Polymers from Renewable Resources

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (10 April 2018) | Viewed by 260551

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

The use of polymeric materials from renewable resources dates very back in history, as naturally occurring polymers were among the first materials used by men. In the 19th century, natural materials, such as casein, natural rubber, and cellulose, were modified to obtain useful polymeric materials. Over the past few decades, the production and applications of synthetic polymers showed an almost exponential increase. However, concerns regarding depletion of fossil resources, wastes’ disposal and related issues, as well as government policies, have led to a continuously growing interest in the development of sustainable, safe and environmentally friendly plastics from renewable resources.

There are three approaches towards renewable plastics. The first approach is associated with the biorefinery concept, so that renewable oil and green monomers are produced from biomass, for polymer syntheses.

Through the second route, renewable polymers are isolated from natural biopolymers or synthesized from biobased monomers. Carbohydrates such as cellulose, lignin, starch, terpenes, proteins, chitosan, and also biopolyesters can be chemically modified. In fact, efforts are being made to synthesize traditional monomers and platform chemicals from renewable resources. Thus, from bioethanol, ethylene, propylene, as well as butadiene can be produced. Diols, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, and also polyols, diacids, etc., are also available. Thus, traditional polymers, such as polyethylene, polypropylene, poly(ethylene terephthalate), or polystyrene, can be now considered biobased materials. In addition, new biobased sustainable thermoplastic and thermoset polymers have gained increasing interest. Organic acid monomers from renewable resources include glycolic, 3-hydroxypropionic, lactic, succinic, itaconic, muconic, adipic, levulinic, vanillic and 2,5-furandicarboxylic acids, while important alcohol monomers such as isosorbide, xylitol, sorbitol, glycerol can be derived from sugars.

Poly(ethylene 2,5-furandicarboxylate) (PEF) is a typical example of a new and most promising biobased polyester. Furthermore, biodegradable polymers, such as poly(β-hydroxybutyrate) (PHB), poly(lactic acid) (PLA), poly(butylene succinate) (PBS) and others, are of special importance among sustainable polymers from renewable resources, considering the end of their life cycle.

Finally, there is a third route to synthesize renewable polymers by activating and polymerizing carbon dioxide. Carbon dioxide can react with oxiranes for example, to produce cyclic carbonates. Non-isocyanate polyurethanes and polypropylene carbonate can be obtained.

The aim of this Special Issue is to highlight the progress on monomers, synthesis, characterization, properties, and applications of polymers, copolymers, blends and composites from renewable resources.

Prof. Dr. George Z. Papageorgiou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biobased polymers

  • Biodegradable polymers

  • Bioplastics

  • Sustainable materials

  • Renewable resources

  • Renewable monomers

  • 2,5-furandicarboxylic acid

  • Poly(ethylene 2,5-furandicarboxylate)

  • Poly(lactic acid)

  • Vanillic acid

  • Isosorbide

  • Succinic acid

Related Special Issue

Published Papers (35 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

5 pages, 173 KiB  
Editorial
Thinking Green: Sustainable Polymers from Renewable Resources
by George Z. Papageorgiou
Polymers 2018, 10(9), 952; https://doi.org/10.3390/polym10090952 - 27 Aug 2018
Cited by 72 | Viewed by 6944
(This article belongs to the Special Issue Polymers from Renewable Resources)

