Plant Phytochemicals on Crop Protection and Biotechnology

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Phytochemistry".

Deadline for manuscript submissions: closed (30 April 2019)

Special Issue Editors


E-Mail Website
Guest Editor
1. Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
2. Institute for Research and Inovation in Health (i3S), University of Porto, 4099-002 Porto, Portugal
Interests: evidence-based medicine; phytochemistry; phytopharmacology; drug discovery; natural products biochemistry; bioactive molecules; functional foods; nutraceuticals; fungal and bacterial infections; resistance to antimicrobials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Interests: natural product chemistry; natural product isolation; natural product pharmacology; natural product drug discovery; phytochemical analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
Interests: natural products; bioactive food components; phytotherapy; bioavailability of bioactive compounds; antioxidant capacities; natural products chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The journals Pharmaceuticals and Plants will jointly be publishing a Special Issue on plant phytochemicals. Plant-derived products and their corresponding metabolites have garnered huge interest at the clinical, pharmacological, cosmetic and even industrial levels. Indeed, natural products are extremely rich sources of biomolecules useful for a multitude of applications. Nonetheless, and with regard to the pharmacological approach, it is of utmost importance to highlight that natural products are not drugs, but instead are a pool of phytochemicals for drug development. In the last decades, a wide variety of methods/techniques have been used to assess the renowned historical significance of natural products, also emphasizing their potential as a source of novel compounds that can be directly applied as therapeutic agents, and even as a source of inspiration for medicinal chemists generating new synthetic organic compounds. On the other hand, with regard to the high demand by consumers for healthy products, a wide variety of plant-derived foodstuffs have also been introduced into worldwide markets, contributing to shelf-life extension, the maintenance and even improvement of organoleptic and nutritional attributes, the formulation of functional products, among other biotechnological approaches. In this context, and considering that most secondary metabolites are produced for the protection of the own plant, some of the bioactive constituents have also been increasingly screened for crop protection, including biocide formulation. Thus, considering the high interest in plant-derived secondary metabolites as an emerging challenge for modern drug development, crop protection and biotechnological processes, this Special Issue will cover a wide variety of areas, aiming to contribute to the overall knowledge of medicinal plants from several aspects.

You may choose our Joint Special Issue in Pharmaceuticals.

Dr. Natália Martins
Dr. Javad Sharifi-Rad
Dr. Bahare Salehi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Phytopharmacology
  • Phytochemistry
  • Naturally-derived products
  • Functional products
  • Crop protection

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 2352 KiB  
Article
Inhibitory Activities of Momilactones A, B, E, and 7-Ketostigmasterol Isolated from Rice Husk on Paddy and Invasive Weeds
by Nguyen Van Quan, Tran Dang Xuan, Hoang-Dung Tran and Nguyen Thi Dieu Thuy
Plants 2019, 8(6), 159; https://doi.org/10.3390/plants8060159 - 07 Jun 2019
Cited by 16 | Viewed by 5338
Abstract
Rice husk has been exploited as a potential source of allelochemicals. In this study, four bioactive compounds including momilactone E (ME), 7-ketostigmasterol (7KS), momilactone A (MA), and momilactone B (MB) were isolated by column chromatography (CC) to yield 2.7, 0.3, 11.7, and 8.3 [...] Read more.
Rice husk has been exploited as a potential source of allelochemicals. In this study, four bioactive compounds including momilactone E (ME), 7-ketostigmasterol (7KS), momilactone A (MA), and momilactone B (MB) were isolated by column chromatography (CC) to yield 2.7, 0.3, 11.7, and 8.3 mg/kg rice husk, respectively. The structures of the isolated compounds were identified and confirmed by spectroscopic techniques consisting of 1H and 13C nuclear magnetic resonance (NMR), electrospray ionization mass (ESI), high-resolution mass spectrometry (HR-MS) and infrared spectroscopy (IS). An advanced quantitative method for MA and MB was achieved to increase the detectable yields of MA and MB in rice husk to 51.96 and 42.33 µg/mL, respectively. The inhibitory activities of MA, MB, ME, and 7KS were examined on lettuce (Lactuca sativa), barnyard grass (Echinochloa crus-galli), and tall goldenrod (Solidago altissima) in bioassays. The allelopathic activities of ME and 7KS were compared with those of potent phytoalexin momilactones A (MA) and B (MB), and the standard p-hydroxybenzoic acid (pHA). Results showed that both MA and MB exhibited stronger inhibitory activity than ME and 7KS. MB exerted greater inhibitions than MA but the mixture of MA and MB (1:1, v/v) possessed a similar level of inhibition to MB. On the other hand, although ME and 7KS presented non-significant inhibition, their mixture of ME-7KS (1:1, v/v) displayed a remarkable inhibition on the growth of S. altissima. Findings of this study revealed that MA, MB, and the mixture ME-7KS had the potential to control the invasive plant S. altissima and the noxious paddy weed E. crus-galli in vitro, but their mode of actions should be further investigated. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

