Fire Effects and Management in Forests

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Forest Ecology and Management".

Deadline for manuscript submissions: closed (30 June 2019) | Viewed by 31188

Special Issue Editor


E-Mail Website
Guest Editor
Department of Plant Production and Agricultural Technology, University of Castilla la Mancha, 02071 Albacete, Spain
Interests: fire vulnerability; landscape resilience; fire restoration; soil effects; vegetation dynamics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The increasing risk of fires and the loss of diversity and soil degradation, especially in areas with a Mediterranean climate, might be controlled through the application of different forest management strategies. There are many ways to respond after a wildfire, ranging from allowing nature to act, to providing generalized assistance in burned areas. In this context, a Special Issue is suggested that will consider the evaluation of post-fire natural regeneration and the effects of fire, short/medium-term monitoring of natural regeneration and soil and vegetation treatment techniques, the reproductive capacity of natural post-fire regeneration in resilient species, and the role of forests as a fundamental part of the carbon cycle. This includes different post-fire responses to fires with differing degrees of severity, the theoretical and practical concept of forest vulnerability to fire, and the consideration of post-fire forest management as a useful tool for the modification of the stand structure as well as the optimization of economic return, biodiversity, recreational value and the micro-environment. The cost-effectiveness of different post-fire treatment techniques is also not well known. Furthermore, the identification and study of areas at the wildland–urban interface (WUI) that are affected by fires poses a significant challenge to understanding the effects of forest fires from a socio-economic and ecological point of view.

Prof. Dr. Jorge Antonio de las Heras Ibáñez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • wildfires
  • severity
  • management
  • vulnerability

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 1509 KiB  
Article
Ground-Dwelling Arthropod Community Responses to Recent and Repeated Wildfires in Conifer Forests of Northern New Mexico, USA
by Scott Ferrenberg, Philipp Wickey and Jonathan D. Coop
Forests 2019, 10(8), 667; https://doi.org/10.3390/f10080667 - 08 Aug 2019
Cited by 13 | Viewed by 3440
Abstract
The increasing frequency and severity of wildfires in semi-arid conifer forests as a result of global change pressures has raised concern over potential impacts on biodiversity. Ground-dwelling arthropod communities represent a substantial portion of diversity in conifer forests, and could be particularly impacted [...] Read more.
The increasing frequency and severity of wildfires in semi-arid conifer forests as a result of global change pressures has raised concern over potential impacts on biodiversity. Ground-dwelling arthropod communities represent a substantial portion of diversity in conifer forests, and could be particularly impacted by wildfires. In addition to direct mortality, wildfires can affect ground-dwelling arthropods by altering understory characteristics and associated deterministic community assembly processes (e.g., environmental sorting). Alternatively, disturbances have been reported to increase the importance of stochastic community assembly processes (e.g., probabilistic dispersal and colonization rates). Utilizing pitfall traps to capture ground-dwelling arthropods within forest stands that were burned by one or two wildfires since 1996 in the Jemez Mountains of northern New Mexico, United States (USA), we examined the potential influences of deterministic versus stochastic processes on the assembly of these diverse understory communities. Based on family-level and genera-level arthropod identifications, we found that the multivariate community structures differed among the four fire groups surveyed, and were significantly influenced by the quantities of duff, litter, and coarse woody debris, in addition to tree basal area and graminoid cover. Taxon diversity was positively related to duff quantities, while taxon turnover was positively linked to exposed-rock cover and the number of logs on the ground. Despite the significant effects of these understory properties on the arthropod community structure, a combination of null modeling and metacommunity analysis revealed that both deterministic and stochastic processes shape the ground-dwelling arthropod communities in this system. However, the relative influence of these processes as a function of time since the wildfires or the number of recent wildfires was not generalizable across the fire groups. Given that different assembly processes shaped arthropod communities among locations that had experienced similar disturbances over time, increased efforts to understand the processes governing arthropod community assembly following disturbance is required in this wildfire-prone landscape. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Figure 1