Research

Jump to: Editorial, Review

12 pages, 2796 KiB  
Article
Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles
by György Babos, Emese Biró, Mónika Meiczinger and Tivadar Feczkó
Polymers 2018, 10(8), 895; https://doi.org/10.3390/polym10080895 - 09 Aug 2018
Cited by 60 | Viewed by 7281
Abstract
Combinatorial drug delivery is a way of advanced cancer treatment that at present represents a challenge for researchers. Here, we report the efficient entrapment of two clinically used single-agent drugs, doxorubicin and sorafenib, against hepatocellular carcinoma. Biocompatible and biodegradable polymeric nanoparticles provide a [...] Read more.
Combinatorial drug delivery is a way of advanced cancer treatment that at present represents a challenge for researchers. Here, we report the efficient entrapment of two clinically used single-agent drugs, doxorubicin and sorafenib, against hepatocellular carcinoma. Biocompatible and biodegradable polymeric nanoparticles provide a promising approach for controlled drug release. In this study, doxorubicin and sorafenib with completely different chemical characteristics were simultaneously entrapped by the same polymeric carrier, namely poly(d,l-lactide-co-glycolide) (PLGA) and polyethylene glycol-poly(d,l-lactide-co-glycolide) (PEG-PLGA), respectively, using the double emulsion solvent evaporation method. The typical mean diameters of the nanopharmaceuticals were 142 and 177 nm, respectively. The PLGA and PEG-PLGA polymers encapsulated doxorubicin with efficiencies of 52% and 69%, respectively, while these values for sorafenib were 55% and 88%, respectively. Sustained drug delivery under biorelevant conditions was found for doxorubicin, while sorafenib was released quickly from the PLGA-doxorubicin-sorafenib and PEG-PLGA-doxorubicin-sorafenib nanotherapeutics. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Figure 1

16 pages, 2914 KiB  
Article
Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and Poly(Butylene 2,5-Furanoate)-co-(Butylene Diglycolate) and Bacterial Cellulose
by Marina Matos, Andreia F. Sousa, Nuno H. C. S. Silva, Carmen S. R. Freire, Márcia Andrade, Adélio Mendes and Armando J. D. Silvestre
Polymers 2018, 10(8), 810; https://doi.org/10.3390/polym10080810 - 24 Jul 2018
Cited by 31 | Viewed by 4961
Abstract
Polyesters made from 2,5-furandicarboxylic acid (FDCA) have been in the spotlight due to their renewable origins, together with the promising thermal, mechanical, and/or barrier properties. Following the same trend, (nano)composite materials based on FDCA could also generate similar interest, especially because novel materials [...] Read more.
Polyesters made from 2,5-furandicarboxylic acid (FDCA) have been in the spotlight due to their renewable origins, together with the promising thermal, mechanical, and/or barrier properties. Following the same trend, (nano)composite materials based on FDCA could also generate similar interest, especially because novel materials with enhanced or refined properties could be obtained. This paper presents a case study on the use of furanoate-based polyesters and bacterial cellulose to prepare nanocomposites, namely acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate) and acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate)-co-(butylene diglycolate)s. The balance between flexibility, prompted by the furanoate-diglycolate polymeric matrix; and the high strength prompted by the bacterial cellulose fibres, enabled the preparation of a wide range of new nanocomposite materials. The new nanocomposites had a glass transition between −25–46 °C and a melting temperature of 61–174 °C; and they were thermally stable up to 239–324 °C. Furthermore, these materials were highly reinforced materials with an enhanced Young’s modulus (up to 1239 MPa) compared to their neat copolyester counterparts. This was associated with both the reinforcing action of the cellulose fibres and the degree of crystallinity of the nanocomposites. In terms of elongation at break, the nanocomposites prepared from copolyesters with higher amounts of diglycolate moieties displayed higher elongations due to the soft nature of these segments. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

