Open AccessArticle
Trends in Playa Inundation and Water Storage in the Ogallala Aquifer on the Texas High Plains
Hydrology 2016, 3(3), 31; doi:10.3390/hydrology3030031 -
Abstract
The Ogallala Aquifer is an important source of irrigation water on the Texas High plains; however, significant decreases in saturated thickness threaten its future use for irrigation. A better understanding of the roles of playas, ephemeral surface ponds, in aquifer recharge is [...] Read more.
The Ogallala Aquifer is an important source of irrigation water on the Texas High plains; however, significant decreases in saturated thickness threaten its future use for irrigation. A better understanding of the roles of playas, ephemeral surface ponds, in aquifer recharge is needed to establish levels of withdrawals that will meet either established desired future conditions or sustainability. In this study, data regarding playa inundation, depth to groundwater, precipitation and land cover from 2001 to 2011 were collected and analyzed to ascertain associations between these characteristics for four study areas on the Texas High plains. Each area covered 40,000–70,000 ha. Three of the study areas in Hockley, Floyd and Swisher counties were chosen because their center contained a playa instrumented to measure weather and depth of inundation. There were 20 distinct inundation events at the three instrumented playas between 2006 and 2010. For each of these inundations, water loss exceeded rates of potential evapotranspiration (ET) by a factor of 1.6–15.7 times, implying that infiltration was occurring. Playa inundation in all four study areas was also assessed by analyzing images from the National Agricultural Imaginary program. Data on depth to groundwater were analyzed from 2000 to 2010 to determine annual changes of stored water. Annual changes in groundwater were weakly associated with surface area of inundated playas in late summer, but was strongly associated with annual rainfall. Rates of infiltration based on playa water loss versus potential ET, and volume of water in playas was more than sufficient to account for annual changes in groundwater. Land use adjoining the playas had less of influence on playa inundation than annual rainfall. These results strengthen the argument that water storage in playas on the Texas High Plains is an important source of water for aquifer recharge. Full article
Figures

Figure 1

Open AccessArticle
Groundwater Evaporation Ponds: A Viable Option for the Management of Shallow Saline Waterlogged Areas
Hydrology 2016, 3(3), 30; doi:10.3390/hydrology3030030 -
Abstract
The province of Punjab is the main food basket of India. In recent years, many regions of Punjab are facing acute waterlogging problems and increased secondary salinity, which have negative impacts on food security of the nation. In particular, these problems are [...] Read more.
The province of Punjab is the main food basket of India. In recent years, many regions of Punjab are facing acute waterlogging problems and increased secondary salinity, which have negative impacts on food security of the nation. In particular, these problems are more pronounced in the Muktsar district of Punjab. The observed groundwater levels trend between 2005 and 2011 implies that groundwater levels are coming towards the land surface at the rate of 0.5 m/year in Lambi and Malout blocks. In this study, a groundwater flow model was constructed using MODFLOW to understand the groundwater table dynamics and to test the groundwater evaporation ponds to draw down the groundwater levels in the waterlogging areas of Muktsar district. The predicted flow model results indicate that groundwater levels could be depleted at the rate of 0.3 m/year between 2012 and 2018 after the construction of Groundwater Evaporation Ponds (GEP). In addition, the constructed ponds can be used for aquaculture that generates additional income. The proposed GEP method may be a promising tool and suitable for the reduction of waterlogging in any region if there is no proper surface drainage, and also for enhancement of agricultural production that improves the social and economic status of the farming community. Full article
Figures

Open AccessArticle
Flood Risk Analysis in Lower Part of Markham River Based on Multi-Criteria Decision Approach (MCDA)
Hydrology 2016, 3(3), 29; doi:10.3390/hydrology3030029 -
Abstract
Papua New Guinea is blessed with a plethora of enviable natural resources, but at the same time it is also cursed by quite a few natural disasters like volcanic eruptions, earthquakes, landslide, floods, droughts etc. Floods happen to be a natural process [...] Read more.