17 pages, 3614 KiB  
Article
Drivers of Wildfire Occurrence Patterns in the Inland Riverine Environment of New South Wales, Australia
by Yang Zhang and Samsung Lim
Forests 2019, 10(6), 524; https://doi.org/10.3390/f10060524 - 24 Jun 2019
Cited by 5 | Viewed by 3864
Abstract
In the inland riverine environment of Australia, wildfires not only threaten human life and cause economic loss but also make distinctive impacts on the ecosystem (e.g., injuring or killing fire-sensitive wetland species such as the river red gum). Understanding the drivers of wildfire [...] Read more.
In the inland riverine environment of Australia, wildfires not only threaten human life and cause economic loss but also make distinctive impacts on the ecosystem (e.g., injuring or killing fire-sensitive wetland species such as the river red gum). Understanding the drivers of wildfire occurrence patterns in this particular environment is vital for fire-risk reduction and ecologically sustainable management. This study investigated patterns and driving factors of wildfire occurrence over the years from 2001 to 2016 and across the New South Wales side of the Riverina bioregion. Descriptive analyses were conducted for fires of different causes and that burned different vegetation types. Logistic regression models were developed by incorporating factors that provide information on weather, climate, fuel, topography and ignition sources. Analyses revealed that most fires occurred in summer, with human-caused fires primarily in spring and summer, and natural fires in summer. Summer was the most fire-prone season in forested wetlands, whereas fires in drylands mostly occurred during spring and summer. Fire probabilities were higher under severe weather conditions, in areas with higher annual rainfall, in forested wetlands and in areas with intermediate inundation frequencies. Special attention needs to be paid to the effects of vegetation type and inundation frequency on fire occurrence. Weather, climate&fuel and ignition sources were comparably important in explaining human-caused fire occurrence, whereas weather was more important than climate&fuel in explaining natural fire occurrence. Understandings obtained from this study can potentially support the planning of fire and forest management, as well as to supplement the relatively scarce knowledge on riverine wildfire occurrence. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Figure 1

13 pages, 3325 KiB  
Article
Wildfire and Prescribed Fire Effects on Forest Floor Properties and Erosion Potential in the Central Appalachian Region, USA
by Emma Georgia Thompson, Thomas Adam Coates, Wallace Michael Aust and Melissa A. Thomas-Van Gundy
Forests 2019, 10(6), 493; https://doi.org/10.3390/f10060493 - 08 Jun 2019
Cited by 9 | Viewed by 3563
Abstract
Short- and long-term impacts of wildland fires on forest floor properties and erosion potential were examined at three locations in the Central Appalachian region, U.S.A. In 2018, two wildfires were investigated within six months of burning on the George Washington–Jefferson National Forest (GWJNF) [...] Read more.
Short- and long-term impacts of wildland fires on forest floor properties and erosion potential were examined at three locations in the Central Appalachian region, U.S.A. In 2018, two wildfires were investigated within six months of burning on the George Washington–Jefferson National Forest (GWJNF) in Bland County, Virginia and the Monongahela National Forest (MNF) in Grant County, West Virginia. An additional wildfire was studied eight years post-fire on the Fishburn Forest (FF) in Montgomery County, Virginia. A 2018 prescribed fire was also studied within six months of burning on the MNF in Pendleton County, West Virginia. Litter and duff consumption were examined to evaluate fire severity and char heights were measured to better understand fire intensity. The Universal Soil Loss Equation for forestlands (USLE-Forest) was utilized to estimate potential erosion values. For the 2018 comparisons, litter depth was least as a result of the wildfires on both the MNF and GWJNF (p < 0.001). Wildfire burned duff depths in 2018 did not differ from unburned duff depths on either the MNF or GWJNF. Eight years after the FF wildfire, post-fire litter depth was less than that of an adjacent non-burned forest (p = 0.29) and duff depth was greater than that of an adjacent non-burned forest (p = 0.76). Mean GWJNF wildfire char heights were greatest of all disturbance regimes at 10.0 m, indicating high fire intensity, followed by the MNF wildfire and then the MNF prescribed fire. USLE-Forest potential erosion estimates were greatest on the MNF wildfire at 21.6 Mg soil ha−1 year−1 due to slope steepness. The next largest USLE-Forest value was 6.9 Mg soil ha−1 year−1 on the GWJNF wildfire. Both the prescribed fire and the 2010 wildfire USLE-Forest values were approximately 0.00 Mg soil ha−1 year−1. Implications for potential long-term soil erosion resulting from similar wildfires in Central Appalachian forests appeared to be minimal given the 2010 wildfire results. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Figure 1

