Mediterranean Tropical-Like Cyclones (Medicanes)

A special issue of Atmosphere (ISSN 2073-4433). This special issue belongs to the section "Meteorology".

Deadline for manuscript submissions: closed (30 November 2018) | Viewed by 23966

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Atmospheric Sciences and Climate, National Research Council, Corso Stati Uniti 4, 35127 Padua, Italy
Interests: mesoscale meteorology; Mediterranean cyclones; orographic precipitation; supercells; tornadoes

Special Issue Information

Dear Colleagues,

It is well known that the Mediterranean Sea is an important cyclogenetic area. Most of its cyclones have synoptic-scale and baroclinic origin; however, intense mesoscale vortices have sometimes been observed with features closely resembling those of tropical cyclones, though smaller in size. These cyclones are generally called Medicanes, a short name for “Mediterranean hurricanes”, or Mediterranean tropical-like cyclones (TLCs). Numerical simulations have shown that the latent heat release associated with convection and air–sea interaction processes are fundamental for their intensification, while baroclinic instability is important in the early stages of their lifetime. In recent years, a renewed interest in this topic is emerging, due both to the important social impact of these vortices, which may affect the coasts with intense winds and heavy precipitation, and to the implications of climate change for their intensity and location. While a number of papers shed some light on the mechanisms of formation and intensification, several questions are still subject of debate in the scientific community, ranging from the criteria for a reliable definition of Medicanes to their classification as a peculiar category or as member of an extensive category including also polar lows and subtropical cyclones.

Dr. Mario Marcello Miglietta
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Atmosphere is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Medicanes
  • Mediterranean tropical-like cyclones
  • mesoscale meteorology
  • convection
  • air-sea interaction

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

4 pages, 189 KiB  
Editorial
Mediterranean Tropical-Like Cyclones (Medicanes)
by Mario Marcello Miglietta
Atmosphere 2019, 10(4), 206; https://doi.org/10.3390/atmos10040206 - 18 Apr 2019
Cited by 23 | Viewed by 3922
Abstract
Due to its peculiar morphology, the Mediterranean Basin is one of the main cyclogenetic areas in the world [...] Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))

Research

Jump to: Editorial

22 pages, 8094 KiB  
Article
Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea
by Antonio Ricchi, Mario Marcello Miglietta, Davide Bonaldo, Guido Cioni, Umberto Rizza and Sandro Carniel
Atmosphere 2019, 10(4), 202; https://doi.org/10.3390/atmos10040202 - 15 Apr 2019
Cited by 30 | Viewed by 5553
Abstract
Between 19 and 22 January 2014, a baroclinic wave moving eastward from the Atlantic Ocean generated a cut-off low over the Strait of Gibraltar and was responsible for the subsequent intensification of an extra-tropical cyclone. This system exhibited tropical-like features in the following [...] Read more.
Between 19 and 22 January 2014, a baroclinic wave moving eastward from the Atlantic Ocean generated a cut-off low over the Strait of Gibraltar and was responsible for the subsequent intensification of an extra-tropical cyclone. This system exhibited tropical-like features in the following stages of its life cycle and remained active for approximately 80 h, moving along the Mediterranean Sea from west to east, eventually reaching the Adriatic Sea. Two different modeling approaches, which are comparable in terms of computational cost, are analyzed here to represent the cyclone evolution. First, a multi-physics ensemble using different microphysics and turbulence parameterization schemes available in the WRF (weather research and forecasting) model is employed. Second, the COAWST (coupled ocean–atmosphere wave sediment transport modeling system) suite, including WRF as an atmospheric model, ROMS (regional ocean modeling system) as an ocean model, and SWAN (simulating waves in nearshore) as a wave model, is used. The advantage of using a coupled modeling system is evaluated taking into account air–sea interaction processes at growing levels of complexity. First, a high-resolution sea surface temperature (SST) field, updated every 6 h, is used to force a WRF model stand-alone atmospheric simulation. Later, a two-way atmosphere–ocean coupled configuration is employed using COAWST, where SST is updated using consistent sea surface fluxes in the atmospheric and ocean models. Results show that a 1D ocean model is able to reproduce the evolution of the cyclone rather well, given a high-resolution initial SST field produced by ROMS after a long spin-up time. Additionally, coupled simulations reproduce more accurate (less intense) sea surface heat fluxes and a cyclone track and intensity, compared with a multi-physics ensemble of standalone atmospheric simulations. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Figure 1

31 pages, 15615 KiB  
Article
Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations
by Ioannis Pytharoulis, Stergios Kartsios, Ioannis Tegoulias, Haralambos Feidas, Mario Marcello Miglietta, Ioannis Matsangouras and Theodore Karacostas
Atmosphere 2018, 9(11), 436; https://doi.org/10.3390/atmos9110436 - 09 Nov 2018
Cited by 24 | Viewed by 4628
Abstract
The accurate prediction of Mediterranean tropical-like cyclones, or medicanes, is an important challenge for numerical weather prediction models due to their significant adverse impact on the environment, life, and property. The aim of this study is to investigate the sensitivity of an intense [...] Read more.
The accurate prediction of Mediterranean tropical-like cyclones, or medicanes, is an important challenge for numerical weather prediction models due to their significant adverse impact on the environment, life, and property. The aim of this study is to investigate the sensitivity of an intense medicane, which formed south of Sicily on 7 November 2014, to the microphysical, cumulus, and boundary/surface layer schemes. The non-hydrostatic Weather Research and Forecasting model (version 3.7.1) is employed. A symmetric cyclone with a deep warm core, corresponding to a medicane, develops in all of the experiments, except for the one with the Thompson microphysics. There is a significant sensitivity of different aspects of the simulated medicane to the physical parameterizations. Its intensity is mainly influenced by the boundary/surface layer scheme, while its track is mainly influenced by the representation of cumulus convection, and its duration is mainly influenced by microphysical parameterization. The modification of the drag coefficient and the roughness lengths of heat and moisture seems to improve its intensity, track, and duration. The parameterization of shallow convection, with explicitly resolved deep convection, results in a weaker medicane with a shorter lifetime. An optimum combination of physical parameterizations in order to simulate all of the characteristics of the medicane does not seem to exist. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Graphical abstract