15 pages, 2380 KiB  
Article
Preparation and Characterization of Thermoplastic Potato Starch/Halloysite Nano-Biocomposites: Effect of Plasticizer Nature and Nanoclay Content
by Jiawei Ren, Khanh Minh Dang, Eric Pollet and Luc Avérous
Polymers 2018, 10(8), 808; https://doi.org/10.3390/polym10080808 - 24 Jul 2018
Cited by 57 | Viewed by 5307
Abstract
Nano-biocomposites based on halloysite nanoclay and potato starch were elaborated by melt blending with different polyol plasticizers such as glycerol, sorbitol or a mixture of both. The effects of the type of plasticizer and clay content on potato starch/halloysite nano-biocomposites were studied. SEM [...] Read more.
Nano-biocomposites based on halloysite nanoclay and potato starch were elaborated by melt blending with different polyol plasticizers such as glycerol, sorbitol or a mixture of both. The effects of the type of plasticizer and clay content on potato starch/halloysite nano-biocomposites were studied. SEM analyses combined with ATR-FTIR results showed that a high content of sorbitol had a negative effect on the dispersion of the halloysite nanoclay in the starchy matrix. XRD results demonstrated that incorporation of halloysite nanoclay into glycerol-plasticized starch systems clearly led to the formation of a new crystalline structure. The addition of halloysite nanoclay improved the thermal stability and decreased the moisture absorption of the nano-biocomposites, whatever the type of plasticizer used. Halloysite addition led to more pronounced improvement in mechanical properties for glycerol plasticized system compared to nanocomposites based on sorbitol and glycerol/sorbitol systems with a 47% increase in tensile strength for glycerol-plasticized starch compared to 10.5% and 11% for sorbitol and glycerol/sorbitol systems, respectively. The use of a mixture of polyols was found to be a promising way to optimize the mechanical properties of these starch-based nanocomposites. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

15 pages, 3826 KiB  
Article
Effects of Surface Functionalization of Lignin on Synthesis and Properties of Rigid Bio-Based Polyurethanes Foams
by Xuefeng Zhang, Dragica Jeremic, Yunsang Kim, Jason Street and Rubin Shmulsky
Polymers 2018, 10(7), 706; https://doi.org/10.3390/polym10070706 - 26 Jun 2018
Cited by 57 | Viewed by 8315
Abstract
We report the preparation of lignin-based rigid polyurethane (RPU) foams from surface functionalized kraft lignin via a simple and environmentally benign process. Lignin was functionalized with polyisocyanate at 80 °C for 1 h, the resulting lignin-polyisocyanate prepolymer was confirmed by increased viscosity and [...] Read more.
We report the preparation of lignin-based rigid polyurethane (RPU) foams from surface functionalized kraft lignin via a simple and environmentally benign process. Lignin was functionalized with polyisocyanate at 80 °C for 1 h, the resulting lignin-polyisocyanate prepolymer was confirmed by increased viscosity and Fourier-transform infrared spectroscopy (FTIR). The RPU foams containing up to 30% surface functionalized lignin as a substitute for petroleum-based polyols exhibited comparable thermal and mechanical properties to conventional RPU foams. The lignin-based RPU foams prepared from surface functionalization outperformed RPU foams without the surface functionalization, showing up to 47% and 45% higher specific compressive strength and modulus, respectively, with a 40% lignin substitution ratio. Thermal insulation and temperature-stability of the two types of the foams were comparable. The results indicate that the surface functionalization of lignin increases reactivity and homogeneity of the lignin as a building block in RPU foams. The life cycle assessment for the lignin-based RPU foams shows that the surface functionalization process would have overall lesser environmental impacts when compared with the traditional manufacturing of RPU foams with synthetic polyols. These findings suggest the potential use of surface functionalized lignin as a sustainable core material replacement for synthetic polyols in building materials. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

