Special Issue "Genetic and Functional Diversity of Microorganisms"

Quicklinks

A special issue of Diversity (ISSN 1424-2818).

Deadline for manuscript submissions: closed (30 June 2011)

Special Issue Editor

Guest Editor
Dr. Ipek Kurtboke

Senior Lecturer in Environmental Microbiology, School of Science, Education and Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
Website | E-Mail
Phone: +61 7 5430 2819
Fax: +61 (07) 5430 2881
Interests: microbial diversity; microbial systematics; ecophysiology of microorganisms; functional diversity of microorganisms; microbial ecosystems

Special Issue Information

Dear Colleagues,

Advanced molecular analyses indicate that there is still unexplored microbial diversity to be mined in ecosystems. Information revealed through microbial diversity measurements based on genetic variability, population size, distribution and function of targeted species within microbial communities can now bring about a new level of understanding of the interactions in microbial ecosystems. The availability of such information is also crucial in the design of sustainable environmental strategies.

Diversity journal dedicates a special issue to the Genetic and functional diversity of microorganisms to explore these aspects. I look forward to your contribution to make it a successful collection of papers.

Dr. Ipek Kurtboke
Guest Editor

Related Journal

  • Genes - an Open Access journal of genetics and genomics.

Keywords

  • microbial diversity
  • functional diversity
  • microbial metabolic diversity
  • genetic diversity of microorganisms
  • microbial ecosystems
  • microbial systematics
  • microbial ecosystem mining

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle New Armenian Wood-Associated Coprinoid Mushrooms: Coprinopsis strossmayeri and Coprinellus aff. radians
Diversity 2011, 3(1), 136-154; doi:10.3390/d3010136
Received: 24 January 2011 / Revised: 22 February 2011 / Accepted: 23 February 2011 / Published: 7 March 2011
PDF Full-text (1135 KB) | HTML Full-text | XML Full-text
Abstract
Coprinoid mushrooms grown on wood of broad-leaf species were collected for the first time in Armenia and dikaryotic mycelial cultures were established. ITS (internal transcribed spacer) sequences identified one species as Coprinopsis strossmayeri and the other as a species closely related to Coprinellus
[...] Read more.
Coprinoid mushrooms grown on wood of broad-leaf species were collected for the first time in Armenia and dikaryotic mycelial cultures were established. ITS (internal transcribed spacer) sequences identified one species as Coprinopsis strossmayeri and the other as a species closely related to Coprinellus radians. Mycelial growth and morphological features on different media are described. The pearl-white-silky colonies of C. strossmayeri are characterized by mycelial strands and by a light-yellow agar colorization. The species forms chlamydospores intercalary in its hyphae. Some hyphal ends form hyphal loops. Colonies of C. aff. radians have a characteristic yellow pigmentation and stain the agar yellowish. Hyphae are mostly clampless but at some septa, pseudoclamps are seen from which side-branches develop growing along the parental hyphae. In the mycelium of C. aff. radians, hyphal loops, hyphal swellings, cystidia and typical allocysts were observed. Both new species from Armenia show growth optima at temperatures of 25 to 30 °C and pHs of 6.0 to 7.0. Both grow in alkaline conditions up to pH 12.0 but not at pHs 3.0 and 4.0, classifying them with other coprinoid mushrooms as “ammonia fungi”. Both species grew on a variety of lignocellulosic substrates and both show polyphenol oxidase activities. Full article
(This article belongs to the Special Issue Genetic and Functional Diversity of Microorganisms)
Figures

Open AccessArticle Multilocus Sequence Typing Reveals Relevant Genetic Variation and Different Evolutionary Dynamics among Strains of Xanthomonas arboricola pv. juglandis
Diversity 2010, 2(11), 1205-1222; doi:10.3390/d2111205
Received: 14 October 2010 / Revised: 11 November 2010 / Accepted: 16 November 2010 / Published: 22 November 2010
Cited by 6 | PDF Full-text (1569 KB) | HTML Full-text | XML Full-text
Abstract
Forty-five Xanthomonas arboricola pv. juglandis (Xaj) strains originating from Juglans regia cultivation in different countries were molecularly typed by means of MultiLocus Sequence Typing (MLST), using acnB, gapA, gyrB and rpoD gene fragments. A total of 2.5 kilobases was
[...] Read more.
Forty-five Xanthomonas arboricola pv. juglandis (Xaj) strains originating from Juglans regia cultivation in different countries were molecularly typed by means of MultiLocus Sequence Typing (MLST), using acnB, gapA, gyrB and rpoD gene fragments. A total of 2.5 kilobases was used to infer the phylogenetic relationship among the strains and possible recombination events. Haplotype diversity, linkage disequilibrium analysis, selection tests, gene flow estimates and codon adaptation index were also assessed. The dendrograms built by maximum likelihood with concatenated nucleotide and amino acid sequences revealed two major and two minor phylotypes. The same haplotype was found in strains originating from different continents, and different haplotypes were found in strains isolated in the same year from the same location. A recombination breakpoint was detected within the rpoD gene fragment. At the pathovar level, the Xaj populations studied here are clonal and under neutral selection. However, four Xaj strains isolated from walnut fruits with apical necrosis are under diversifying selection, suggesting a possible new adaptation. Gene flow estimates do not support the hypothesis of geographic isolation of the strains, even though the genetic diversity between the strains increases as the geographic distance between them increases. A triplet deletion, causing the absence of valine, was found in the rpoD fragment of all 45 Xaj strains when compared with X. axonopodis pv. citri strain 306. The codon adaptation index was high in all four genes studied, indicating a relevant metabolic activity. Full article
(This article belongs to the Special Issue Genetic and Functional Diversity of Microorganisms)
Figures

