Natural Fiber-Reinforced Hybrid Composites

A special issue of Fibers (ISSN 2079-6439).

Deadline for manuscript submissions: closed (15 June 2019) | Viewed by 43899

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor
Department of Engineering, University of Palermo, Viale delle Scienze ed.6, 90128 Palermo, Italy
Interests: natural fibres; polymer composites; biobased materials; hybrid composites; fiber-matrix adhesion; structural joints; mechanical properties
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the last decades, natural fibers have received growing attention as an alternative to the synthetic fibers for the reinforcement of polymeric composites, thanks to their specific properties, low price, health advantages, renewability, and recyclability. Furthermore, natural fibers have a CO2-neutral life cycle, in contrast to their synthetic counterparts.

As widely known, natural fibers possess also some drawbacks, e.g., a hydrophilic nature, low and variable mechanical properties, poor adhesion to polymeric matrices, high susceptibility to moisture absorption, low aging resistance, etc. This implies that their applications are limited to non-structural interior products. To overcome this problem, the hybridization of natural fibers with synthetic ones (i.e., glass, carbon, and basalt) or different natural fibers can be a solution. For this reason, extensive research concerning natural–synthetic and natural–natural hybrid composites has been done in the last years.

The goal of this Special Issue is to gather contributions on the last developments related to the effects of hybridization on the properties of natural fiber-reinforced composites (e.g., mechanical performances, thermal behavior, aging tolerance in humid or aggressive environments, and so on).

I hope that this Special Issue will provide to the scientific community a thorough overview of the current research on the hybridization of natural fibers.

Dr. Vincenzo Fiore
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fibers is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Natural fibers
  • Polymeric composites
  • Hybrid composites
  • Fiber–matrix adhesion
  • Fiber treatments
  • Long-term durability
  • Water absorption

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 4451 KiB  
Article
Effects of Hybridisation on the Low Velocity Falling Weight Impact and Flexural Properties of Flax-Carbon/Epoxy Hybrid Composites
by Matthew Chapman and Hom Nath Dhakal
Fibers 2019, 7(11), 95; https://doi.org/10.3390/fib7110095 - 24 Oct 2019
Cited by 27 | Viewed by 5066
Abstract
The trend of research and adoption of natural plant-based fibre reinforced composites is increasing, with traditional synthetic fibres such as carbon and glass experiencing restrictions placed on their manufacture and use by legislative bodies due to their environmental impact through the entire product [...] Read more.
The trend of research and adoption of natural plant-based fibre reinforced composites is increasing, with traditional synthetic fibres such as carbon and glass experiencing restrictions placed on their manufacture and use by legislative bodies due to their environmental impact through the entire product life cycle. Finding suitable alternatives to lightweight and high-performance synthetic composites will be of benefit to the automotive, marine and aerospace industries. This paper investigates the low-velocity impact (LVI) and flexural properties and damage characteristics of flax-carbon/epoxy hybrid composites to be used in structural lightweight applications. LVI, for example, is analogous to several real-life situations, such as damage during manufacture, feasibly due to human error such as the dropping of tools and mishandling of the finished product, debris strikes of aircraft flight, or even the collision of a vessel with another. Carbon fibre has been hybridised with flax fibres to achieve enhanced impact and flexural performance. The failure mechanisms of woven flax and flax-carbon epoxy hybrid composites have been further analysed using Scanning Electron Microscopy (SEM). It was observed from the experimental results that carbon fibre hybridisation has a significant effect on the impact and flexural properties and their damage modes. The results obtained from this study exhibited that the flexural strength and modulus of plain flax/epoxy composite increase significantly from 95.66 MPa to 425.87 MPa and 4.78 GPa to 17.90 GPa, respectively, with carbon fibre hybridisation. This significant improvement in flexural properties would provide designers with important information to make informed decisions during material selection for lightweight structural applications. Full article
(This article belongs to the Special Issue Natural Fiber-Reinforced Hybrid Composites)
Show Figures

