversely, no statistically significant differences in mesofauna richness were observed
between GF, the MMW, and the MWR, as well as between the MMW and the MWR, when
considering taxa abundance.
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In total, the studied habitats shared 27 common families, as depicted in Figure 11, with
an estimated similarity of approximately 64%. The remaining 36% of the families, which
were not shared, contributed to the distinctions between the habitats. These non-shared
groups included Acaridae, Cryptognathidae, Eniochthoniidae, Haplozetidae, Nothridae,
and Sclerobatidae (suborder Oribatida); Bdellidae, Cheyletidae, Erythraeidae, Rhagidi-
idae, Scutacaridae, and Stigmaeidae (suborder Prostigmata); and Veigaiidae, Sejidae, and
Trhypochthoniidae (order Mesostigmata).
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Figure 11. Venn diagram showing the number of (A) shared and (B) non-shared taxa among the
habitat types.

The Bray–Curtis index and non-metric multidimensional scaling (NMDS) analyses
revealed that three habitats, the MMW, MWR, and SM, are highly similar to one another. In
contrast, the RMW and GF habitats show less similarity to these habitats as well as to each
other, as detailed in Figure 12.
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Among the studied habitats, mesofauna populations distributed between litter and
soil organic layers exhibited significant variations in richness for GF and the RMW, as well
as in abundance for the SM. Overall, acarine Oribatida and springtails Symphypleona were
the dominant groups in terms of abundance and richness in the loose litter layer, with
them showing significant differences in abundance compared to acarine Mesostigmata and
Prostigmata. In the old litter layer, the abundance was predominated by Symphypleona,
with them showing significant differences compared to acarine taxa (Figure 13).
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Biodiversity variations, classified into dominant, common, and rare taxa, were quanti-
fied across the different habitats (see Figure 14). In the GF habitat, a total of three dominant,
ten common, and twenty-two rare taxa were identified. The dominant groups in this habi-
tat were Collembola–Arthropleona (including Brachystomellidae and Isotomidae), which
made up 42.8% of the mesofauna composition, along with Oribatida (Malaconothridae) at
14.4%. The MMW habitat comprised three dominant, fourteen common, and twenty rare
taxa. In this habitat, Oribatida (including Damaeidae and Tegoribatidae) held dominance
at 22.7%, together with Collembola–Arthropleona (Isotomidae) that accounted for 12.7%
of the mesofauna composition. The MWR habitat contained three dominant taxa, mainly
characterized by Oribatida (Ceratozetidae, Malaconothridae, and Tegoribatidae) at 43.2%,
along with twelve common and twenty-one rare taxa. The RMW habitat had one dominant
taxon, Oribatida–Ceratozetidae at 23%, along with seventeen common and twenty rare taxa.
In the SM habitat, there were three dominant taxa, with Oribatida (Malaconothridae and
Damaeidae) making up 31.1% of the composition, while Collembola–Arthropleona (Isoto-
midae) contributed 10.5% to the dominant groups. There were also fourteen common and
twenty rare taxa identified in this habitat. In summary, Oribatida families, Malaconothridae,
Ceratozetidae, Tegoribatidae, and Damaeidae were the dominant taxa among the habitats.
In addition, the uniqueness of the mesofauna taxa among the habitats can be ranked as
follows: GF > MWR > MMW = SM = RMW.
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3.3. Influence of Hydroperiod Phreatic Level and Salinity on Mesofauna Diversity and Abundance

Moderate correlations were estimated between the hydroperiod phreatic level and
mesofauna richness and abundance (Table 6). The relationship assessed was positive with
richness, indicating that as the phreatic level increased, mesofauna richness tended to
increase as well. Conversely, the relationship with abundance was negative, suggesting
that as the phreatic level increased, mesofauna abundance tended to decrease. Additionally,
a moderate negative correlation was identified between salinity and mesofauna abundance,
indicating that higher salinity levels were associated with lower mesofauna abundance.