9 pages, 1643 KiB  
Article
Allelopathic Potency and an Active Substance from Anredera cordifolia (Tenore) Steenis
by Ichsan Nurul Bari, Hisashi Kato-Noguchi, Arihiro Iwasaki and Kiyotake Suenaga
Plants 2019, 8(5), 134; https://doi.org/10.3390/plants8050134 - 18 May 2019
Cited by 20 | Viewed by 4319
Abstract
Anredera cordifolia (Tenore) Steenis is widely planted as an ornamental and medicinal plant in Indonesia. On the other hand, in some other countries this plant is classified as a noxious weed. As a harmful weed, A. cordifolia is reported to have the ability [...] Read more.
Anredera cordifolia (Tenore) Steenis is widely planted as an ornamental and medicinal plant in Indonesia. On the other hand, in some other countries this plant is classified as a noxious weed. As a harmful weed, A. cordifolia is reported to have the ability to smother all native vegetation, collapse canopies of tall trees, cultivate as a ground cover and disrupt native seedling development. There is no available information about the involvement of any allelochemicals from A. cordifolia related to these issues. The present study evaluated the allelopathic effect by isolating and identifying the allelopathic substance from A. cordifolia leaf extract. The allelopathic potency of A. cordifolia was determined by a series of bioassays of shoot and root growth on some selected test plants. Separation and purification of the active substances was achieved through several chromatography processes. Finally, the substances with allelopathic activity were identified through high-resolution electrospray ionization mass spectrometry (HRESIMS) analysis and determined by the specific rotation of compound, proton and carbon NMR spectroscopies. The results show that A. cordifolia possesses allelopathic properties which affect other plant species. The isolated compound from the plant material, 3-hydroxy-alpha-ionone, may contribute to the allelopathic effects of A. cordifolia. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

12 pages, 1740 KiB  
Article
Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal
by Sushant Aryal, Manoj Kumar Baniya, Krisha Danekhu, Puspa Kunwar, Roshani Gurung and Niranjan Koirala
Plants 2019, 8(4), 96; https://doi.org/10.3390/plants8040096 - 11 Apr 2019
Cited by 623 | Viewed by 25493
Abstract
Eight selected wild vegetables from Nepal (Alternanthera sessilis, Basella alba, Cassia tora, Digera muricata, Ipomoea aquatica, Leucas cephalotes, Portulaca oleracea and Solanum nigrum) were investigated for their antioxidative potential using 2,2-dyphenyl-1-picrylhydrazyl (DPPH) scavenging, hydrogen peroxide [...] Read more.
Eight selected wild vegetables from Nepal (Alternanthera sessilis, Basella alba, Cassia tora, Digera muricata, Ipomoea aquatica, Leucas cephalotes, Portulaca oleracea and Solanum nigrum) were investigated for their antioxidative potential using 2,2-dyphenyl-1-picrylhydrazyl (DPPH) scavenging, hydrogen peroxide (H2O2), ferric reducing antioxidant power (FRAP), and ferric thiocyanate (FTC) methods. Among the selected plant extracts C. tora displayed the highest DPPH radical scavenging activity with an IC50 value 9.898 μg/mL, whereas A. sessilis had the maximum H2O2 scavenging activity with an IC50 value 16.25 μg/mL—very close to that of ascorbic acid (16.26 μg/mL). C. tora showed the highest absorbance in the FRAP assay and the lowest lipid peroxidation in the FTC assay. A methanol extract of A. sessilis resulted in the greatest phenolic content (292.65 ± 0.42 mg gallic acid equivalent (GAE)/g) measured by the Folin–Ciocalteu reagent method, while the smallest content was recorded for B. alba (72.66 ± 0.46 GAE/g). The greatest flavonoid content was observed with extracts of P. oleracea (39.38 ± 0.57 mg quercetin equivalents (QE)/g) as measured by an aluminium chloride colorimetric method, while the least was recorded for I. aquatica (6.61 ± 0.42 QE/g). There was a strong correlation between antioxidant activity with total phenolic (DPPH, R2 = 0.75; H2O2, R2 = 0.71) and total flavonoid content (DPPH, R2 = 0.84; H2O2, R2 = 0.66). This study demonstrates that these wild edible leafy plants could be a potential source of natural antioxidants. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

