Urban Pest Management

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: closed (30 June 2017) | Viewed by 67729

Special Issue Editors

Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
Interests: insecticide resistance; insect behavior; insect ecology; pest management; urban insects
Special Issues, Collections and Topics in MDPI journals
Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
Interests: sustainable urban pest management; insecticide resistance and resistance mechanisms

Special Issue Information

Dear Colleagues,

Urban insect pests are becoming increasingly important as urbanization is happening rapidly around the world. It is estimated that some 60% of the world population live in urban areas today. The improvement in socio-economic aspects of the urbanites also has risen the demand for pest management of urban pests. Urban pests affect the people by causing real or perceived medical threats, nuisance and economic losses. New and re-emerging pests, owing to the borderless world, climatic change and changing urban environment have posed new challenges to the urban pest management operation. Novel delivery systems and new management strategies provide promises for more effective and safer management of urban pests. For this special issue, we welcome manuscripts that focus on new advances that will enhance our understanding on urban pest prevalence, pest biology, insecticide resistance, new management strategies, and novel delivery systems.

Dr. Changlu Wang
Dr. Chow-Yang Lee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pest management
  • insecticide resistance
  • insect behavior
  • pest survey

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1993 KiB  
Article
Roadside Survey of Ants on Oahu, Hawaii
by Reina L. Tong, J. Kenneth Grace, Paul D. Krushelnycky and Helen Spafford
Insects 2018, 9(1), 21; https://doi.org/10.3390/insects9010021 - 11 Feb 2018
Cited by 3 | Viewed by 4410
Abstract
Hawaii is home to over 60 ant species, including five of the six most damaging invasive ants. Although there have been many surveys of ants in Hawaii, the last island-wide hand-collection survey of ants on Oahu was conducted in 1988–1994. In 2012, a [...] Read more.
Hawaii is home to over 60 ant species, including five of the six most damaging invasive ants. Although there have been many surveys of ants in Hawaii, the last island-wide hand-collection survey of ants on Oahu was conducted in 1988–1994. In 2012, a timed hand-collection of ants was made at 44 sites in a systematic, roadside survey throughout Oahu. Ants were identified and species distribution in relation to elevation, precipitation and soil type was analyzed. To assess possible convenience sampling bias, 15 additional sites were sampled further from roads to compare with the samples near roads. Twenty-four species of ants were found and mapped; Pheidole megacephala (F.), Ochetellus glaber (Mayr), and Technomyrmex difficilis Forel were the most frequently encountered ants. For six ant species, a logistic regression was performed with elevation, average annual precipitation, and soil order as explanatory variables. O. glaber was found in areas with lower precipitation around Oahu. Paratrechina longicornis (Latrielle) and Tetramorium simillimum (Smith, F.) were found more often in lower elevations and in areas with the Mollisol soil order. Elevation, precipitation, and soil type were not significant sources of variation for P. megacephala, Plagiolepis alluaudi Emery, and T. difficilis. P. megacephala was associated with fewer mean numbers of ants where it occurred. Ant assemblages near and far from roads did not significantly differ. Many species of ants remain established on Oahu, and recent invaders are spreading throughout the island. Mapping ant distributions contributes to continued documentation and understanding of these pests. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

787 KiB  
Article
Effect of Moxidectin on Bed Bug Feeding, Development, Fecundity, and Survivorship
by Chen Zha, Changlu Wang and Johnathan Michael Sheele
Insects 2017, 8(4), 106; https://doi.org/10.3390/insects8040106 - 30 Sep 2017
Cited by 12 | Viewed by 5932
Abstract
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is a blood-feeding ectoparasite which experienced world-wide resurgence during recent decades. The control of bed bugs is often challenging, due to their cryptic nature and resistance to commonly used insecticides. In this study, we [...] Read more.
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), is a blood-feeding ectoparasite which experienced world-wide resurgence during recent decades. The control of bed bugs is often challenging, due to their cryptic nature and resistance to commonly used insecticides. In this study, we evaluated the effect of the antiparasitic drug moxidectin on bed bug survival, reproduction, and development. The LC50 (lethal concentration to kill half the members of a tested population) of moxidectin against bed bug male adults, female adults, and large nymphs were 52.7 (95% CI (confidence interval): 39.5–70.8), 29.3 (95% CI: 20.7–40.5), and 29.1 ng/mL (95% CI: 23.3–35.3), respectively. Moxidectin (≥ 25 ng/mL) reduced egg laying of bed bug females, but showed no significant effect on egg hatching. One time feeding on rabbit blood containing 20 and 40 ng/mL moxidectin showed no negative effects in bed bug feeding and blood meal ingestion, but significantly reduced digestion rates and nymph molting rates. Although moxidectin at concentrations of 20 and 40 ng/mL only caused moderate mortality in bed bugs, it significantly interrupted digestion, development, and oviposition of survived bed bugs for at least one week after feeding. Moxidectin is a promising supplement of the existing bed bug control materials if its use on humans can be approved in the future. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

