molecules-logo

Journal Browser

Journal Browser

ECSOC-12

A special issue of Molecules (ISSN 1420-3049).

Deadline for manuscript submissions: closed (30 June 2009) | Viewed by 27634

Special Issue Editor


E-Mail Website
Guest Editor
Departamento de Química Orgánica, Universidad de Santiago de Compostela, Facultad de Ciencias-Campus de Lugo, Alfonso X el Sabio, 27002 Lugo, Spain
Interests: synthesis of compounds with biologic activity; synthesis of compounds with interest for agro-food field; solation, structural determination and synthesis of natural products; microwave organic reactions enhancement
Special Issues, Collections and Topics in MDPI journals

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

277 KiB  
Article
Synthesis, Antimycobacterial, Antifungal and Photosynthesis-Inhibiting Activity of Chlorinated N-phenylpyrazine-2-carboxamides
by Martin Dolezal, Jan Zitko, Zdenek Osicka, Jiri Kunes, Marcela Vejsova, Vladimir Buchta, Jiri Dohnal, Josef Jampilek and Katarina Kralova
Molecules 2010, 15(12), 8567-8581; https://doi.org/10.3390/molecules15128567 - 26 Nov 2010
Cited by 39 | Viewed by 7193
Abstract
A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine) anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal [...] Read more.
A series of sixteen pyrazinamide analogues with the -CONH- linker connecting the pyrazine and benzene rings was synthesized by the condensation of chlorides of substituted pyrazinecarboxylic acids with ring-substituted (chlorine) anilines. The prepared compounds were characterized and evaluated for their antimycobacterial and antifungal activity, and for their ability to inhibit photosynthetic electron transport (PET). 6-Chloro-N-(4-chlorophenyl)pyrazine-2-carboxamide manifested the highest activity against Mycobacterium tuberculosis strain H37Rv (65% inhibition at 6.25 μg/mL). The highest antifungal effect against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 6-chloro-5-tert-butyl-N-(3,4-dichlorophenyl)pyrazine-2-carboxamide (MIC = 62.5 μmol/L). 6-Chloro-5-tert-butyl-N-(4-chlorophenyl)pyrazine-2-carboxamide showed the highest PET inhibition in spinach chloroplasts (Spinacia oleracea L.) chloroplasts (IC50 = 43.0 μmol/L). For all the compounds, the relationships between the lipophilicity and the chemical structure of the studied compounds as well as their structure-activity relationships are discussed. Full article
(This article belongs to the Special Issue ECSOC-12)
Show Figures

Figure 1

270 KiB  
Article
Rhodanineacetic Acid Derivatives as Potential Drugs: Preparation, Hydrophobic Properties and Antifungal Activity of (5-Arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)acetic Acids
by Jan Dolezel, Petra Hirsova, Veronika Opletalova, Jiri Dohnal, Vejsova Marcela, Jiri Kunes and Josef Jampilek
Molecules 2009, 14(10), 4197-4212; https://doi.org/10.3390/molecules14104197 - 20 Oct 2009
Cited by 47 | Viewed by 11460
Abstract
Some [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acids were prepared as potential antifungal compounds. The general synthetic approach to all synthesized compounds is presented. Lipophilicity of all the discussed rhodanine-3-acetic acid derivatives was analyzed using a reversed phase high performance liquid chromatography (RP-HPLC) method. The procedure [...] Read more.
Some [(5Z)-(5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl)]acetic acids were prepared as potential antifungal compounds. The general synthetic approach to all synthesized compounds is presented. Lipophilicity of all the discussed rhodanine-3-acetic acid derivatives was analyzed using a reversed phase high performance liquid chromatography (RP-HPLC) method. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary RP column. The RP-HPLC retention parameter log k (the logarithm of the capacity factor k) is compared with log P values calculated in silico. All compounds were evaluated for antifungal effects against selected fungal species. Most compounds exhibited no interesting activity, and only {(5Z)-[4-oxo-5-(pyridin-2- ylmethylidene)-2-thioxo-1,3-thiazolidin-3-yl]}acetic acid strongly inhibited the growth of Candida tropicalis 156, Candida krusei E 28, Candida glabrata 20/I and Trichosporon asahii 1188. Full article
(This article belongs to the Special Issue ECSOC-12)
Show Figures

Figure 1

252 KiB  
Article
Examination of Imprinting Process with Molsidomine as a Template
by Piotr Luliński and Dorota Maciejewska
Molecules 2009, 14(6), 2212-2225; https://doi.org/10.3390/molecules14062212 - 17 Jun 2009
Cited by 12 | Viewed by 8464
Abstract
Eight different functional monomers were used with ethylene glycol dimethacrylate as a cross-linker and molsidomine as a template to obtain molecularly imprinted polymers (MIPs). Non-covalent interactions between molsidomine and each functional monomer in DMSO prior to thermal bulk polymerization were utilized. On the [...] Read more.
Eight different functional monomers were used with ethylene glycol dimethacrylate as a cross-linker and molsidomine as a template to obtain molecularly imprinted polymers (MIPs). Non-covalent interactions between molsidomine and each functional monomer in DMSO prior to thermal bulk polymerization were utilized. On the basis of calculated imprinting factors, MIP prepared with N,N’-diallyltartaramide was chosen for further investigations. Examination of interactions in the prepolymerization complex between molsidomine and N,N’-diallyltartaramide was performed using the Job method. The absorbance of isomolar solutions reaching a maximum for the molar ratio of template to monomer equal to 1:4. Scatchard analysis was used for estimation of the dissociation constants and the maximum amounts of binding sites. The polymer based on N,N’-diallyltartaramide has two classes of heterogeneous binding sites characterized by two values of Kd and two Bmax: Kd(1) = 1.17 mM-1 and Bmax(1) = 0.8 μmol/mg for the higher affinity binding sites, and Kd(2) = 200 μM-1 and Bmax(2) = 2.05 μmol/mg for the lower affinity binding sites. Furthermore, effects of pH and organic solvent on binding properties of MIP and NIP were investigated, together with release of molsidomine from both MIP and NIP. Full article
(This article belongs to the Special Issue ECSOC-12)
Show Figures

Figure 1

Back to TopTop