16 pages, 2115 KiB  
Article
Antifungal Activity of Eclipta alba Metabolites against Sorghum Pathogens
by Rajini Sollepura Boregowda, Nandhini Murali, Arakere C. Udayashankar, Siddapura R. Niranjana, Ole S. Lund and Harischandra S. Prakash
Plants 2019, 8(3), 72; https://doi.org/10.3390/plants8030072 - 22 Mar 2019
Cited by 11 | Viewed by 5977
Abstract
Unscientific use of synthetic fungicides in plant disease management has environmental ramifications, such as disease resurgence and serious health problems due to their carcinogenicity. This has prompted the identification and development of eco-friendly greener alternatives. Eclipta alba extract was evaluated for its antifungal [...] Read more.
Unscientific use of synthetic fungicides in plant disease management has environmental ramifications, such as disease resurgence and serious health problems due to their carcinogenicity. This has prompted the identification and development of eco-friendly greener alternatives. Eclipta alba extract was evaluated for its antifungal activity in in vitro and in vivo against sorghum fungal pathogens Fusarium thapsinum, Alternaria alternata, Epicoccum sorghinum, and Curvularia lunata. The column purified methanolic extract of E. alba exhibited good antifungal activity against the target pathogens. The MIC was observed at 80 mg/mL for all tested pathogenic fungi, whereas MFC was 80 mg/mL for E. sorghinum, 100 mg/mL for F. thapsinum, A. alternata, and C. lunata. In vitro germination percentage was significantly high in seeds treated with E. alba extract (98%) over untreated control (91%). Significant disease protection of 95% was observed in greenhouse and 66% disease protection was noticed in field experiments. The efficacy of E. alba extract in field conditions was improved with the use of E. alba extract formulation. The profile of phytochemicals in E. alba methanol fractions was obtained by ultra-performance liquid chromatography (UPLC) mass spectroscopy. The [M-H] at m/z 313.3, m/z 797.9, and m/z 269.0 revealed the presence of wedelolactone, eclalbasaponin II, and apigenin, respectively. The H-nuclear magnetic resonance spectroscopy (1H-NMR) chemical shift value supported the findings of the mass spectrometry. The results highlighted the possible use of E. alba methanolic extract as alternative to chemical fungicide in sorghum disease management. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Graphical abstract