Figure 1

9 pages, 1995 KiB  
Article
Tensile Behavior of Unidirectional Bamboo/Coir Fiber Hybrid Composites
by Le Quan Ngoc Tran, Carlos Fuentes, Ignace Verpoest and Aart Willem Van Vuure
Fibers 2019, 7(7), 62; https://doi.org/10.3390/fib7070062 - 10 Jul 2019
Cited by 12 | Viewed by 6651
Abstract
Natural fibers, such as bamboo, flax, hemp, and coir, are usually different in terms of microstructure and chemical composition. The mechanical properties of natural fibers strongly depend on the organization of cell walls and the cellulose micro-fibril angle in the dominant cell wall [...] Read more.
Natural fibers, such as bamboo, flax, hemp, and coir, are usually different in terms of microstructure and chemical composition. The mechanical properties of natural fibers strongly depend on the organization of cell walls and the cellulose micro-fibril angle in the dominant cell wall layers. Bamboo, flax, and hemp are known for high strength and stiffness, while coir has high elongation to failure. Based on the unique properties of the fibers, fiber hybridization is expected to combine the advantages of different natural fibers for composite applications. In this paper, a study on bamboo/coir fiber hybrid composites was carried out to investigate the hybrid effect of tough coir fibers and brittle bamboo fibers in the composites. The tensile behavior of unidirectional composites of bamboo fibers, coir fibers, and hybrid bamboo/coir fibers with a thermoplastic matrix was studied. The correlation between the tensile properties of the fibers and of the hybrid composites was analyzed to understand the hybrid effects. In addition, the failure mode and fracture morphology of the hybrid composites were examined. The results suggested that, with a low bamboo fiber fraction, a positive hybrid effect with an increase of composite strain to failure was obtained, which can be attributed to the high strain to failure of the coir fibers; the bamboo fibers provided high stiffness and strength to the composites. Full article
(This article belongs to the Special Issue Natural Fiber-Reinforced Hybrid Composites)
Show Figures

Figure 1

10 pages, 2682 KiB  
Article
Bio-Polyamide 11 Hybrid Composites Reinforced with Basalt/Flax Interwoven Fibers: A Tough Green Composite for Semi-Structural Applications
by Pietro Russo, Giorgio Simeoli, Libera Vitiello and Giovanni Filippone
Fibers 2019, 7(5), 41; https://doi.org/10.3390/fib7050041 - 06 May 2019
Cited by 28 | Viewed by 6006
Abstract
Intraply hybrid green composites were prepared by film stacking and hot-pressing of bio-based polyamide 11 (PA11) sheets and commercial hybrid fabrics made by interweaving flax and basalt fibers (2/2 twill structure). Two matrices were considered, one of them containing a plasticizing agent. After [...] Read more.
Intraply hybrid green composites were prepared by film stacking and hot-pressing of bio-based polyamide 11 (PA11) sheets and commercial hybrid fabrics made by interweaving flax and basalt fibers (2/2 twill structure). Two matrices were considered, one of them containing a plasticizing agent. After preliminary thermal and rheological characterizations of the neat matrices, the laminates were studied in terms of flexural properties at low and high deformation rates, and the results were interpreted in the light of morphological analyses (scanning electron and optical microscopy). Despite the poor interfacial adhesion detected for all investigated composite samples, the latter exhibited a good combination of flexural strength, modulus, and impact resistance. Such well-balanced mechanical properties make the studied samples potential candidates for semi-structural applications, e.g., in the transportation sector. Full article
(This article belongs to the Special Issue Natural Fiber-Reinforced Hybrid Composites)
Show Figures

Figure 1

16 pages, 15900 KiB  
Article
Quasi-Static and Low-Velocity Impact Behavior of Intraply Hybrid Flax/Basalt Composites
by Fabrizio Sarasini, Jacopo Tirillò, Luca Ferrante, Claudia Sergi, Pietro Russo, Giorgio Simeoli, Francesca Cimino, Maria Rosaria Ricciardi and Vincenza Antonucci
Fibers 2019, 7(3), 26; https://doi.org/10.3390/fib7030026 - 22 Mar 2019
Cited by 23 | Viewed by 6939
Abstract
In an attempt to increase the low-velocity impact response of natural fiber composites, a new hybrid intraply woven fabric based on flax and basalt fibers has been used to manufacture laminates with both thermoplastic and thermoset matrices. The matrix type (epoxy or polypropylene [...] Read more.
In an attempt to increase the low-velocity impact response of natural fiber composites, a new hybrid intraply woven fabric based on flax and basalt fibers has been used to manufacture laminates with both thermoplastic and thermoset matrices. The matrix type (epoxy or polypropylene (PP) with or without a maleated coupling agent) significantly affected the absorbed energy and the damage mechanisms. The absorbed energy at perforation for PP-based composites was 90% and 50% higher than that of epoxy and compatibilized PP composites, respectively. The hybrid fiber architecture counteracted the influence of low transverse strength of flax fibers on impact response, irrespective of the matrix type. In thermoplastic laminates, the matrix plasticization delayed the onset of major damage during impact and allowed a better balance of quasi-static properties, energy absorption, peak force, and perforation energy compared to epoxy-based composites. Full article
(This article belongs to the Special Issue Natural Fiber-Reinforced Hybrid Composites)
Show Figures