Papua New Guinea is blessed with a plethora of enviable natural resources, but at the same time it is also cursed by quite a few natural disasters like volcanic eruptions, earthquakes, landslide, floods, droughts etc. Floods happen to be a natural process of maintaining the health of the rivers and depth of its thalweg; it saves the river from becoming morbid while toning up the fertility of the riverine landscape. At the same time, from human perspective, all these ecological goodies are nullified when flood is construed overwhelmingly as one of the most devastating events in respect to social and economic consequences. The present investigation was tailored to assess the use of multi-criteria decision approach (MCDA) in inland flood risk analysis. Categorization of possible flood risk zones was accomplished using geospatial data sets, like elevation, slope, distance to river, and land use/land cover, which were derived from digital elevation model (DEM) and satellite image, respectively. A pilot study area was selected in the lower part of Markham River in Morobe Province, Papua New Guinea. The study area is bounded by 146°31′ to 146°58′ east and 6°33′ to 6°46′ south; covers an area of 758.30 km2. The validation of a flood hazard risk map was carried out using past flood records in the study area. This result suggests that MCDA within GIS techniques is very useful in accurate and reliable flood risk analysis and mapping. This approach is convenient for the assessment of flood in any region, specifically in no-data regions, and can be useful for researchers and planners in flood mitigation strategies. Full article
Figures

Open AccessReview
Spatiotemporal Variations in Snow and Soil Frost—A Review of Measurement Techniques
Hydrology 2016, 3(3), 28; doi:10.3390/hydrology3030028 -
Abstract
Large parts of the northern hemisphere are covered by snow and seasonal frost. Climate warming is affecting spatiotemporal variations of snow and frost, hence influencing snowmelt infiltration, aquifer recharge and river runoff patterns. Measurement difficulties have hampered progress in properly assessing how [...] Read more.
Large parts of the northern hemisphere are covered by snow and seasonal frost. Climate warming is affecting spatiotemporal variations of snow and frost, hence influencing snowmelt infiltration, aquifer recharge and river runoff patterns. Measurement difficulties have hampered progress in properly assessing how variations in snow and frost impact snowmelt infiltration. This has led to contradicting findings. Some studies indicate that groundwater recharge response is scale dependent. It is thus important to measure snow and soil frost properties with temporal and spatial scales appropriate to improve infiltration process knowledge. The main aim with this paper is therefore to review ground based methods to measure snow properties (depth, density, water equivalent, wetness, and layering) and soil frost properties (depth, water and ice content, permeability, and distance to groundwater) and to make recommendations for process studies aiming to improve knowledge regarding infiltration in regions with seasonal frost. Ground-based radar (GBR) comes in many different combinations and can, depending on design, be used to assess both spatial and temporal variations in snow and frost so combinations of GBR and tracer techniques can be recommended and new promising methods (auocostics and self potential) are evolving, but the study design must be adapted to the scales, the aims and the resources of the study. Full article
Figures

Open AccessArticle
Conditions for the Occurrence of Slaking and Other Disaggregation Processes under Rainfall
Hydrology 2016, 3(3), 27; doi:10.3390/hydrology3030027 -
Abstract
Under rainfall conditions, aggregates may suffer breakdown by different mechanisms. Slaking is a very efficient breakdown mechanism. However, its occurrence under rainfall conditions has not been demonstrated. Therefore, the aim of this study was to evaluate the occurrence of slaking under rain. [...] Read more.