14 pages, 1902 KiB  
Article
Ginger and Turmeric Essential Oils for Weed Control and Food Crop Protection
by María Dolores Ibáñez and María Amparo Blázquez
Plants 2019, 8(3), 59; https://doi.org/10.3390/plants8030059 - 10 Mar 2019
Cited by 26 | Viewed by 8278
Abstract
Ginger and turmeric are two food ingredients that are in high demand due to their flavor and positive effects on health. The biological properties of these spices are closely related to the aromatic compounds they contain. The chemical compositions of their essential oils [...] Read more.
Ginger and turmeric are two food ingredients that are in high demand due to their flavor and positive effects on health. The biological properties of these spices are closely related to the aromatic compounds they contain. The chemical compositions of their essential oils and their in vitro phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, Echinochloa crus-galli, Cortaderia selloana, and Nicotiana glauca) and food crops (tomato, cucumber, and rice) were studied. Forty-one compounds, accounting for a relative peak area of 87.7% and 94.6% of turmeric and ginger essential oils, respectively, were identified by Gas Chromatography–Mass Spectrometry analysis. Ginger essential oil with α-zingiberene (24.9 ± 0.8%), β-sesquiphelladrene (11.7 ± 0.3%), ar-curcumene (10.7 ± 0.2%), and β-bisabolene (10.5 ± 0.3%) as the main compounds significantly inhibited the seed germination of P. oleracea, L. multiflorum, and C. selloana at the highest dose (1 µL/mL) assayed, as well as the hypocotyl and radicle growth of the weeds. Turmeric essential oil with ar-turmerone (38.7 ± 0.8%), β-turmerone (18.6 ± 0.6%), and α-turmerone (14.2 ± 0.9%) as principal components significantly inhibited the seed germination of C. selloana and hypocotyl and radicle growth of weeds (the latter in particular) at the highest dose, whereas it did not affect either the seed germination or seedling growth of the food crops. Turmeric essential oil can be an effective post-emergent bioherbicide against the tested weeds without phytotoxicity to crops. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Graphical abstract

14 pages, 3960 KiB  
Article
Cycloartane-Type Triterpenes and Botanical Origin of Propolis of Stingless Indonesian Bee Tetragonula sapiens
by Niken Pujirahayu, Toshisada Suzuki and Takeshi Katayama
Plants 2019, 8(3), 57; https://doi.org/10.3390/plants8030057 - 08 Mar 2019
Cited by 23 | Viewed by 5682
Abstract
This study clarifies the chemical constituents and botanical origin of Tetragonula sapiens Cockerell bee propolis collected from Southeast Sulawesi, Indonesia. Propolis samples and resin of Mangifera indica were extracted with 99% ethanol to obtain an ethanol extract of propolis (EEP) and an ethanol [...] Read more.
This study clarifies the chemical constituents and botanical origin of Tetragonula sapiens Cockerell bee propolis collected from Southeast Sulawesi, Indonesia. Propolis samples and resin of Mangifera indica were extracted with 99% ethanol to obtain an ethanol extract of propolis (EEP) and an ethanol extract of M. indica resin (EEM). Column chromatography, thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) were developed and used for the separation and isolation of compounds from the ether-soluble fraction. The structure of the compounds was determined by nuclear magnetic resonance (NMR) spectroscopic analysis, and their molecular weight analyzed by gas chromatography–mass spectrometry (GC–MS). The HPLC chromatogram of the EEP was then compared with the HPLC chromatogram of EEM to investigate the botanical origin of propolis. Five compounds were isolated from the EEP, and their structures were determined as mangiferolic acid, cycloartenol, ambonic acid, mangiferonic acid, and ambolic acid, which are cycloartane-type triterpenes. The characteristic peak of the HPLC chromatograms of EEP and EEM showed a similar pattern, which is that the main components of propolis were also found in M. indica resin. These results suggested that the propolis from Southeast Sulawesi was rich in cycloartane-type triterpenes, and the plant source of the propolis could be Mangifera indica (mango). Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