16 pages, 2626 KiB  
Article
Wildfire Alters Spatial Patterns of Available Soil Nitrogen and Understory Environments in a Valley Boreal Larch Forest
by Jianjian Kong, Jian Yang, Bo Liu and Lin Qi
Forests 2019, 10(2), 95; https://doi.org/10.3390/f10020095 - 25 Jan 2019
Cited by 5 | Viewed by 2802
Abstract
Wildfire, a primary natural disturbance in many forests, affects soil nutrient availability and spatial distributions of forest plants. However, post-fire changes in soil nutrients and spatial patterns of understory environments at fine scales are poorly understood. Here, we characterized spatial patterns of soil [...] Read more.
Wildfire, a primary natural disturbance in many forests, affects soil nutrient availability and spatial distributions of forest plants. However, post-fire changes in soil nutrients and spatial patterns of understory environments at fine scales are poorly understood. Here, we characterized spatial patterns of soil nitrogen availability and site characteristics at a 3-year-post-fire and an unburned site in a valley boreal larch forest. We also examined the relationship between soil nitrogen availability and site characteristics. The results showed that the burned site had higher NO3 and lower NH4+ than the control. The herb, litter and coarse wood debris cover was greater at the burned site than at the control site with higher soil pH, depth of the organic horizon (DOH) and shrub cover. Relative variability (coefficient of variation) in soil nitrogen and site characteristic variables at the control site was greater than at the burned site except for shrub and regeneration tree seedling cover. Spatial structure (quantified by semi-variograms) was lacking for soil nitrogen and site characteristic variables except for DOH, herb and shrub cover at the control site, but wildfire created a strong spatial structure for all variables. Shorter spatial autocorrelation ranges of soil nitrogen (1.6–3.5 m) and site characteristic variables (2.6–6.0 m) were detected at the burned site, indicating higher heterogeneity. The spatial scale of soil NH4+ was congruent with those of herb, shrub and regeneration tree seedling cover, indicating local coupling, while that of soil NO3 was not. The number of correlations between soil nitrogen and site characteristic variables in the burned site was greater than in the control. These results indicate that fire could not only create higher heterogeneity patches of soil resources, but also strengthen the local coupling between soil resources and understory vegetation, which may impact the establishment and growth of new individual plants. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Graphical abstract