Under rainfall conditions, aggregates may suffer breakdown by different mechanisms. Slaking is a very efficient breakdown mechanism. However, its occurrence under rainfall conditions has not been demonstrated. Therefore, the aim of this study was to evaluate the occurrence of slaking under rain. Two soils with silt loam (SL) and clay loam (CL) textures were analyzed. Two classes of aggregates were utilized: 1–3 mm and 3–5 mm. The aggregates were submitted to stability tests and to high intensity (90 mm·h−1) and low intensity (28 mm·h−1) rainfalls, and different kinetic energy impacts (large and small raindrops) using a rainfall simulator. The fragment size distributions were determined both after the stability tests and rainfall simulations, with the calculation of the mean weighted diameter (MWD). After the stability tests the SL presented smaller MWDs for all stability tests when compared to the CL. In both soils the lowest MWD was obtained using the fast wetting test, showing they were sensitive to slaking. For both soils and the two aggregate classes evaluated, the MWDs were recorded from the early beginning of the rainfall event under the four rainfall conditions. The occurrence of slaking in the evaluated soils was not verified under the simulated rainfall conditions studied. The early disaggregation was strongly related to the cumulative kinetic energy, advocating for the occurrence of mechanical breakdown. Because slaking requires a very high wetting rate on initially dry aggregates, it seems unlikely to occur under field conditions, except perhaps for furrow irrigation. Full article
Open AccessArticle
Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa
Hydrology 2016, 3(3), 26; doi:10.3390/hydrology3030026 -
Abstract
Potential implications of rainfall variability along with Land Use and Land Cover Change (LULC) on stream flow have been assessed in the Black Volta basin using the SWAT model. The spatio-temporal variability of rainfall over the Black Volta was assessed using the [...] Read more.
Potential implications of rainfall variability along with Land Use and Land Cover Change (LULC) on stream flow have been assessed in the Black Volta basin using the SWAT model. The spatio-temporal variability of rainfall over the Black Volta was assessed using the Mann-Kendall monotonic trend test and the Sen’s slope for the period 1976–2011. The statistics of the trend test showed that 61.4% of the rain gauges presented an increased precipitation trend whereas the rest of the stations showed a decreased trend. However, the test performed at the 95% confidence interval level showed that the detected trends in the rainfall data were not statistically significant. Land use trends between the year 2000 and 2013 show that within thirteen years, land use classes like bare land, urban areas, water bodies, agricultural lands, deciduous forests and evergreen forests have increased respectively by 67.06%, 33.22%, 7.62%, 29.66%, 60.18%, and 38.38%. Only grass land has decreased by 44.54% within this period. Changes in seasonal stream flow due to LULC were assessed by defining dry and wet seasons. The results showed that from year 2000 to year 2013, the dry season discharge has increased by 6% whereas the discharge of wet season has increased by 1%. The changes in stream flows components such us surface run-off (SURF_Q), lateral flow (LAT_Q) and ground water contribution to stream flow (GW_Q) and also on evapotranspiration (ET) changes due to LULC was evaluated. The results showed that between the year 2000 and 2013, SURF_Q and LAT_Q have respectively increased by 27% and 19% while GW_Q has decreased by 6% while ET has increased by 4.59%. The resultant effects are that the water yield to stream flow has increased by 4%. Full article
Open AccessArticle
Runoff and Soil Erosion Assessment on Forest Roads Using a Small Scale Rainfall Simulator
Hydrology 2016, 3(3), 25; doi:10.3390/hydrology3030025 -
Abstract
Forestry operations can significantly alter hydrological and erosional processes in a catchment. In the course of developing timberland, a network of persistent roads and skid trails causing soil compaction is usually established. Hereby, the infiltration rate of the soil is distinctly reduced, [...] Read more.
Forestry operations can significantly alter hydrological and erosional processes in a catchment. In the course of developing timberland, a network of persistent roads and skid trails causing soil compaction is usually established. Hereby, the infiltration rate of the soil is distinctly reduced, which leads to the generation of overland flow—this may also cause soil erosion. In this study, a small-scale rainfall simulator is used to investigate hydrological and erosional processes on forest roads and skid trails. The results show increased runoff rates on forest roads, up to 25 times higher than on undisturbed forest topsoil. On skid trails, the runoff rates were altered especially in rutted areas (16 times higher) while unrutted parts showed a lesser change (four times higher). With sufficient overland flow, soil erosion rates also rose, particularly when the vegetation cover of the surface was removed: bare road surfaces featured higher mean erosion rates (195 g·m−2) than partly or completely vegetated skid trails (13 g·m−2) and undisturbed sites (5 g·m−2). The findings presented in this study indicate the need for the use of compaction reducing technology during forestry operations and a revegetation of road surfaces in order to minimize the detrimental factor of roads and skid trails on water retention and soil conservation. Full article
Figures

Figure 1

Open AccessArticle
Determination of Watershed Infiltration and Erosion Parameters from Field Rainfall Simulation Analyses
Hydrology 2016, 3(3), 23; doi:10.3390/hydrology3030023 -
Abstract
Realistic modeling of infiltration, runoff and erosion processes from watersheds requires estimation of the effective hydraulic conductivity (Km) of the hillslope soils and how it varies with soil tilth, depth and cover conditions. Field rainfall simulation (RS) plot studies provide [...] Read more.