2383 KiB  
Article
Elimination of Coptotermes lacteus (Froggatt) (Blattodea: Rhinotemitidae) Colonies Using Bistrifluron Bait Applied through In-Ground Bait Stations Surrounding Mounds
by Garry Webb
Insects 2017, 8(3), 98; https://doi.org/10.3390/insects8030098 - 12 Sep 2017
Cited by 6 | Viewed by 3608
Abstract
The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012). Four in-ground bait stations containing timber billets were placed around each of [...] Read more.
The efficacy of bistrifluron termite bait was evaluated using in-ground bait stations placed around Coptotermes lacteus mounds in south-eastern Australia during late summer and autumn (late February to late May 2012). Four in-ground bait stations containing timber billets were placed around each of twenty mounds. Once sufficient numbers of in-ground stations were infested by termites, mounds were assigned to one of four groups (one, two, three or four 120 g bait canisters or 120 to 480 g bait in total per mound) and bait canisters installed. One mound, nominally assigned treatment with two canisters ultimately had no termite interception in any of the four in-ground stations and not treated. Eighteen of the remaining 19 colonies were eliminated by 12 weeks after bait placement, irrespective of bait quantity removed (range 43 to 480 g). Measures of colony decline—mound repair capability and internal core temperature—did not accurately reflect the colony decline, as untreated colonies showed a similar pattern of decline in both repair capability and internal mound core temperature. However, during the ensuing spring–summer period, capacity to repair the mound was restored in untreated colonies and the internal core temperature profile was similar to the previous spring–summer period which indicated that these untreated colonies remained healthy. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

1623 KiB  
Article
A Geometric Analysis of the Regulation of Inorganic Nutrient Intake by the Subterranean Termite Reticulitermes flavipes Kollar
by Timothy M. Judd, James R. Landes, Haruna Ohara and Alex W. Riley
Insects 2017, 8(3), 97; https://doi.org/10.3390/insects8030097 - 06 Sep 2017
Cited by 6 | Viewed by 3854
Abstract
Most studies on termite food selection have focused on a single nutrient per choice, however, termites, like all animals, must balance multiple nutrients in their diet. While most studies that use multi-nutrient approaches focus on macromolecules, the ability to balance the intake of [...] Read more.
Most studies on termite food selection have focused on a single nutrient per choice, however, termites, like all animals, must balance multiple nutrients in their diet. While most studies that use multi-nutrient approaches focus on macromolecules, the ability to balance the intake of inorganic nutrients is also vital to organisms. In this study, we used the geometric framework to test the effects of multiple inorganic nutrients on termite feeding. We presented the subsets of Reticulitermes flavipes colonies with food enriched with varying in levels of KCl, MgSO4, and FePO4. Each trial varied two of the three nutrients while the third nutrient was kept constant. The amount of food consumed was measured over two weeks. The termites’ feeding patterns during the study suggested that they fed until they reached a limit for MgSO4. This result suggests that the termites were using the rule of compromise such that the termites would over consume KCl or FePO4 in order to avoid overeating MgSO4. Thus, the termite colonies are able to regulate the intake of inorganic nutrients, and by doing so, adjust their intake from multiple resources in order to maintain an intake target. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