16 pages, 1278 KiB  
Article
Characteristics of Korean Forest Fires and Forest Fire Policies in the Joseon Dynasty Period (1392–1910) Derived From Historical Records
by Donghyun Kim
Forests 2019, 10(1), 29; https://doi.org/10.3390/f10010029 - 04 Jan 2019
Cited by 7 | Viewed by 5100
Abstract
This study examined the records of forest fire outbreaks and characteristics over the 518 years of the Joseon Dynasty period (1392–1910) through the analysis of major historical records of Korea. The historical books used in this study were 14 major national historical books, [...] Read more.
This study examined the records of forest fire outbreaks and characteristics over the 518 years of the Joseon Dynasty period (1392–1910) through the analysis of major historical records of Korea. The historical books used in this study were 14 major national historical books, and include the Annals of the Joseon Dynasty (朝鮮王朝實錄), the Diaries of the Royal Secretariat (承政院日記), and the literature was examined, centering on official records of the royal palace in the Joseon Dynasty period. The contents of forest fires recorded in the historical record literature include the overviews of outbreak, forest fire types, and forest fire damage. According to the results of analysis of historical records, the largest forest fire damage was in the forest fire that occurred on the east coast in 1672, in which 65 persons died and in the forest fire that occurred in the same area in 1804, in which 61 persons died and 2600 private houses were destroyed by fire. The causes of fire outbreak were shown to be unknown causes in 42 cases, accidental fires in 10 cases, arson in 3 cases, thunder strike in 3 cases, hunting activities in 2 cases, child playing with fire in 1 case, cultivating activities in 1 case, and house fire in 1 case. Forest fire outbreaks were analyzed by region and by season and according to the results, 56% (39 cases) of the forest fires broke out on the east coast and 73% (46 cases) broke out in the spring. Forest fire policies include those for general forests, those for reserved forests, those for prohibited forests, those for capital city forests, those for royal family’s graves, royal ancestral shrine, and placenta chamber, those for hunting grounds such as martial art teaching fields, and relief policies for people in areas damaged by forest fires, forest fire policies for national defense facilities such as beacon fire stations, and burning and burning control policies for pest control. In conclusion, due to the seriousness of forest fires in the Joseon Dynasty period, the royal authority and local administrative agencies made various forest fire prevention policies, policies for stabilization of the people’s livelihood damaged due to forest fires, and methods to manage major facilities in forests. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Graphical abstract

14 pages, 3714 KiB  
Article
Mineral Soil Chemical Properties as Influenced by Long-Term Use of Prescribed Fire with Differing Frequencies in a Southeastern Coastal Plain Pine Forest
by Thomas Adam Coates, Donald L. Hagan, Wallace Michael Aust, Andrew Johnson, John Caleb Keen, Alex T. Chow and James H. Dozier
Forests 2018, 9(12), 739; https://doi.org/10.3390/f9120739 - 27 Nov 2018
Cited by 13 | Viewed by 3314
Abstract
Recent studies suggest increased fire frequency may impair soil chemistry, but few studies have examined long-term effects of repeated, frequent prescribed fires on forest soil properties in the southeastern Coastal Plain, USA. In this study, forest soil chemistry at the 0–10 and 10–20 [...] Read more.
Recent studies suggest increased fire frequency may impair soil chemistry, but few studies have examined long-term effects of repeated, frequent prescribed fires on forest soil properties in the southeastern Coastal Plain, USA. In this study, forest soil chemistry at the 0–10 and 10–20 cm mineral soil depths of sandy surface horizons (Entisols and Spodosols) were compared among units burned 0, 4, 6, and 8 times between 2004 and 2015 and 0 and 20 times between 1978 and 2015 in a longleaf (Pinus palustris Mill.)–loblolly (Pinus taeda L.) pine savanna at the Tom Yawkey Wildlife Center (Georgetown, SC, USA). At the 0–10 cm soil depth, soil pH (p = 0.00), sulfur (p = 0.01), calcium (p = 0.01), iron (p < 0.01), manganese (p < 0.01), and aluminum (p = 0.02) treatment means differed (2004–2015). Calcium and manganese displayed positive, significant relationships and sulfur displayed a negative, significant relationship with increasing fire frequency (p < 0.05). However, correlation of these relationships was low (r2 ≤ 0.23). Using linear contrasts to compare the mean of all fire treatments (20 fires from 1978 to 2015) to the mean of the unburned compartment, sulfur (p = 0.01) and iron (p < 0.01) were less in soils from the burned compartments. At the 10–20 cm soil depth, soil pH (p = 0.01), manganese (p = 0.04), phosphorus (p = 0.01), potassium (p = 0.02), and iron (p < 0.01) treatment means differed (2004–2015). Potassium displayed a negative, significant relationship and soil pH displayed a positive, significant relationship with increasing fire frequency (p < 0.05). Correlation of these relationships was low (r2 ≤ 0.16), however. Using linear contrasts to compare the mean of all fire treatments (20 fires from 1978 to 2015) to the unburned compartment, potassium (p = 0.00) and iron (p < 0.01) were less in soils from burned compartments. These results are inconsistent with studies suggesting that forest soil chemistry is substantially altered by increased fire frequency and support other studies from this region that have documented minimal or temporary soil chemical changes associated with frequent prescribed fires. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Figure 1