Realistic modeling of infiltration, runoff and erosion processes from watersheds requires estimation of the effective hydraulic conductivity (Km) of the hillslope soils and how it varies with soil tilth, depth and cover conditions. Field rainfall simulation (RS) plot studies provide an opportunity to assess the surface soil hydraulic and erodibility conditions, but a standardized interpretation and comparison of results of this kind from a wide variety of test conditions has been difficult. Here, we develop solutions to the combined set of time-to-ponding/runoff and Green– Ampt infiltration equations to determine Km values from RS test plot results and compare them to the simpler calculation of steady rain minus runoff rates. Relating soil detachment rates to stream power, we also examine the determination of “erodibility” as the ratio thereof. Using data from over 400 RS plot studies across the Lake Tahoe Basin area that employ a wide range of rain rates across a range of soil slopes and conditions, we find that the Km values can be determined from the combined infiltration equation for ~80% of the plot data and that the laminar flow form of stream power best described a constant “erodibility” across a range of volcanic skirun soil conditions. Moreover, definition of stream power based on laminar flows obviates the need for assumption of an arbitrary Mannings “n” value and the restriction to mild slopes (<10%). The infiltration equation based Km values, though more variable, were on average equivalent to that determined from the simpler calculation of steady rain minus steady runoff rates from the RS plots. However, these Km values were much smaller than those determined from other field test methods. Finally, we compare RS plot results from use of different rainfall simulators in the basin and demonstrate that despite the varying configurations and rain intensities, similar erodibilities were determined across a range of infiltration and runoff rates using the laminar form of the stream power equation. Full article
Open AccessArticle
Identification of Streamflow Changes across the Continental United States Using Variable Record Lengths
Hydrology 2016, 3(2), 24; doi:10.3390/hydrology3020024 -
Abstract
The study focused on investigating the presence of change patterns in 600 unimpaired streamflow stations across the continental U.S. at different time intervals to understand the change patterns that can provide significant insight regarding climate variability and change. Each station had continuous [...] Read more.
The study focused on investigating the presence of change patterns in 600 unimpaired streamflow stations across the continental U.S. at different time intervals to understand the change patterns that can provide significant insight regarding climate variability and change. Each station had continuous streamflow data of at least 30 years (the entire dataset covered a range of 109 years). Presence of trends and shifts were detected in water year and the four seasons (fall, winter, spring, and summer) analyzing the water year and seasonal mean flows. Two non-parametric tests, namely, the Mann-Kendall test and the Pettitt’s test were used to identify the trends and the shifts, respectively. The results showed an increasing trend in the northeast and upper-mid regions, whereas southeast and northwest regions underwent a decrease. Shifts followed similar patterns as trends with higher number of stations with significant change. Fall and spring showed the highest number of stations with increasing and decreasing change, respectively, in the seasonal analyses. Results of this study may assist water managers to understand the streamflow change patterns across the continental U.S., especially at the regional scale since this study covers a long range of years with a large number of stations in each region. Full article
Open AccessArticle
Is Catchment Classification Possible by Means of Multiple Model Structures? A Case Study Based on 99 Catchments in Germany
Hydrology 2016, 3(2), 22; doi:10.3390/hydrology3020022 -
Abstract
This study investigates how the performance of a set of models depends on the catchments to which these models are applied. It examines (i) whether it is possible to identify a single best model for each of the catchments, or whether results [...] Read more.