Table 6. Spearman’s Rho correlation analysis showing correlations between the mesofauna richness
index (Menhinick’s index) and the total abundance with the study site physicochemical factors.

Variable By Variable Spearman p Prob > |p|

Richness
Phreatic Level −0.5 <0.0001
Salinity (ppt) 0.3 <0.0001

Abundance (ind/m2)
Salinity (ppt) −0.5 <0.0001
Phreatic Level 0.5 <0.0001

The generalized regression model indicated that habitat type, phreatic level, and
salinity together accounted for 45% (r-square = 0.45) of the variability in mesofauna richness
and 40% (r-square = 0.40) of the variability in mesofauna abundance, as detailed in Table 7.
The analysis of the effects suggests that habitat type and phreatic level were the most
influential predictors in explaining these variations. These two factors exerted the strongest
impact on mesofauna richness and abundance within the model. It can be inferred that the
remaining 60% of the variability in mesofauna richness and abundance could be attributed
to other soil constituents (soil texture, organic matter quality, and pH), biological processes
(like reproduction and mortality), and biotic interactions (such as predation, competition,
and facilitation) not measured in this study, either acting independently or in combination.

Table 7. Generalized regression model effect report providing information about the magnitude of
the effect of each predictor on mesofauna richness index and total abundance (ind/m2).

Mesofauna
Richness Wald Chi-Squared Prob >

Chi-Squared
Mesofauna Total

Abundance Wald Chi-Squared Prob >
Chi-Squared

Habitat type 658 <0.0001 Habitat Type 568 <0.0001
Phreatic level 472 <0.0001 Phreatic level 260 <0.0001

Salinity 57 <0.0001 Salinity 12 0.0005
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3.3.1. Hydroperiods

Variations in habitat richness and abundance across the hydroperiods were observed,
as illustrated in Figures 15 and 16, highlighting the dynamic nature of mesofauna richness
and abundance in each and between the different habitats in response to changes in
hydroperiods’ phreatic levels and salinity.
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abundance compared to the other habitats during the flood period. 
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Habitat-specific variations in mesofauna richness across the different hydroperiods
were quantified (Figure 15). In the GF habitat, significant differences in richness were
observed among all periods. The wet period had the highest richness value, while the
moist period had the lowest. In contrast, in the MMW habitat, richness during the flood
and wet periods showed no significant differences, but both were significantly different
from the moderate dry and moist periods. MWR exhibited significantly higher richness
during the wet and moderate dry periods, with no significant differences between the flood
and moist periods (between floods). For the RMW, there were no significant differences
between the moist, moderate dry, and flood periods, which were all different from the
wet period. SM displayed significantly higher richness during the moist period, which
was twice as high as that of the other periods. Regarding abundance, high values were
quantified for all habitats during the flood and wet periods.
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Among the various habitats, the highest mesofauna richness was observed during
the wet period, as shown in Figure 16. Notably, the SM consistently exhibited the highest
richness across all periods, with significant differences from mean values in the other
habitats. Specifically, the SM doubled its richness compared to other habitats during
moist periods, while GF, the MMW, and the MWR showed richness levels that were not
significantly different from each other. The moderate dry period exhibited the lowest
overall mesofauna richness. During this period, there were no significant differences in
richness between the SM and the RMW, as well as between the MMW and the MWR, while
GF had the lowest richness.

Mesofauna abundance was higher during the wet and flood periods and lower during
the moderate dry and moist periods, with significant differences observed between habitats.
This suggests that these hydroperiods had a substantial impact on mesofauna abundance
across the different habitats (Figure 16). However, no significant differences in mesofauna
abundance were found between the MMW and the MWR during the flood period, between
the SM and the RMW during the moist period, and between GF and the RMW as well
as between the MMW and the SM during the wet period. A notable observation from
the study is that the GF habitat exhibited a two-fold increase in mesofauna abundance
compared to the other habitats during the flood period.