16 pages, 1008 KiB  
Article
A Climatological Study of Western Mediterranean Medicanes in Numerical Simulations with Explicit and Parameterized Convection
by Francesco Ragone, Monica Mariotti, Antonio Parodi, Jost Von Hardenberg and Claudia Pasquero
Atmosphere 2018, 9(10), 397; https://doi.org/10.3390/atmos9100397 - 11 Oct 2018
Cited by 19 | Viewed by 3541
Abstract
The semi-enclosed Mediterranean basin, surrounded by high mountains, is placed in a favorable location for cyclonic storms development. Most of these are extratropical cyclones of baroclinic and orographic origin, but occasionally, some low pressure systems may develop to assume features characteristic of tropical [...] Read more.
The semi-enclosed Mediterranean basin, surrounded by high mountains, is placed in a favorable location for cyclonic storms development. Most of these are extratropical cyclones of baroclinic and orographic origin, but occasionally, some low pressure systems may develop to assume features characteristic of tropical cyclones. Medicanes (MEDIterranean hurriCANES) are infrequent and small-sized tropical-like cyclones. They originate and develop over sea, and are associated with strong winds and heavy precipitations. Proper definitions and classifications for Medicanes are still partially lacking, and systematic climatic studies have appeared only in recent years. In this work, we provide climatologies of Medicanes in the Western Mediterranean basin based on multidecadal runs performed with the Weather Research and Forecasting regional model with different resolutions and setups. The detection of Medicanes is based on a cyclone tracking algorithm and on the methodology of Hart cyclone phase space diagrams. We compare the statistics of Medicanes in the historical period 1979–1998 between runs at a resolution of 11 km with different convective parameterizations and microphysics schemes and one run at a resolution of 4 km with explicitly resolved convection. We show how different convective parameterization schemes lead to different statistics of Medicanes, while the use of different microphysical schemes impacts the length of the cyclone trajectories. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Figure 1

17 pages, 5853 KiB  
Article
Influence of Wave State and Sea Spray on the Roughness Length: Feedback on Medicanes
by Umberto Rizza, Elisa Canepa, Antonio Ricchi, Davide Bonaldo, Sandro Carniel, Mauro Morichetti, Giorgio Passerini, Laura Santiloni, Franciano Scremin Puhales and Mario Marcello Miglietta
Atmosphere 2018, 9(8), 301; https://doi.org/10.3390/atmos9080301 - 01 Aug 2018
Cited by 26 | Viewed by 4795
Abstract
Occasionally, storms that share many features with tropical cyclones, including the presence of a quasi-circular “eye” a warm core and strong winds, are observed in the Mediterranean. Generally, they are known as Medicanes, or tropical-like cyclones (TLC). Due to the intense wind forcings [...] Read more.
Occasionally, storms that share many features with tropical cyclones, including the presence of a quasi-circular “eye” a warm core and strong winds, are observed in the Mediterranean. Generally, they are known as Medicanes, or tropical-like cyclones (TLC). Due to the intense wind forcings and the consequent development of high wind waves, a large number of sea spray droplets—both from bubble bursting and spume tearing processes—are likely to be produced at the sea surface. In order to take into account this process, we implemented an additional Sea Spray Source Function (SSSF) in WRF-Chem, model version 3.6.1, using the GOCART (Goddard Chemistry Aerosol Radiation and Transport) aerosol sectional module. Traditionally, air-sea momentum fluxes are computed through the classical Charnock relation that does not consider the wave-state and sea spray effects on the sea surface roughness explicitly. In order to take into account these forcing, we implemented a more recent parameterization of the sea surface aerodynamic roughness within the WRF surface layer model, which may be applicable to both moderate and high wind conditions. The implemented SSSF and sea surface roughness parameterization have been tested using an operative model sequence based on COAWST (Coupled Ocean Atmosphere Wave Sediment Transport) and WRF-Chem. The third-generation wave model SWAN (Simulating Waves Nearshore), two-way coupled with the WRF atmospheric model in the COAWST framework, provided wave field parameters. Numerical simulations have been integrated with the WRF-Chem chemistry package, with the aim of calculating the sea spray generated by the waves and to include its effect in the Charnock roughness parametrization together with the sea state effect. A single case study is performed, considering the Medicane that affected south-eastern Italy on 26 September 2006. Since this Medicane is one of the most deeply analysed in literature, its investigation can easily shed some light on the feedbacks between sea spray and drag coefficients. Full article
(This article belongs to the Special Issue Mediterranean Tropical-Like Cyclones (Medicanes))
Show Figures

Graphical abstract

Back to TopTop