This study investigates how the performance of a set of models depends on the catchments to which these models are applied. It examines (i) whether it is possible to identify a single best model for each of the catchments, or whether results are dominated by equifinality; and (ii) whether the ranking of model performance can be related to a set of predictors, such as climate and catchment characteristics. In order to explore these questions, we applied 12 model structures to 99 catchments in Germany, ranging in size from 10 km2 to 1826 km2. We examined model performance in terms of streamflow predictions, based on various indices. Our results indicate that for some catchments many structures perform equally well, whereas for other catchments a single structure clearly outperforms the others. We could not identify clear relationships between relative model performance and catchment characteristics. This result led us to conclude that for the spatial scales considered, it is difficult to base the selection of a lumped conceptual model based on a priori assessment, and we recommend a posteriori selection based on model comparisons. Full article
Open AccessArticle
Postprocessing of Medium Range Hydrological Ensemble Forecasts Making Use of Reforecasts
Hydrology 2016, 3(2), 21; doi:10.3390/hydrology3020021 -
Abstract
A hydrological ensemble prediction system is running operationally at the Royal Meteorological Institute of Belgium (RMI) for ten catchments in the Meuse basin. It makes use of the conceptual semi-distributed hydrological model SCHEME and the European Centre for Medium Range Weather Forecasts [...] Read more.
A hydrological ensemble prediction system is running operationally at the Royal Meteorological Institute of Belgium (RMI) for ten catchments in the Meuse basin. It makes use of the conceptual semi-distributed hydrological model SCHEME and the European Centre for Medium Range Weather Forecasts (ECMWF) ensemble prediction system (ENS). An ensemble of 51 discharge forecasts is generated daily. We investigate the improvements attained through postprocessing the discharge forecasts, using the archived ECMWF reforecasts for precipitation and other necessary meteorological variables. We use the 5-member reforecasts that have been produced since 2012, when the horizontal resolution of ENS was increased to the N320 resolution (≈30 km over Belgium). The reforecasts were issued weekly, going back 20 years, and we use a calibration window of five weeks. We use these as input to create a set of hydrological reforecasts. The implemented calibration method is an adaption of the variance inflation method. The parameters of the calibration are estimated based on the hydrological reforecasts and the observed discharge. The postprocessed forecasts are verified based on a two-and-a-half year period of data, using archived 51 member ENS forecasts. The skill is evaluated using summary scores of the ensemble mean and probabilistic scores: the Brier Score and the Continuous Ranked Probability Score (CRPS). We find that the variance inflation method gives a significant improvement in probabilistic discharge forecasts. The Brier score, which measures probabilistic skill for forecasts of discharge threshold exceedance, is improved for the entire forecast range during the hydrological summer period, and the first three days during hydrological winter. The CRPS is also significantly improved during summer, but not during winter. We conclude that it is valuable to apply the postprocessing method during hydrological summer. During winter, the method is also useful for forecasting exceedance probabilities of higher thresholds, but not for lead times beyond five days. Finally, we also note the presence of some large outliers in the postprocessed discharge forecasts, arising from the fact that the postprocessing is performed on the logarithmically transformed discharges. We suggest some ways to deal with this in the future for our operational setting. Full article
Open AccessArticle
An Institutional Analysis of Groundwater Quality Control: Experiences in Hadano, Kanagawa Prefecture, Japan
Hydrology 2016, 3(2), 20; doi:10.3390/hydrology3020020 -
Abstract
A considerable number of studies have been made of institutional arrangements that can prevent excessive groundwater pumping based on Hardin’s seminal work, the “tragedy of the commons.” In contrast, this paper is concerned with groundwater quality control for which policy studies are [...] Read more.