15 pages, 1674 KiB  
Article
Bleached Kraft Eucalyptus Fibers as Reinforcement of Poly(Lactic Acid) for the Development of High-Performance Biocomposites
by Marc Delgado-Aguilar, Rafel Reixach, Quim Tarrés, Francesc X. Espinach, Pere Mutjé and José A. Méndez
Polymers 2018, 10(7), 699; https://doi.org/10.3390/polym10070699 - 24 Jun 2018
Cited by 12 | Viewed by 3670
Abstract
Poly(lactic acid) (PLA) is one of the most well-known biopolymers. PLA is bio-based, biocompatible, biodegradable, and easy to produce. This polymer has been used to create natural fiber reinforced composites. However, to produce high-performance and presumably biodegradable composites, the interphase between PLA and [...] Read more.
Poly(lactic acid) (PLA) is one of the most well-known biopolymers. PLA is bio-based, biocompatible, biodegradable, and easy to produce. This polymer has been used to create natural fiber reinforced composites. However, to produce high-performance and presumably biodegradable composites, the interphase between PLA and natural fibers still requires further study. As such, we aimed to produce PLA-based composites reinforced with a commercial bleached kraft eucalyptus pulp. To become a real alternative, fully biodegradable composites must have similar properties to commercial materials. The results found in this research support the competence of wood fiber reinforced PLA composites to replace other glass fiber reinforced polypropylene composites from a tensile property point of view. Furthermore, the micromechanics analysis showed that obtaining strong interphases between the PLA and the reinforcement is possible without using any coupling agent. This work shows the ability of totally bio-based composites that fulfill the principles of green chemistry to replace composites based on polyolefin and high contents of glass fiber. To the best knowledge of the authors, previous studies obtaining such properties or lower ones involved the use of reagents or the modification of the fiber surfaces. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

16 pages, 10706 KiB  
Article
Green Binder Based on Enzymatically Polymerized Eucalypt Kraft Lignin for Fiberboard Manufacturing: A Preliminary Study
by Susana Gouveia, Luis Alberto Otero, Carmen Fernández-Costas, Daniel Filgueira, Ángeles Sanromán and Diego Moldes
Polymers 2018, 10(6), 642; https://doi.org/10.3390/polym10060642 - 09 Jun 2018
Cited by 25 | Viewed by 4980
Abstract
The capability of laccase from Myceliophthora thermophila to drive oxidative polymerization of Eucalyptus globulus Kraft lignin (KL) was studied as a previous step before applying this biotechnological approach for the manufacturing of medium-density fiberboards (MDF) at a pilot scale. This method, which improves [...] Read more.
The capability of laccase from Myceliophthora thermophila to drive oxidative polymerization of Eucalyptus globulus Kraft lignin (KL) was studied as a previous step before applying this biotechnological approach for the manufacturing of medium-density fiberboards (MDF) at a pilot scale. This method, which improves the self-bonding capacity of wood fibers by lignin enzymatic cross-linking, mimics the natural process of lignification in living plants and trees. An interesting pathway to promote these interactions could be the addition of lignin to the system. The characterization of E. globulus KL after enzymatic treatment showed a decrease of phenolic groups as well as the aromatic protons without loss of aromaticity. There was also an extensive oxidative polymerization of the biomolecule. In the manufacture of self-bonded MDF, the synergy generated by the added lignin and laccase provided promising results. Thus, whenever laccase was present in the treatment, MDF showed an increase in mechanical and dimensional stability for increasing amounts of lignin. In a pilot scale, this method produced MDF that meets the requirements of the European standards for both thickness swell (TS) and internal bonding (IB) for indoor applications. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

19 pages, 2150 KiB  
Article
Inhalable Fucoidan Microparticles Combining Two Antitubercular Drugs with Potential Application in Pulmonary Tuberculosis Therapy
by Ludmylla Cunha, Susana Rodrigues, Ana M. Rosa da Costa, M Leonor Faleiro, Francesca Buttini and Ana Grenha
Polymers 2018, 10(6), 636; https://doi.org/10.3390/polym10060636 - 08 Jun 2018
Cited by 33 | Viewed by 4931
Abstract
The pulmonary delivery of antitubercular drugs is a promising approach to treat lung tuberculosis. This strategy not only allows targeting the infected organ instantly, it can also reduce the systemic adverse effects of the antibiotics. In light of that, this work aimed at [...] Read more.
The pulmonary delivery of antitubercular drugs is a promising approach to treat lung tuberculosis. This strategy not only allows targeting the infected organ instantly, it can also reduce the systemic adverse effects of the antibiotics. In light of that, this work aimed at producing fucoidan-based inhalable microparticles that are able to associate a combination of two first-line antitubercular drugs in a single formulation. Fucoidan is a polysaccharide composed of chemical units that have been reported to be specifically recognised by alveolar macrophages (the hosts of Mycobacterium). Inhalable fucoidan microparticles were successfully produced, effectively associating isoniazid (97%) and rifabutin (95%) simultaneously. Furthermore, the produced microparticles presented adequate aerodynamic properties for pulmonary delivery with potential to reach the respiratory zone, with a mass median aerodynamic diameter (MMAD) between 3.6–3.9 µm. The formulation evidenced no cytotoxic effects on lung epithelial cells (A549), although mild toxicity was observed on macrophage-differentiated THP-1 cells at the highest tested concentration (1 mg/mL). Fucoidan microparticles also exhibited a propensity to be captured by macrophages in a dose-dependent manner, as well as an ability to activate the target cells. Furthermore, drug-loaded microparticles effectively inhibited mycobacterial growth in vitro. Thus, the produced fucoidan microparticles are considered to hold potential as pulmonary delivery systems for the treatment of tuberculosis. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