15 pages, 445 KiB  
Article
Comparison of the Proximate Composition, Vitamins (Ascorbic Acid, α-Tocopherol and Retinol), Anti-Nutrients (Phytate and Oxalate) and the GC-MS Analysis of the Essential Oil of the Root and Leaf of Rumex crispus L.
by Oladayo Amed Idris, Olubunmi Abosede Wintola and Anthony Jide Afolayan
Plants 2019, 8(3), 51; https://doi.org/10.3390/plants8030051 - 28 Feb 2019
Cited by 49 | Viewed by 7306
Abstract
Medicinal plants are a pertinent and effective remedy, employed in indigenous healthcare systems by traditional healers. This study focused on proximate parameters, minerals, vitamins, anti-nutrients and essential oil of the root and leaf of the medicinal plant; R. crispus, using the standard [...] Read more.
Medicinal plants are a pertinent and effective remedy, employed in indigenous healthcare systems by traditional healers. This study focused on proximate parameters, minerals, vitamins, anti-nutrients and essential oil of the root and leaf of the medicinal plant; R. crispus, using the standard food analysis techniques. The result reveals that the moisture content of the leaf (7.57 ± 0.40%) and root (7.59 ± 0.08%) was not significantly different. The leaf has a higher ash, crude fat, fibre and mineral content than the root, except the carbohydrate (57.74 ± 3.06%) and Ca (1190.0 ± 0 mg/100g) values which are quite higher in the root. Traces of phytate was found in the leaf (1.15 ± 0.74%) and root (1.38 ± 0.27%) of R. crispus. The highest value of retinol, ascorbic acid and α-tocopherol was found in dried leaf (1.29 ± 0.014 mg retinol/100g), fresh leaf (159.73 ± 26.77 mg ascorbic acid/100g) and fresh root (54.90 ± 0.39 mg α-tocopherol/100g) respectively. The principal compound in the essential oil of the leaf are; 5-Eicosene, (E)-, docos-1-ene, trans-5-Octadecene, tetradecane while those found in the root are; 1-Heptacosanol, 4-Methyloctane, ethylcyclohexane, eucalyptol, m-Xylene, octadecane, phytol, and tetradecane. The research reveals that R. crispus may not only be used for medicinal purposes but could also be suitable for a complementary diet. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

15 pages, 2556 KiB  
Article
Phytotoxicity of Essential Oils on Selected Weeds: Potential Hazard on Food Crops
by María Dolores Ibáñez and María Amparo Blázquez
Plants 2018, 7(4), 79; https://doi.org/10.3390/plants7040079 - 22 Sep 2018
Cited by 42 | Viewed by 7733
Abstract
The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four [...] Read more.
The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Graphical abstract

Review

Jump to: Research

13 pages, 604 KiB  
Review
Ethnopharmacological Properties and Medicinal Uses of Litsea cubeba
by Madhu Kamle, Dipendra K. Mahato, Kyung Eun Lee, Vivek K. Bajpai, Padam Raj Gajurel, Kang Sang Gu and Pradeep Kumar
Plants 2019, 8(6), 150; https://doi.org/10.3390/plants8060150 - 01 Jun 2019
Cited by 53 | Viewed by 11138
Abstract
The genus Litsea is predominant in tropical and subtropical regions of India, China, Taiwan, and Japan. The plant possesses medicinal properties and has been traditionally used for curing various gastro-intestinal ailments (e.g., diarrhea, stomachache, indigestion, and gastroenteritis) along with diabetes, edema, cold, arthritis, [...] Read more.
The genus Litsea is predominant in tropical and subtropical regions of India, China, Taiwan, and Japan. The plant possesses medicinal properties and has been traditionally used for curing various gastro-intestinal ailments (e.g., diarrhea, stomachache, indigestion, and gastroenteritis) along with diabetes, edema, cold, arthritis, asthma, and traumatic injury. Besides its medicinal properties, Litsea is known for its essential oil, which has protective action against several bacteria, possesses antioxidant and antiparasitic properties, exerts acute and genetic toxicity as well as cytotoxicity, and can even prevent several cancers. Here we summarize the ethnopharmacological properties, essentials oil, medicinal uses, and health benefits of an indigenous plant of northeast India, emphasizing the profound research to uplift the core and immense potential present in the conventional medicine of the country. This review is intended to provide insights into the gaps in our knowledge that need immediate focus on in-situ conservation strategies of Litsea due to its non-domesticated and dioecious nature, which may be the most viable approach and intense research for the long-term benefits of society and local peoples. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Graphical abstract