A considerable number of studies have been made of institutional arrangements that can prevent excessive groundwater pumping based on Hardin’s seminal work, the “tragedy of the commons.” In contrast, this paper is concerned with groundwater quality control for which policy studies are very limited. This paper not only clarifies institutional challenges specific to groundwater contamination, but also demonstrates how government and industry could solve them using a case study of Hadano, Kanagawa Prefecture, Japan, which has pioneered countermeasures for groundwater pollution in Japan. Hadano solved the challenges by enacting an innovative local ordinance with three pillars: Proxy purification by the city government, fundraising for purification activities and a retroactive system. Lessons learnt from the Hadano case will be very useful to policy makers because these problems already occur in other urban areas, or are likely to occur in the near future. Full article
Open AccessArticle
Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region
Hydrology 2016, 3(2), 19; doi:10.3390/hydrology3020019 -
Abstract
A pair of hydro-meteorological modeling systems were calibrated and evaluated for the Ayalon basin in central Israel to assess the advantages and limitations of one-way versus two-way coupled modeling systems for flood prediction. The models used included the Hydrological Engineering Center-Hydrological Modeling [...] Read more.
A pair of hydro-meteorological modeling systems were calibrated and evaluated for the Ayalon basin in central Israel to assess the advantages and limitations of one-way versus two-way coupled modeling systems for flood prediction. The models used included the Hydrological Engineering Center-Hydrological Modeling System (HEC-HMS) model and the Weather Research and Forecasting (WRF) Hydro modeling system. The models were forced by observed, interpolated precipitation from rain-gauges within the basin, and with modeled precipitation from the WRF atmospheric model. Detailed calibration and evaluation was carried out for two major winter storms in January and December 2013. Then, both modeling systems were executed and evaluated in an operational mode for the full 2014/2015 rainy season. Outputs from these simulations were compared to observed measurements from the hydrometric station at the Ayalon basin outlet. Various statistical metrics were employed to quantify and analyze the results: correlation, Root Mean Square Error (RMSE) and the Nash–Sutcliffe (NS) efficiency coefficient. Foremost, the results presented in this study highlight the sensitivity of hydrological responses to different sources of simulated and observed precipitation data, and demonstrate improvement, although not significant, at the Hydrological response, like simulated hydrographs. With observed precipitation data both calibrated models closely simulated the observed hydrographs. The two-way coupled WRF/WRF-Hydro modeling system produced improved both the precipitation and hydrological simulations as compared to the one-way WRF simulations. Findings from this study, as well as previous studies, suggest that the use of two-way atmospheric-hydrological coupling has the potential to improve precipitation and, therefore, hydrological forecasts for early flood warning applications. However, more research needed in order to better understand the land-atmosphere coupling mechanisms driving hydrometeorological processes on a wider variety precipitation and terrestrial hydrologic systems. Full article
Open AccessArticle
Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?
Hydrology 2016, 3(2), 18; doi:10.3390/hydrology3020018 -
Abstract
Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the [...] Read more.
Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities) parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand hydraulic conductivity and drainable porosities could be readily determined from measured capillary pressure displacement pressure head and assumption of pore-size distributions (i.e., Brooks-Corey lambda values of 2–3). Full article
Open AccessArticle
Impact of Climate Change on Groundwater Resources in the Klela Basin, Southern Mali
Hydrology 2016, 3(2), 17; doi:10.3390/hydrology3020017 -
Abstract
Investigations of groundwater resources in order to understand aquifer system behavior are vital to the inhabitants of the Klela Basin, Mali, because groundwater is the only permanent water resource and is used for drinking water and irrigation. Due to climate change, this [...] Read more.