Figure 1

10 pages, 2499 KiB  
Article
Mechanical, Degradation and Water Uptake Properties of Fabric Reinforced Polypropylene Based Composites: Effect of Alkali on Composites
by Mohammad Bellal Hoque, Solaiman, A.B.M. Hafizul Alam, Hasan Mahmud and Asiqun Nobi
Fibers 2018, 6(4), 94; https://doi.org/10.3390/fib6040094 - 06 Dec 2018
Cited by 22 | Viewed by 5728
Abstract
In this study, a fabric was manufactured consisting of 50% pineapple, 25% jute and 25% cotton fibers by weight, to make composites using polypropylene (PP) as a matrix material. We used compression molding technique, which kept 30% of the fabric content by total [...] Read more.
In this study, a fabric was manufactured consisting of 50% pineapple, 25% jute and 25% cotton fibers by weight, to make composites using polypropylene (PP) as a matrix material. We used compression molding technique, which kept 30% of the fabric content by total weight as the composite. The tensile strength (TS), tensile modulus (TM), elongation break (Eb%), bending strength (BS) and bending modulus (BM) were investigated. From analyzed data, it was found that the composite values of TS, TM, Eb%, BS and BM were 58 MPa, 867 MPa, 22.38%, 42 MPa and 495 MPa, respectively. The TS, TM, Eb%, BS and BM of the neat polypropylene sheet were 28 MPa, 338 MPa, 75%, 20 MPa and 230 MPa, respectively. Due to fabric reinforcement, composite values for TS, TM, BS and BM increased 107%, 156%, 110% and 115%, respectively in comparison with a polypropylene sheet. A water absorption test was performed by dipping the composite samples in deionized water and it was noticed that water absorption was lower for PP-based composites. For investigating the effect of alkali, we sunk the composites in a solution containing 3%, 5% and 7% sodium hydroxide alkali solutions by weight, for 60 min after which their mechanical properties were investigated. A degradation test was carried out by putting the samples in soil for six months and it was noticed that the mechanical properties of fabric/PP composites degraded slowly. Full article
(This article belongs to the Special Issue Natural Fiber-Reinforced Hybrid Composites)
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 1418 KiB  
Review
Jute Based Bio and Hybrid Composites and Their Applications
by Muhammad Ahsan Ashraf, Mohammed Zwawi, Muhammad Taqi Mehran, Ramesh Kanthasamy and Ali Bahadar
Fibers 2019, 7(9), 77; https://doi.org/10.3390/fib7090077 - 28 Aug 2019
Cited by 51 | Viewed by 12533
Abstract
The popularity of jute-based bio and hybrid composites is mainly due to an increase in environmental concerns and pollution. Jute fibers have low cost, high abundance, and reasonable mechanical properties. Research in all-natural fibers and composites have increased exponentially due to the environment [...] Read more.
The popularity of jute-based bio and hybrid composites is mainly due to an increase in environmental concerns and pollution. Jute fibers have low cost, high abundance, and reasonable mechanical properties. Research in all-natural fibers and composites have increased exponentially due to the environment concerns of the hazards of synthetic fibers-based composites. Jute based bio and hybrid composites have been extensively used in number of applications. Hybrid jute-based composites have enhanced mechanical and physical properties, reasonably better than jute fiber composites. A detailed analysis of jute-based bio and hybrid composites was carried out in this review. The primary aim of this review paper is to provide a critical analysis and to discuss all recent developments in jute-based composites. The content covers different aspects of jute-based composites, including their mechanical and physical properties, structure, morphology, chemical composition, fiber modification techniques, surface treatments, jute based hybrid composites, limitations, and applications. Jute-based composites are currently being used in a vast number of applications such as in textiles, construction, cosmetics, medical, packaging, automobile, and furniture industries. Full article
(This article belongs to the Special Issue Natural Fiber-Reinforced Hybrid Composites)
Show Figures

Graphical abstract

Back to TopTop