21 pages, 3399 KiB  
Review
Myrica esculenta Buch.-Ham. ex D. Don: A Natural Source for Health Promotion and Disease Prevention
by Atul Kabra, Natália Martins, Rohit Sharma, Ruchika Kabra and Uttam Singh Baghel
Plants 2019, 8(6), 149; https://doi.org/10.3390/plants8060149 - 31 May 2019
Cited by 23 | Viewed by 7578
Abstract
Myrica esculenta (Myricaceae) is a popular medicinal plant most commonly found in the sub-tropical Himalayas. It is widely used in folk medicine to treat several ailments such as asthma, cough, chronic bronchitis, ulcers, inflammation, anemia, fever, diarrhea, and ear, nose, and throat disorders. [...] Read more.
Myrica esculenta (Myricaceae) is a popular medicinal plant most commonly found in the sub-tropical Himalayas. It is widely used in folk medicine to treat several ailments such as asthma, cough, chronic bronchitis, ulcers, inflammation, anemia, fever, diarrhea, and ear, nose, and throat disorders. Due to its multidimensional pharmacological and therapeutic effects, it is well recognized in the ayurvedic pharmacopeia. However, the recent upsurge in M. esculenta use and demand has led to illicit harvesting by the horticultural trade and habitat loss, pushing the plant to the brink of extinction. Thus, the present review aims to provide updated information on M. esculenta botany, ethnomedicinal uses, phytochemistry, pharmacological effects, toxicity, and conservation methods, as well as also highlight prospective for future research. Particular emphasis is also given to its antioxidant potential in health promotion. In-depth literature was probed by searching several sources via online databases, texts, websites, and thesis. About 57 compounds were isolated and identified from M. esculenta, and the available reports on physicochemical parameters, nutritional and high-performance thin-layer chromatography analysis of bioactive plant parts are portrayed in a comparative manner. Friendly holistic conservation approaches offered by plant biotechnology applications, such as micropropagation, germplasm preservation, synthetic seed production, and hairy root technologies are also discussed. Nonetheless, further studies are needed to propose the mechanistic role of crude extracts and other bioactives, and even to explore the structure–function relationship of active components. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

24 pages, 2925 KiB  
Review
Traditional Medicine Plant, Onopordum acanthium L. (Asteraceae): Chemical Composition and Pharmacological Research
by Ekaterina Robertovna Garsiya, Dmitryi Alexeevich Konovalov, Arnold Alexeevich Shamilov, Margarita Petrovna Glushko and Kulpan Kenzhebaevna Orynbasarova
Plants 2019, 8(2), 40; https://doi.org/10.3390/plants8020040 - 12 Feb 2019
Cited by 16 | Viewed by 6724
Abstract
For many years, plants have been used in the traditional medicine of different cultures. The biennial plant of the family Asteraceae, Onopordum acanthium L., also known as Scotch thistle, is used in traditional medicine as an anti-inflammatory, antitumor, and cardiotonic agent. The plant [...] Read more.
For many years, plants have been used in the traditional medicine of different cultures. The biennial plant of the family Asteraceae, Onopordum acanthium L., also known as Scotch thistle, is used in traditional medicine as an anti-inflammatory, antitumor, and cardiotonic agent. The plant is widespread in the world; it grows in Europe and Asia and was introduced to America and Australia. Stems and buds of the first-year plant are used in cooking as an analogue of artichoke in European cuisine. Additionally, inflorescences contain a complex of proteolytic enzymes “onopordosin”, which may be used as a milk-clotting agent in the dairy industry. The chemical composition of the aerial part and roots of O. acanthium is represented by flavonoids, phenylpropanoids, lignans, triterpenoids, sesquiterpene lactones, and sterols. The anti-inflammatory, antiproliferative, and cardiotonic properties of the plant have been confirmed by pharmacological experiments with extracts and individual compounds using in silico, in vitro, and in vivo methods. This work is a review of information on the chemical composition and pharmacological studies of O. acanthium as a promising medicinal plant. Full article
(This article belongs to the Special Issue Plant Phytochemicals on Crop Protection and Biotechnology)
Show Figures

Figure 1

Back to TopTop