Investigations of groundwater resources in order to understand aquifer system behavior are vital to the inhabitants of the Klela Basin, Mali, because groundwater is the only permanent water resource and is used for drinking water and irrigation. Due to climate change, this vital resource is being threatened. Therefore, MODFLOW was applied in this study to simulate groundwater dynamics. The aim of this study was to evaluate the impact of climate change on groundwater resources in the Klela basin using the RCP4.5 (Representative Concentration Scenario 4.5 W/m2) climate scenario. Climatological, geological, hydrogeological, hydraulic and demographic data were collected and used as model input data. Groundwater recharge was estimated to be approximately 165.3 mm/year using the EARTH (Extended model for Aquifer Recharge and soil moisture Transport through the unsaturated Hardrock) model. Recharge was then used as groundwater model input. The sandstone aquifer in the study area was simulated in steady and transient conditions. The results showed that hydraulic conductivity values varied from 1.1 to 13.9 m/day. The model was used for scenario quantification after model calibration and verification using three different piezometer data sets. The results of the simulated MODFLOW model showed a decrease in groundwater levels over time. Full article
Open AccessArticle
Evaluation of Multiresolution Digital Elevation Model (DEM) from Real-Time Kinematic GPS and Ancillary Data for Reservoir Storage Capacity Estimation
Hydrology 2016, 3(2), 16; doi:10.3390/hydrology3020016 -
Abstract
This study presents the estimation of reservoir storage capacity using multiresolution Real-Time Kinematic Global Positioning System (RTK-GPS) DEM, in comparison with ASTER and contour-derived DEM. Through RMSE comparisons of the elevation point uncertainty and error analysis, the results shows that the RTK-GPS [...] Read more.
This study presents the estimation of reservoir storage capacity using multiresolution Real-Time Kinematic Global Positioning System (RTK-GPS) DEM, in comparison with ASTER and contour-derived DEM. Through RMSE comparisons of the elevation point uncertainty and error analysis, the results shows that the RTK-GPS DEM gave the best results for the reservoir capacity-area power curve estimation, defined by a convex slope with an exponential deterministic relationship given by V=0.09×A1.435. The results further show the existence an empirical relationship between the reservoir volume certainty and the GPS point density di as Ve=c×diρ. This relationship is dependent on the reservoir terrain, slope and surface area. Validation of the results with in situ data showed the differences between the simulated and observed storage volumes was less than +10%, and using the Nash-Sutcliffe coefficient of efficiency on the storage volumes, an average efficiency of +0.7 on the monthly observed and simulated reservoir storage volume was observed. Full article
Figures

Open AccessArticle
Hydrological Evaluation of TRMM Rainfall over the Upper Senegal River Basin
Hydrology 2016, 3(2), 15; doi:10.3390/hydrology3020015 -
Abstract
The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to [...] Read more.
The availability of climatic data, especially on a daily time step, has become very rare in West Africa over the last few years due to the high costs of climate data monitoring. This scarcity of climatic data is a huge obstacle to conduct hydrological studies over some watersheds. In this context, our study aimed to evaluate the capacity of Tropical Rainfall Measuring Mission (TRMM) satellite data to simulate the observed runoffs over the Bafing (the main important tributary of the Senegal River) before their potential integration in hydrological studies. The conceptual hydrological model GR4J (modèle du Génie Rural (Agricultural Engineering Model) à 4 paramètres Journalier (4 parameters Daily)) has been used, calibrated and validated over the 1961–1997 period with rainfall and Potential Evapotranspiration (PET) as inputs. Then, the parameters that best reflect the rainfall-runoff relation, obtained during the cross-calibration-validation phase, were used to simulate runoff over the 1998–2004 period using observed and TRMM rainfalls. The findings of this study show that there is a high consistency between satellite-based estimates and ground-based observations of rainfall. Over the 1998–2004 simulation period, the two rainfall data series show quite satisfactorily results. The output hydrographs from satellite-based estimates and ground-based observations of rainfall coincide quite well with the shape of observed hydrographs with Nash-Sutcliffe Efficiency coefficient (NSE) of 0.88 and 0.80 for observed rainfalls and TRMM rainfalls, respectively. Full article
Open AccessArticle
Variability and Trends in Precipitation, Temperature and Drought Indices in the State of California
Hydrology 2016, 3(2), 14; doi:10.3390/hydrology3020014 -
Abstract
This study presents a comprehensive assessment of the variability and trends of the precipitation and temperature along with the trends in drought indices over the State of California. The non-parametric Mann–Kendall trend test is applied with a trend-free pre-whitening procedure in trend [...] Read more.