3.3.2. Phreatic Level

Significant differences in mesofauna richness and abundance were correlated with
phreatic levels, as illustrated in Figure 17. Overall, the highest richness was observed under
slightly moderate conditions (−0.12 to −0.17 m). This richness significantly differed from
that observed at other phreatic levels. For Mesostigmata and Oribatida, richness was notably
lower at deeper levels (−0.51 to −0.64 m), while for Prostigmata, it decreased at moderate
levels (−0.36 to −0.43 m). Mesofauna abundance was greater at shallow (−0.03 to −0.07 m)
to slightly moderate phreatic levels but was lower at moderate and deep levels for both
Mesostigmata and Oribatida. The abundance of Collembola, especially within the suborder
Symphypleona, showed no significant difference across all phreatic levels.
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Mesofauna populations distributed between the loose litter and old litter layers ex-
hibited significant variations in richness at high, moderate, and slightly moderate phreatic
levels (Figure 18). Higher richness was observed in the loose litter layer at moderate
and slightly moderate phreatic levels and in the old litter layer at high phreatic levels.
Abundance was significantly different under high, moderate, and shallow conditions, with
more individuals located in the loose litter layer. No significant differences in richness and
abundance were quantified at deep phreatic levels between the two layers.
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The distribution patterns and the presence or absence of various mesofauna families
across distinct phreatic gradients, as delineated in Figure 19, offer a rich source of data for
understanding the adaptive responses and habitat preferences of these species. Ninety-
five percent (95%) of all families were prevalent during moderate and slightly moderate
levels. In contrast, conditions characterized by high and shallow phreatic levels, which
are locales prone to flooding or waterlogging, showed a notable absence of 28.6% of the
families. This category includes a diverse range of families from the suborder Oribatida,
such as Cryptognathidae, Haplozetidae, Eniochthoniidae, Lohmanniidae, Eupodidae,
Scheloribatidae, Suctobelbidae, Glycyphagidae, and Nothridae. It also encompasses the
suborder Prostigmata families Bdellidae and Hermanniidae, as well as the Mesostigmata
families Pachylaelapidae and Veigaiidae. In deeper conditions, typically drier, there was
an absence of 4.8% of the taxa, including families from the suborder Prostigmata such as
Cheyletidae and Scutacaridae.
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the salinity conditions (Figure 20). The highest richness and abundance for all groups were 
observed under oligohaline conditions (>0.5 to 5.0 ppt). For Mesostigmata and Arthrople-
ona, richness was significantly lower at fresh salinity levels (0.0 to 0.5 ppt), whereas for 
Oribatida, it was lower at both fresh and polyhaline levels (>18.0 to 30.0 ppt). No signifi-
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Figure 19. Distribution and habitat preferences of different mesofauna taxa in various phreatic environ-
ments. In this figure, different colored circles represent the presence or absence of various taxa at different
phreatic levels: green circles: taxa absent in high and slightly moderate phreatic levels; yellow circles: taxa
exclusively present in slightly moderate and moderate conditions; dark blue circles: taxa absent in high
phreatic levels, characterized by flooded conditions; turquoise circles: taxa absent in high and near-surface
phreatic levels, typically associated with flood or waterlogged conditions; orange circles: taxa absent
in both moderate and significantly deep phreatic levels, which are known for drier conditions; purple
circles: taxa absent in environments with high to significantly deep phreatic levels, indicative of extreme
conditions; and grey circles: taxa absent in near-surface phreatic levels.