2986 KiB  
Article
Locomotion Inhibition of Cimex lectularius L. Following Topical, Sublethal Dose Application of the Chitin Synthesis Inhibitor Lufenuron
by Brittany Campbell, Rebecca Baldwin and Philip Koehler
Insects 2017, 8(3), 94; https://doi.org/10.3390/insects8030094 - 01 Sep 2017
Cited by 7 | Viewed by 5757
Abstract
To date, few studies have evaluated chitin synthesis inhibitors against bed bugs, although they would provide an alternative mode of action to circumvent insecticide resistance. Acute and sublethal effects of lufenuron were evaluated against two strains of the common bed bug. Combined acute [...] Read more.
To date, few studies have evaluated chitin synthesis inhibitors against bed bugs, although they would provide an alternative mode of action to circumvent insecticide resistance. Acute and sublethal effects of lufenuron were evaluated against two strains of the common bed bug. Combined acute and sublethal effects were used to calculate effective doses. The dose that was effective against 50% of Harlan strain bed bugs was 0.0081% (w/v), and was much higher against Bradenton strain bed bugs (1.11% w/v). Sublethal doses were chosen to determine the effect that leg abnormalities had on pulling force. Both Harlan and Bradenton strain bed bugs had significantly lower locomotion ability (p < 0.0001) following topical application of lufenuron. The observed sublethal effects that limit locomotion could prevent bed bugs from moving within a domicile and taking a blood meal, subsequently reducing a bed bug population over time. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

2591 KiB  
Article
Insecticides for Suppression of Nylanderia fulva
by Dawn Calibeo, Faith Oi, David Oi and Catharine Mannion
Insects 2017, 8(3), 93; https://doi.org/10.3390/insects8030093 - 31 Aug 2017
Cited by 6 | Viewed by 4441
Abstract
Nylanderia fulva (Mayr) is an invasive ant that is a serious pest in the southern United States. Pest control operators and homeowners are challenged to manage pest populations below acceptable thresholds. Contact and bait insecticides are key components of an Integrated Pest Management [...] Read more.
Nylanderia fulva (Mayr) is an invasive ant that is a serious pest in the southern United States. Pest control operators and homeowners are challenged to manage pest populations below acceptable thresholds. Contact and bait insecticides are key components of an Integrated Pest Management (IPM) strategy, however, little is known about their efficacy. In repellency and efficacy bioassays, N. fulva were not completely repelled by any insecticide tested, although fewer ants crossed a surface treated with Temprid®. Few insecticides provided rapid control. Termidor® and Temprid® were the best performing with mean mortality of 100% in 13.4 and 19.0 days, respectively. In no-choice bait acceptance studies, it was shown that N. fulva generally had greater acceptance of carbohydrate-based ant baits (Advion®, InTiceTM (gel), and InTiceTM (granular)). However, mortality was low for the InTiceTM baits in a 7-day bioassay. Maxforce® Ant Killer Bait Gel and Advance® 375A in the spring and Maxforce® Complete in the summer and fall required the fewest days to reach 100% mortality. Bait active ingredients that resulted in the highest mortality were hydramethylnon and fipronil. These data on the efficacy of commercially available contact and bait insecticides provide valuable information to manage this invasive pest. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

1517 KiB  
Article
Efficacy of Chlorantraniliprole in Controlling Structural Infestations of the Eastern Subterranean Termite in the USA
by Susan C. Jones, Edward L. Vargo, T. Chris Keefer, Paul Labadie, Clay W. Scherer, Nicola T. Gallagher and Roger E. Gold
Insects 2017, 8(3), 92; https://doi.org/10.3390/insects8030092 - 31 Aug 2017
Cited by 5 | Viewed by 3765
Abstract
Subterranean termites are the most economically important structural pests in the USA, and the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Dictyoptera: Rhinotermitidae) is the most widely distributed species. Soil treatment with a liquid termiticide is a widely used method for controlling subterranean termites [...] Read more.
Subterranean termites are the most economically important structural pests in the USA, and the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Dictyoptera: Rhinotermitidae) is the most widely distributed species. Soil treatment with a liquid termiticide is a widely used method for controlling subterranean termites in structures. We assessed the efficacy of a nonrepellent termiticide, Altriset® (active ingredient: chlorantraniliprole), in controlling structural infestations of R. flavipes in Texas, North Carolina, and Ohio and determined the post-treatment fate of termite colonies in and around the structures. In all three states, microsatellite markers indicated that only one R. flavipes colony was infesting each structure. A single chlorantraniliprole treatment provided effective structural protection as there was no further evidence of termite activity in and on the majority of structures from approximately 1 month to 2 years post-treatment when the study concluded. Additionally, the treatment appeared to either severely reduce the infesting colony’s footprint at monitors in the landscape or eliminate colony members from these monitors. A supplemental spot-treatment was conducted at one house each in Texas and North Carolina at 5 and 6 months post-treatment, respectively; no termites were observed thereafter in these structures and associated landscaping. The number of colonies found exclusively in the landscape (not attacking the structure) varied among the states, with the largest number of colonies in Texas (0–4) and North Carolina (0–5) as compared to 0–1 in Ohio, the most northern state. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