19 pages, 3233 KiB  
Article
Synthesis and Characterization of Renewable Polyester Coil Coatings from Biomass-Derived Isosorbide, FDCA, 1,5-Pentanediol, Succinic Acid, and 1,3-Propanediol
by Mónica Lomelí-Rodríguez, José Raúl Corpas-Martínez, Susan Willis, Robert Mulholland and Jose Antonio Lopez-Sanchez
Polymers 2018, 10(6), 600; https://doi.org/10.3390/polym10060600 - 29 May 2018
Cited by 49 | Viewed by 8336
Abstract
Biomass-derived polyester coatings for coil applications have been successfully developed and characterized. The coatings were constituted by carbohydrate-derived monomers, namely 2,5-furan dicarboxylic acid, isosorbide, succinic acid, 1,3-propanediol, and 1,5-pentanediol, the latter having previously been used as a plasticizer rather than a structural building [...] Read more.
Biomass-derived polyester coatings for coil applications have been successfully developed and characterized. The coatings were constituted by carbohydrate-derived monomers, namely 2,5-furan dicarboxylic acid, isosorbide, succinic acid, 1,3-propanediol, and 1,5-pentanediol, the latter having previously been used as a plasticizer rather than a structural building unit. The effect of isosorbide on the coatings is widely studied. The inclusion of these monomers diversified the mechanical properties of the coatings, and showed an improved performance against common petrochemical derived coatings. This research study provides a range of fully bio-derived polyester coil coatings with tunable properties of industrial interest, highlighting the importance of renewable polymers towards a successful bioeconomy. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Figure 1

16 pages, 7312 KiB  
Article
Isothermal and Nonisothermal Crystallization Kinetics of Poly(ε-caprolactone) Blended with a Novel Ionic Liquid, 1-Ethyl-3-propylimidazolium Bis(trifluoromethanesulfonyl)imide
by Chun-Ting Yang, Li-Ting Lee and Tzi-Yi Wu
Polymers 2018, 10(5), 543; https://doi.org/10.3390/polym10050543 - 18 May 2018
Cited by 7 | Viewed by 3795
Abstract
Recently, ionic liquids (ILs) and biodegradable polymers have become crucial functional materials in green sustainable science and technology. In this study, we investigated the influence of a novel IL, 1-ethyl-3-propylimidazolium bis(trifluoromethanesulfonyl)imide ([EPrI][TFSI]), on the crystallization kinetics of a widely studied biodegradable polymer, poly(ε-caprolactone) [...] Read more.
Recently, ionic liquids (ILs) and biodegradable polymers have become crucial functional materials in green sustainable science and technology. In this study, we investigated the influence of a novel IL, 1-ethyl-3-propylimidazolium bis(trifluoromethanesulfonyl)imide ([EPrI][TFSI]), on the crystallization kinetics of a widely studied biodegradable polymer, poly(ε-caprolactone) (PCL). To obtain a comprehensive understanding, both the isothermal and nonisothermal crystallization kinetics of the PCL blends were studied. Incorporating [EPrI][TFSI] reduced the isothermal and nonisothermal crystallization rates of PCL. Regarding isothermal crystallization, the small k and 1/t0.5 values of the blend, estimated using the Avrami equation, indicated that [EPrI][TFSI] decreased the rate of isothermal crystallization of PCL. The Mo model adequately described the nonisothermal crystallization kinetics of the blends. Increasing the [EPrI][TFSI] content caused the rate-related parameter F(T) to increase. This indicated that the crystallization rate of PCL decreased when [EPrI][TFSI] was incorporated. The spherulite appearance temperature of the blending sample was found to be lower than that of neat PCL under a constant cooling rate. The analysis of the effective activation energy proposed that the nonisothermal crystallization of PCL would not be favorited when the [EPrI][TFSI] was incorporated into the blends. The addition of [EPrI][TFSI] would not change the crystal structures of PCL according to the results of wide angle X-ray diffraction. Fourier transform infrared spectroscopy suggested that interactions occurred between [EPrI][TFSI] and PCL. The crystallization kinetics of PCL were inhibited when [EPrI][TFSI] was incorporated. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