19 pages, 4555 KiB  
Article
Assessing the Minimum Number of Time Since Last Fire Sample-Points Required to Estimate the Fire Cycle: Influences of Fire Rotation Length and Study Area Scale
by Xinyuan Wei and Chris P. S. Larsen
Forests 2018, 9(11), 708; https://doi.org/10.3390/f9110708 - 14 Nov 2018
Cited by 11 | Viewed by 3241
Abstract
Boreal forest fire history is typically reconstructed using tree-ring based time since last fire (TSLF) frequency distributions from across the landscape. We employed stochastic landscape fire simulations to assess how large a study area and how many TSLF sample-points are required to estimate [...] Read more.
Boreal forest fire history is typically reconstructed using tree-ring based time since last fire (TSLF) frequency distributions from across the landscape. We employed stochastic landscape fire simulations to assess how large a study area and how many TSLF sample-points are required to estimate the fire cycle (FC) within a given accuracy, and if those requirements change with length of the simulated fire rotation (FRS). FRS is calculated from simulated fire-year maps used to create the TSLF map, and is the “true” measure of fire history that FC estimates should equal. Fire-year maps were created by (i) using a spatially homogenous landscape, (ii) imposing large variations in annual area burned, and (iii) having no age-related change in the hazard of burning. We found that study areas should be ≥3× the size of largest total annual area burned, with smaller-scale areas having a bias that cannot be fixed by employing more samples. For a study area scale of 3×, a FC estimate with an error <10% was obtained with 187 TSLF samples at 0.81 samples per 100 km2. FC estimates were not biased in study area scales that were ≥3×, but smaller-scale areas with a short FRS had an overestimated FC and smaller-scale areas with a long FRS had an underestimated FC. Site specific variations in environmental- and age-related variations in the hazard of burning may require more sample-points; site specific simulations should thus be conducted to determine sample numbers before conducting a TSLF field study. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Figure 1

15 pages, 2823 KiB  
Article
Influence of Fuel Moisture Content, Packing Ratio and Wind Velocity on the Ignition Probability of Fuel Beds Composed of Mongolian Oak Leaves via Cigarette Butts
by Ping Sun, Yunlin Zhang, Long Sun, Haiqing Hu, Futao Guo, Guangyu Wang and Heng Zhang
Forests 2018, 9(9), 507; https://doi.org/10.3390/f9090507 - 22 Aug 2018
Cited by 18 | Viewed by 4352
Abstract
Cigarette butts are an important human firebrand and account for a significant amount of man-made fires. To better address forest fires caused by cigarette butts, the influencing factors governing the ignition probability of cigarette butts can be used to establish a prediction model. [...] Read more.
Cigarette butts are an important human firebrand and account for a significant amount of man-made fires. To better address forest fires caused by cigarette butts, the influencing factors governing the ignition probability of cigarette butts can be used to establish a prediction model. This study obtains the influencing factors of the ignition probability of cigarette butts in order to establish a prediction model by constructing fuel beds composed of Mongolian oak leaves with varied fuel moisture content and packing ratios. A total of 2520 ignition experiments were then conducted by dropping cigarette butts on the fuel beds to test the burning probability of the fuels under varied wind speeds. Moisture content, wind speed, and their interaction significantly influenced ignition probability. In the absence of wind, the ignition probability is zero. The maximum moisture content of Mongolian oak leaves that could be ignited by cigarette butts was 15%. A logistic model and self-built model for predicting the ignition probability were established using these results; the mean absolute error values for the two models were 2.71% and 1.13%, respectively, and the prediction error of the self-built model was lower than that of the logistic model. This is important research to mitigate the threat of forest fires due to cigarette butts given the frequent occurrence of these events. Full article
(This article belongs to the Special Issue Fire Effects and Management in Forests)
Show Figures

Figure 1

Back to TopTop