3.3.3. Salinity Conditions

Significant differences in mesofauna richness and abundance were correlated with the
salinity conditions (Figure 20). The highest richness and abundance for all groups were
observed under oligohaline conditions (>0.5 to 5.0 ppt). For Mesostigmata and Arthro-
pleona, richness was significantly lower at fresh salinity levels (0.0 to 0.5 ppt), whereas for
Oribatida, it was lower at both fresh and polyhaline levels (>18.0 to 30.0 ppt). No signifi-
cant differences were observed in Symphypleona abundance across fresh, oligohaline, and
mesohaline conditions.
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Mesofauna populations distributed between the loose litter and old litter layers exhib-
ited significant variations in richness at oligohaline levels (Figure 21), with higher values
observed in the loose litter layer. Abundance differed significantly under fresh and oligo-
haline conditions, showing a greater number of individuals in the loose litter layer. No
significant differences in richness or abundance were observed between the two layers at
mesohaline and polyhaline salinities.
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Figure 21. Statistical differences in mesofauna richness and abundance within the litter and soil
organic layers across the salinity conditions. Values with different letters indicate means with
significant differences (p < 0.05).

Quantifying the prevalence and absence of mesofauna families across various salinity
levels provided valuable insights into how mesofauna species distribute and acclimate
in response to varying salinity conditions, as illustrated in Figure 22. Ninety-five percent
(95%) of mesofauna taxa are predominant in oligohaline and mesohaline salinities. In
contrast, Prostigmata Scutacaridae and Cheyletidae are exclusive to oligohaline salinities.
Additionally, twenty-four percent (24%) of the taxa can acclimate to both freshwater and
polyhaline salinities. Meanwhile, twenty-five percent (25%) of the families were found in
freshwater conditions, and seventeen percent (17%) were observed in polyhaline salinity.
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4. Discussion

In this study, we have explored the intricate dynamics of soil mesofauna assemblages
within a tropical urban coastal wetland, specifically focusing on how spatiotemporal
fluctuations in phreatic levels and salinity influence their diversity and abundance. Our
findings offer insights into the complex interplay between environmental factors and
mesofauna communities, shedding light on the implications of our initial hypothesis
regarding the significant modulation of these assemblages by varying phreatic levels and
salinity.

Ciénaga Las Cucharillas Natural Reserve has undergone hydrological modifications since
colonial times, altering its marine–terrestrial–marine connectivity and bio-physicochemical
components. Consequently, a mosaic of physicochemical conditions and habitat types charac-
terizes these ecosystems, with global and regional climate variability, sea-level rise, land use,
and land cover changes acting as additional stressors (Figure 23).

The observed variations in phreatic levels and salinity conditions across different hy-
droperiods and habitats underscore the complex interplay between hydrological processes
and habitat characteristics. The significant negative correlations between phreatic levels
and salinity further elucidate the pivotal role these factors play in shaping the habitat
conditions. It is important to recognize that these environmental factors are influenced by
various water sources that enter the wetland, including in situ precipitation, freshwater
inputs, and seawater flows [28].
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Figure 23. Historical changes in the land cover of coastal wetlands since colonial times, exemplified by
the Ciénaga Las Cucharillas Natural Reserve, along with subsequent abandonment, have altered its
hydrology and marine–terrestrial connectivity (upper axis). These modifications have led to shifts in
the soil’s physicochemical constituents, subsequently affecting plant–soil interactions and mesofauna
communities. The ongoing global and regional climate variability (left and right axes), sea-level
rise (upper axis), and land use and cover changes act as additional stressors in this process. The
combined effect of these anthropogenic stressors and the predominant wetland mosaic environment
significantly influences the hydrological regime (lower axis), biophysicochemical components, and
soil mesofauna diversity and abundance in the ecosystem.
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Mesohaline and polyhaline conditions are favored when the phreatic level is moderate
and deep, as observed during the moist and moderate dry periods. During these periods, a
bimodal high tide reaches the study site in just 20 min. Conversely, freshwater and oligohaline
conditions occur mostly at higher and near-surface phreatic levels, particularly during the
flood and wet periods, when it takes up to 2 h for the bimodal high tide to reach the study
site [48]. This tidal interaction in this wetland occurs via deep subsurface flow and causes
notable fluctuations in soil salinity concentrations within habitats. The moderate dry and
moist periods are influenced by marine intrusion/tides and the flood and wet periods by
freshwater input by precipitation and runoff. These periodic fluctuations in phreatic level and
salinity influence mesofauna dynamics and distribution patterns within and between habitats,
underscoring their sensitivity to changes in these environmental factors.