This study presents a comprehensive assessment of the variability and trends of the precipitation and temperature along with the trends in drought indices over the State of California. The non-parametric Mann–Kendall trend test is applied with a trend-free pre-whitening procedure in trend identification. A dataset containing 120-year (water years 1896–2015) monthly precipitation, average temperature, maximum temperature, minimum temperature and the Palmer Index for seven climatic regions of the state is used for this purpose. The results confirm previous work indicating that no clear trends are observed in precipitation, while a distinct warming trend is evident in temperature over the state. New findings of this study include: (1) in general, the variability of annual, winter (December–February) and spring (March–May) precipitation shows an increasing tendency, implying intensified frequency of the occurrence of dry or wet extremes; (2) on the annual scale and in the summer, statewide meteorological, hydrological and agricultural drought indices all have decreasing trends, indicating the more frequent occurrence of drought events; and (3) among seven regions, the South Coast Drainage region generally has the most significant warming trend, as well as the most significant declining trends in drought indices. Overall, these findings are highly meaningful from both theoretical and practical perspectives, in the context of providing critical information in developing prediction models and guiding water resources management practices, respectively. Full article
Open AccessArticle
Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach
Hydrology 2016, 3(1), 13; doi:10.3390/hydrology3010013 -
Abstract
Groundwater depletion in the face of growth is a well-known problem, particularly in those areas that have grown to become dependent on a declining resource. This research comprises a broad synthesis of existing water resources data, to understand the long-term implications of [...] Read more.
Groundwater depletion in the face of growth is a well-known problem, particularly in those areas that have grown to become dependent on a declining resource. This research comprises a broad synthesis of existing water resources data, to understand the long-term implications of continued growth in water demand on groundwater dominant water resources, and to develop a tool for sustainable water management. The Palouse region of Washington and Idaho, USA. (approximately 60,000 people in a rural setting) is entirely dependent on groundwater from two basalt aquifers for potable water. Using the systems dynamics approach and a water balance that considered the entire hydrologic cycle, a hydrologic model of these aquifers was developed, tested and applied to simulate their behavior over a 150 year time period assuming the current infrastructure does not change. With 1% population growth and current water extraction rates, the results indicated the upper aquifer use may be sustainable, while the lower aquifer use is likely unsustainable in the long term. This study also shows that uncertainties in key aspects of the system create limitations to groundwater management. Full article
Open AccessArticle
A Conceptual Framework for Assessment of Governance Performance of Lake Basins: Towards Transformation to Adaptive and Integrative Governance
Hydrology 2016, 3(1), 12; doi:10.3390/hydrology3010012 -
Abstract
Governance is essential to lake basin management, but it is the most challenged and needs increased attention. Lake Basin Governance performance assessment is designed to measure the progress and impacts of policies, institutions and the roles of various actors in ensuring sustainability. [...] Read more.
Governance is essential to lake basin management, but it is the most challenged and needs increased attention. Lake Basin Governance performance assessment is designed to measure the progress and impacts of policies, institutions and the roles of various actors in ensuring sustainability. It measures the performance of technical/operational, social/networks, and institutional arrangement that make up the socio-ecological system. Governance performance assessment becomes very necessary with over-emphasis of institutions on resources utilization and exploitation. The purpose of this paper is to present a governance performance assessment framework specifically for lake basins. The Adaptive Integrated Lake Basin Management (AILBM) framework is a diagnostic and prescriptive performance assessment tool with an outcome to produce an adaptive and integrative system with equity, inclusiveness, transparency, accountability and flexibility to problem-solving and resilience. A case study on water governance performance assessment of the Songkhla Lake Basin (SLB) in Thailand is provided for illustration and application and indicated a poor performance rating on governance in the Basin, revealing gaps, defects, strengths and weaknesses in the current system, necessary to recommend future improvements. Full article