1052 KiB  
Article
Short-Range Responses of the Kissing Bug Triatoma rubida (Hemiptera: Reduviidae) to Carbon Dioxide, Moisture, and Artificial Light
by Andres Indacochea, Charlotte C. Gard, Immo A. Hansen, Jane Pierce and Alvaro Romero
Insects 2017, 8(3), 90; https://doi.org/10.3390/insects8030090 - 29 Aug 2017
Cited by 11 | Viewed by 6209
Abstract
The hematophagous bug Triatoma rubida is a species of kissing bug that has been marked as a potential vector for the transmission of Chagas disease in the Southern United States and Northern Mexico. However, information on the distribution of T. rubida in these [...] Read more.
The hematophagous bug Triatoma rubida is a species of kissing bug that has been marked as a potential vector for the transmission of Chagas disease in the Southern United States and Northern Mexico. However, information on the distribution of T. rubida in these areas is limited. Vector monitoring is crucial to assess disease risk, so effective trapping systems are required. Kissing bugs utilize extrinsic cues to guide host-seeking, aggregation, and dispersal behaviors. These cues have been recognized as high-value targets for exploitation by trapping systems. A modern video-tracking system was used with a four-port olfactometer system to quantitatively assess the behavioral response of T. rubida to cues of known significance. Also, response of T. rubida adults to seven wavelengths of light-emitting diodes (LED) in paired-choice pitfall was evaluated. Behavioral data gathered from these experiments indicate that T. rubida nymphs orient preferentially to airstreams at either 1600 or 3200 ppm carbon dioxide and prefer relative humidity levels of about 30%, while adults are most attracted to 470 nm light. These data may serve to help design an effective trapping system for T. rubida monitoring. Investigations described here also demonstrate the experimental power of combining an olfactometer with a video-tracking system for studying insect behavior. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

834 KiB  
Article
Behavioral Responses of the Common Bed Bug, Cimex lectularius, to Insecticide Dusts
by John L. Agnew and Alvaro Romero
Insects 2017, 8(3), 83; https://doi.org/10.3390/insects8030083 - 08 Aug 2017
Cited by 18 | Viewed by 6749
Abstract
Bed bugs have reemerged recently as a serious and growing problem not only in North America but in many parts of the world. These insects have become the most challenging pest to control in urban environments. Residual insecticides are the most common methods [...] Read more.
Bed bugs have reemerged recently as a serious and growing problem not only in North America but in many parts of the world. These insects have become the most challenging pest to control in urban environments. Residual insecticides are the most common methods used for bed bug control; however, insecticide resistance limits the efficacy of treatments. Desiccant dusts have emerged as a good option to provide a better residual effect for bed bug control. Several studies have focused on determining the efficacy of dust-based insecticides against bed bugs. However, behavioral responses of bed bugs to insecticide dusts could influence their efficacy. The behavioral responses of bed bugs to six insecticide dusts commonly used in the United States were evaluated with an advanced video tracking technique (Ethovision). Bed bugs took longer to make first contact with areas treated with the diatomaceous earth (DE)-based products MotherEarth D and Alpine than pyrethroid, pyrethrins or silica gel based products, DeltaDust, Tempo 1% Dust and CimeXa, respectively. Lower visitation rates of bed bugs were recorded for areas treated with MotherEarth D, Alpine and CimeXa than that of DeltaDust, Tempo 1% Dust, and Tri-Die Silica + Pyrethrum Dust. Bed bugs spent less time in areas treated with Tri-Die Dust, CimeXa, Alpine, and MotherEarth D than DeltaDust and Tempo 1% Dust, and they exhibited a reduction in locomotor parameters when crawling on areas treated with CimeXa and Alpine. The implications of these responses to bed bug control are discussed. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