During both wet and flood periods, the peak in mesofauna richness and abundance
was observed across various habitats, with these organisms predominantly inhabiting the
loose litter layer. Sampling during both periods coincides with the receding of floodwaters.
This prevalence suggests that habitat conditions during both hydroperiods, characterized
mostly by shallow to moderately shallow phreatic levels (0.01 ± 0.07 m, −0.12 ± 0.03 m) and
oligohaline salinities (1.61 ± 1.07 ppt, 1.97 ± 0.8 ppt), foster an optimal microenvironment
for a diverse array of mesofauna families. A plausible explanation for this trend is the series
of environmental changes preceding these periods. After enduring alternating flood and dry
conditions for several months, factors such as soil moisture, salinity, and food availability
undergo significant shifts across habitats [26,60,61]. In wetland ecosystems, terrestrial plant
litter accumulates during dry spells and undergoes partial in-situ decomposition, enriching
the humic material reservoir. The onset of flooding leads to the death of some terrestrial
plants, while aquatic plants sprout, grow, and eventually decay, further augmenting the
mixture and quantity of detrital accumulation. As floodwaters recede, transitioning into
the wet period, the mixture and exposure of these organic materials create zones ripe
for recolonization, enhancing the activity of microflora [57] and paving the way for a
resurgence of mesofauna. This resurgence includes fungivorous entities such as Oribatida
mites and Collembola, as well as their predators, including Mesostigmata and Prostigmata
mites [21]. An exemplification of this recolonization is observed in the Oribatida family
Hermanniidae, which exhibited a doubling in their population during the wet sampling
period, coinciding with a slightly moderate phreatic level with the receding of floodwaters.

The lowest abundance of mesofauna observed during the moist and moderate dry
hydroperiods indicates that the prevailing conditions across different habitats impact meso-
fauna dynamics. The moist period occurred between flooding events, with our sampling
conducted immediately after the first flood. Conversely, the moderate dry period followed
months of lower precipitation. During both periods, we observed deeper phreatic lev-
els (−0.46 ± 0.60 m) and moderate mesohaline to polyhaline salinities (10.53 ± 2.97 ppt,
18.94 ± 0.48 ppt). Notably, ninety-five percent (95%) of mesofauna taxa tolerated mesoha-
line salinities, while thirty-nine percent (39%) of these families demonstrated additional
tolerance to polyhaline conditions. One possible explanation for the lower abundance
values could be the reduced adaptability of certain mesofauna taxa to the increased salin-
ity and altered phreatic levels during these periods. This suggests a selective pressure
exerted by changing hydrological conditions, potentially leading to a shift in community
composition favoring more tolerant species.

Between habitat-specific variations in richness and abundance, the mature 50-year
shrubland of Dalbergia ecastaphyllum (L.) (SM habitat) emerges as a distinctive environment,
consistently showcasing the highest richness throughout all observed periods. This height-
ened richness is likely fostered by the unique characteristics of the SM habitat, including
a moderate phreatic level (mean value = −0.22 ± 0.16 m), the presence of oligohaline to
low mesohaline salinities, canopy closure providing shade to the understory and soil, and
enhanced litter inputs. These factors collectively cultivate a microenvironment conducive
to a diverse mesofauna community, instigating shifts in the population dynamics [62–64].
During the moist period, which occurs between flood events, the SM habitat exhibited a
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richness that was twice that of other habitats. This period was characterized by a moderate
phreatic level and a prevailing low mesohaline salinity of 8.32 ± 2.09 ppt. The elevated
richness during this period can be attributed to the higher micro-elevation of the SM habi-
tat, which acts as a buffer against the high phreatic levels typically experienced during
flood disturbances, a protection not afforded to other habitats especially the MMW and
MWR which had similar microenvironments. This distinctive microenvironment fosters
conditions favorable to colonization by a variety of mesofauna taxa that are well adapted
to predominantly mesohaline salinities [19,23]. Families such as Acaridae (Oribatida),
Digamasellidae (Prostigmata), and Uropodidae (Mesostigmata) exemplify this trend, as
they exhibited a doubling in their abundance in the SM habitat during the moist period.
Furthermore, the presence of these families was predominantly observed in oligohaline
and low mesohaline conditions, suggesting a strong ecological preference or adaptability
to these specific salinity ranges.

