E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Vitamin E Nutrition and Metabolism"

Quicklinks

A special issue of Nutrients (ISSN 2072-6643).

Deadline for manuscript submissions: closed (30 April 2014)

Special Issue Editor

Guest Editor
Dr. Danny Manor

Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA

Special Issue Information

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs).

Keywords

  • vitamin E: forms and actions
  • uptake of vitamin E
  • transport and specific binding proteins for vitamin E
  • metabolism of vitamin E
  • mechanisms of action
  • specific actions in the nervous and reproductive systems

Published Papers (4 papers)

View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Vitamin E Concentrations in Adults with HIV/AIDS on Highly Active Antiretroviral Therapy
Nutrients 2014, 6(9), 3641-3652; doi:10.3390/nu6093641
Received: 21 June 2014 / Revised: 3 September 2014 / Accepted: 4 September 2014 / Published: 15 September 2014
PDF Full-text (216 KB) | HTML Full-text | XML Full-text
Abstract
HIV/AIDS patients are probably more predisposed to vitamin E deficiency, considering that they are more exposed to oxidative stress. Additionally, there are an extensive number of drugs in the highly active antiretroviral therapy (HAART) regimens that may interfere with vitamin E concentrations. [...] Read more.
HIV/AIDS patients are probably more predisposed to vitamin E deficiency, considering that they are more exposed to oxidative stress. Additionally, there are an extensive number of drugs in the highly active antiretroviral therapy (HAART) regimens that may interfere with vitamin E concentrations. The objective of this study was to compare serum concentrations of alpha-tocopherol in 182 HIV/AIDS patients receiving different HAART regimens. The patients were divided into three groups according to regimen: nucleoside analog reverse-transcriptase inhibitors (NRTIs) + non-nucleoside analog reverse-transcriptase inhibitors (NNRTIs); NRTIs + protease inhibitors + ritonavir; NRTIs + other classes. Alpha-tocopherol was assessed by high-performance liquid chromatography. Multiple linear regression analysis was used to evaluate the effects of HAART regimen, time of use, and compliance with the regimen on alpha-tocopherol concentrations. Alpha-tocopherol concentrations were on average 4.12 μmol/L lower for the NRTIs + other classes regimen when compared to the NRTIs + NNRTIs regimen (p = 0.037). A positive association (p < 0.001) was observed between alpha-tocopherol and cholesterol concentrations, a finding due, in part, to the relationship between liposoluble vitamins and lipid profile. This study demonstrated differences in alpha-tocopherol concentrations between patients using different HAART regimens, especially regimens involving the use of new drugs. Long-term prospective cohort studies are needed to monitor vitamin E status in HIV/AIDS patients since the beginning of treatment. Full article
(This article belongs to the Special Issue Vitamin E Nutrition and Metabolism)
Open AccessArticle Vitamin E Supplementation in Chemical Colorectal Carcinogenesis: A Two-Edged Knife
Nutrients 2014, 6(8), 3214-3229; doi:10.3390/nu6083214
Received: 2 April 2014 / Revised: 5 July 2014 / Accepted: 16 July 2014 / Published: 13 August 2014
Cited by 3 | PDF Full-text (614 KB) | HTML Full-text | XML Full-text
Abstract
This work investigated the effects of Vitamin E (VE) on aberrant crypt foci (ACF) incidence, oxidative stress parameters (serum and hepatic VE concentration, and homocysteine, glutathione (GSH), and malondialdehyde (MDA) levels), and expression of both cyclooxygenase-2 (COX2) and proliferating cellular nuclear antigen [...] Read more.
This work investigated the effects of Vitamin E (VE) on aberrant crypt foci (ACF) incidence, oxidative stress parameters (serum and hepatic VE concentration, and homocysteine, glutathione (GSH), and malondialdehyde (MDA) levels), and expression of both cyclooxygenase-2 (COX2) and proliferating cellular nuclear antigen (PCNA) in experimental colorectal carcinogenesis. Male Wistar rats received subcutaneous injections of 1,2-dimethylhydrazine (DMH) twice a week, for two weeks (40 mg/kg), except for the Control group. Animals were separated into groups that received different amounts of VE in the diet: 0 IU (0×), 75 IU (recommended daily intake, RDI), 225 IU (3× RDI), or 1500 IU (20× RDI), during (dDMH) or after (aDMH) administration of carcinogen. The 0×dDMH and 3×dDMH groups showed decreased serum VE levels. Hepatic VE concentration was higher in 3×aDMH as compared with the other groups. All the groups, except the Control and the 0×aDMH groups, had reduced GSH levels. The 0×dDMH, 0×aDMH, and 20×aDMH groups exhibited increased MDA levels. The aDMH groups had higher ACF incidence and PCNA expression. The 0×aDMH group presented higher ACF rate, followed by 20×aDMH. Moreover, the 3×aDMH group displayed reduced ACF incidence and COX2 expression. Multivariate analysis revealed that GSH modulated homocysteine levels and COX2. These results suggested that 1500 IU of VE is hazardous, whereas 225 IU of VE has beneficial effects on chemical colorectal carcinogenesis. Full article
(This article belongs to the Special Issue Vitamin E Nutrition and Metabolism)
Open AccessArticle Vitamin E Dietary Supplementation Improves Neurological Symptoms and Decreases c-Abl/p73 Activation in Niemann-Pick C Mice
Nutrients 2014, 6(8), 3000-3017; doi:10.3390/nu6083000
Received: 10 March 2014 / Revised: 16 July 2014 / Accepted: 18 July 2014 / Published: 30 July 2014
Cited by 3 | PDF Full-text (2300 KB) | HTML Full-text | XML Full-text
Abstract
Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. We have previously reported that oxidative stress is the main upstream stimulus activating the proapoptotic c-Abl/p73 pathway in NPC neurons. We have also observed [...] Read more.
Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. We have previously reported that oxidative stress is the main upstream stimulus activating the proapoptotic c-Abl/p73 pathway in NPC neurons. We have also observed accumulation of vitamin E in NPC lysosomes, which could lead to a potential decrease of its bioavailability. Our aim was to determine if dietary vitamin E supplementation could improve NPC disease in mice. NPC mice received an alpha-tocopherol (α-TOH) supplemented diet and neurological symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, astrogliosis, and the c-Abl/p73 pathway functions were evaluated. In addition, the effect of α-TOH on the c-Abl/p73 pathway was evaluated in an in vitro NPC neuron model. The α-TOH rich diet delayed loss of weight, improved coordination and locomotor function and increased the survival of NPC mice. We found increased Purkinje neurons and α-TOH levels and reduced astrogliosis, nitrotyrosine and phosphorylated p73 in cerebellum. A decrease of c-Abl/p73 activation was also observed in the in vitro NPC neurons treated with α-TOH. In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice and suggest that its supplementation in the diet could be useful for the treatment of NPC patients. Full article
(This article belongs to the Special Issue Vitamin E Nutrition and Metabolism)
Figures

Review

Jump to: Research

Open AccessReview The Effects of α-Tocopherol on Bone: A Double-Edged Sword?
Nutrients 2014, 6(4), 1424-1441; doi:10.3390/nu6041424
Received: 2 January 2014 / Revised: 22 February 2014 / Accepted: 28 February 2014 / Published: 10 April 2014
Cited by 8 | PDF Full-text (486 KB) | HTML Full-text | XML Full-text
Abstract
Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to [...] Read more.
Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone. Full article
(This article belongs to the Special Issue Vitamin E Nutrition and Metabolism)

Journal Contact

MDPI AG
Nutrients Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
nutrients@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Nutrients
Back to Top