Review

Jump to: Research

Open AccessReview Response of Mycorrhizal Diversity to Current Climatic Changes
Diversity 2011, 3(1), 8-90; doi:10.3390/d3010008
Received: 4 December 2010 / Accepted: 26 January 2011 / Published: 28 January 2011
Cited by 12 | PDF Full-text (1519 KB) | HTML Full-text | XML Full-text
Abstract
Form and function of mycorrhizas as well as tracing the presence of the mycorrhizal fungi through the geological time scale are herein first addressed. Then mycorrhizas and plant fitness, succession, mycorrhizas and ecosystem function, and mycorrhizal resiliency are introduced. From this, four hypotheses
[...] Read more.
Form and function of mycorrhizas as well as tracing the presence of the mycorrhizal fungi through the geological time scale are herein first addressed. Then mycorrhizas and plant fitness, succession, mycorrhizas and ecosystem function, and mycorrhizal resiliency are introduced. From this, four hypotheses are drawn: (1) mycorrhizal diversity evolved in response to changes in Global Climate Change (GCC) environmental drivers, (2) mycorrhizal diversity will be modified by present changes in GCC environmental drivers, (3) mycorrhizal changes in response to ecological drivers of GCC will in turn modify plant, community, and ecosystem responses to the same, and (4) Mycorrhizas will continue to evolve in response to present and future changes in GCC factors. The drivers of climate change examined here are: CO2 enrichment, temperature rise, altered precipitation, increased N-deposition, habitat fragmentation, and biotic invasion increase. These impact the soil-rhizosphere, plant and fungal physiology and/or ecosystem(s) directly and indirectly. Direct effects include changes in resource availability and change in distribution of mycorrhizas. Indirect effects include changes in below ground allocation of C to roots and changes in plant species distribution. GCC ecological drivers have been partitioned into four putative time frames: (1) Immediate (1–2 years) impacts, associated with ecosystem fragmentation and habitat loss realized through loss of plant-hosts and disturbance of the soil; (2) Short-term (3–10 year) impacts, resultant of biotic invasions of exotic mycorrhizal fungi, plants and pests, diseases and other abiotic perturbations; (3) Intermediate-term (11–20 year) impacts, of cumulative and additive effects of increased N (and S) deposition, soil acidification and other pollutants; and (4) Long-term (21–50+ year) impacts, where increased temperatures and CO2 will destabilize global rainfall patterns, soil properties and plant ecosystem resilience. Due to dependence on their host for C-supply, orchid mycorrhizas and all heterotrophic mycorrhizal groups will be immediately impacted through loss of habitat and plant-hosts. Ectomycorrhizal (ECM) associations will be the principal group subject to short-term impacts, along with Ericoid mycorrhizas occurring in high altitude or high latitude ecosystems. This is due to susceptibility (low buffer capacity of soils) of many of the ECM systems and that GCC is accentuated at high latitudes and altitudes. Vulnerable mycorrhizal types subject to intermediate-term GCC changes include highly specialized ECM species associated with forest ecosystems and finally arbuscular mycorrhizas (AM) associated with grassland ecosystems. Although the soils of grasslands are generally well buffered, the soils of arid lands are highly buffered and will resist even fairly long term GCC impacts, and thus these arid, largely AM systems will be the least affect by GCC. Once there are major perturbations to the global hydrological cycle that change rainfall patterns and seasonal distributions, no aspect of the global mycorrhizal diversity will remain unaffected. Full article
(This article belongs to the Special Issue Genetic and Functional Diversity of Microorganisms)
Figures

Journal Contact

MDPI AG
Diversity Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
diversity@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Diversity
Back to Top