Overall, significant variability exists in how different mesofauna taxa respond to
phreatic levels and salinity conditions (Figure 24), suggesting distinct tolerances to these
environmental factors. Empirical evidence from our Spearman’s Rho correlation analysis
and the generalized regression model confirms the significant impact of phreatic level and
salinity on mesofauna richness and abundance. These diverse responses among taxa are
likely due to factors such as life cycle variants, physiological specialization, and behavioral
adaptations.

Oribatid mites are prevalent in most phreatic levels and salinity conditions. Notably,
they were the only taxa present in polyhaline conditions at moderate phreatic levels. n
both cases, they are more abundant in the loose litter layer. Anthropleona show increased
richness and abundance in oligohaline salinities at moderate to shallow phreatic levels and
in polyhaline salinities at deep levels, mainly located in the old litter layer. Conversely,
Symphypleona are more abundant in freshwater conditions at slightly moderate phreatic
levels, predominantly found in the old litter layer. Mesostigmata and Prostigmata exhibit
an increased presence in oligohaline and mesohaline conditions at slightly moderate to
high phreatic levels, with their abundance being greater in the loose litter layer.
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Significantly, around thirty-six percent (36%) of the mesofauna families were absent
during periods of marked shifts in phreatic levels, including the flood and subsequent
post-flood (moist) phases. This absence underscores the sensitivity of a considerable
portion of mesofauna families to such disturbances. A case in point is the oribatid family
Trhypocthoniidae, which exhibited a pronounced sensitivity to extreme fluctuations in
phreatic levels. This family was conspicuously absent not only during the moderate dry
periods, characterized by deep phreatic levels but also during the flood periods where
high phreatic levels prevailed. This pattern of absence across a spectrum of extreme
phreatic conditions highlights the vulnerability of Oribatid Trhypocthoniidae to substantial
variations in hydroperiods, pointing to a narrow ecological amplitude with regard to
phreatic level tolerances.

Regarding salinity preferences, the majority of mesofauna families, ninety-five percent
(95%), thrive in oligohaline and mesohaline salinities. This is exemplified by Prostigmata
families such as Scutacaridae and Cheyletidae, which are exclusive to oligohaline salinities,
indicating a specialization in this salinity range.

The findings delineated above unveil a complex interplay of inter- and intra-specific
responses to the fluctuating phreatic levels and salinity conditions prevalent during the
hydroperiods of wetland habitats. This underscores the intricate adaptations and ecologi-
cal strategies that various mesofauna families have evolved to acclimate to the periodic
landscape dynamics inherent to tropical urban coastal wetlands. Consequently, this re-
search offers profound insights into the community structures and operational dynamics of
mesofauna in these ecosystems, elucidating their resilience and adaptability in the face of
environmental variations.

5. Conclusions

In conclusion, the study underscores the significance of understanding mesofauna’s
intricate inter- and intra-specific responses to fluctuations in wetland hydroperiod phreatic
levels and salinity conditions. The diverse range of responses exhibited by the mesofauna
community in this wetland emphasizes their varying degrees of adaptability and resilience
to changes in their microenvironment. This insight into mesofauna community dynamics
is invaluable for effective wetland management, particularly in the context of multiple
stressors such as global and regional climate change, sea-level rise, and human activities.
The bio-sensor capacity of soil mesofauna emerges as a crucial tool for monitoring and
adaptive ecosystem management to ensure their long-term health and sustainability.
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