512 KiB  
Article
Testing a Threshold-Based Bed Bug Management Approach in Apartment Buildings
by Narinderpal Singh, Changlu Wang, Chen Zha, Richard Cooper and Mark Robson
Insects 2017, 8(3), 76; https://doi.org/10.3390/insects8030076 - 26 Jul 2017
Cited by 9 | Viewed by 5206
Abstract
We tested a threshold-based bed bug (Cimex lectularius L.) management approach with the goal of achieving elimination with minimal or no insecticide application. Thirty-two bed bug infested apartments were identified. These apartments were divided into four treatment groups based on apartment size [...] Read more.
We tested a threshold-based bed bug (Cimex lectularius L.) management approach with the goal of achieving elimination with minimal or no insecticide application. Thirty-two bed bug infested apartments were identified. These apartments were divided into four treatment groups based on apartment size and initial bed bug count, obtained through a combination of visual inspection and bed bug monitors: I- Non-chemical only in apartments with 1–12 bed bug count, II- Chemical control only in apartments with 1–12 bed bug count, III- Non-chemical and chemical control in apartments with >12 bed bug count, and IV- Chemical control only in apartments with ≥11 bed bug count. All apartments were monitored or treated once every two weeks for a maximum of 28 wk. Treatment I eliminated bed bugs in a similar amount of time to treatment II. Time to eliminate bed bugs was similar between treatment III and IV but required significantly less insecticide spray in treatment III than that in treatment IV. A threshold-based management approach (non-chemical only or non-chemical and chemical) can eliminate bed bugs in a similar amount of time, using little to no pesticide compared to a chemical only approach. Full article
(This article belongs to the Special Issue Urban Pest Management)
Show Figures

Figure 1

Review

Jump to: Research

514 KiB  
Review
The Biology and Ecology of Cat Fleas and Advancements in Their Pest Management: A Review
by Michael K. Rust
Insects 2017, 8(4), 118; https://doi.org/10.3390/insects8040118 - 27 Oct 2017
Cited by 88 | Viewed by 15645
Abstract
The cat flea Ctenocephalides felis felis (Bouché) is the most important ectoparasite of domestic cats and dogs worldwide. It has been two decades since the last comprehensive review concerning the biology and ecology of C. f. felis and its management. Since then there [...] Read more.
The cat flea Ctenocephalides felis felis (Bouché) is the most important ectoparasite of domestic cats and dogs worldwide. It has been two decades since the last comprehensive review concerning the biology and ecology of C. f. felis and its management. Since then there have been major advances in our understanding of the diseases associated with C. f. felis and their implications for humans and their pets. Two rickettsial diseases, flea-borne spotted fever and murine typhus, have been identified in domestic animal populations and cat fleas. Cat fleas are the primary vector of Bartonella henselae (cat scratch fever) with the spread of the bacteria when flea feces are scratched in to bites or wounds. Flea allergic dermatitis (FAD) common in dogs and cats has been successfully treated and tapeworm infestations prevented with a number of new products being used to control fleas. There has been a continuous development of new products with novel chemistries that have focused on increased convenience and the control of fleas and other arthropod ectoparasites. The possibility of feral animals serving as potential reservoirs for flea infestations has taken on additional importance because of the lack of effective environmental controls in recent years. Physiological insecticide resistance in C. f. felis continues to be of concern, especially because pyrethroid resistance now appears to be more widespread. In spite of their broad use since 1994, there is little evidence that resistance has developed to many of the on-animal or oral treatments such as fipronil, imidacloprid or lufenuron. Reports of the perceived lack of performance of some of the new on-animal therapies have been attributed to compliance issues and their misuse. Consequentially, there is a continuing need for consumer awareness of products registered for cats and dogs and their safety. Full article
(This article belongs to the Special Issue Urban Pest Management)
Back to TopTop