15 pages, 3873 KiB  
Article
Renewable Resources and a Recycled Polymer as Raw Materials: Mats from Electrospinning of Lignocellulosic Biomass and PET Solutions
by Rachel Passos de Oliveira Santos, Patrícia Fernanda Rossi, Luiz Antônio Ramos and Elisabete Frollini
Polymers 2018, 10(5), 538; https://doi.org/10.3390/polym10050538 - 17 May 2018
Cited by 20 | Viewed by 6094
Abstract
Interest in the use of renewable raw materials in the preparation of materials has been growing uninterruptedly in recent decades. The aim of this strategy is to offer alternatives to the use of fossil fuel-based raw materials and to meet the demand for [...] Read more.
Interest in the use of renewable raw materials in the preparation of materials has been growing uninterruptedly in recent decades. The aim of this strategy is to offer alternatives to the use of fossil fuel-based raw materials and to meet the demand for materials that are less detrimental to the environment after disposal. In this context, several studies have been carried out on the use of lignocellulosic biomass and its main components (cellulose, hemicelluloses, and lignin) as raw materials for polymeric materials. Lignocellulosic fibers have a high content of cellulose, but there has been a notable lack of investigations on application of the electrospinning technique for solutions prepared from raw lignocellulosic biomass, even though the presence of cellulose favors the alignment of the fiber chains during electrospinning. In this investigation, ultrathin (submicrometric) and nanoscale aligned fibers were successfully prepared via electrospinning (room temperature) of solutions prepared with different contents of lignocellulosic sisal fibers combined with recycled poly(ethylene terephthalate) (PET) using trifluoroacetic acid (TFA) as solvent. The “macro” fibers were deconstructed by the action of TFA, resulting in solutions containing their constituents, i.e., cellulose, hemicelluloses, and lignin, in addition to PET. The “macro” sisal fibers were reconstructed at the nanometer and submicrometric scale from these solutions. The SEM micrographs of the mats containing the components of sisal showed distinct fiber networks, likely due to differences in the solubility of these components in TFA and in their dielectric constants. The mechanical properties of the mats (dynamic mechanical analysis, DMA, and tensile properties) were evaluated with the samples positioned both in the direction (dir) of and in opposition (op) to the alignment of the nano and ultrathin fibers, which can be considered a novelty in the analysis of this type of material. DMA showed superior values of storage modulus (E’ at 30 °C) for the mats characterized in the preferential direction of fiber alignment. For example, for mats obtained from solutions prepared from a 0.4 ratio of sisal fibers/PET, Sisal/PET0.40dir presented a high E’ value of 765 MPa compared to Sisal/PET0.40op that presented an E’ value of 88.4 MPa. The fiber alignment did not influence the Tg values (from tan δ peak) of electrospun mats with the same compositions, as they presented similar values for this property. The tensile properties of the electrospun mats were significantly impacted by the alignment of the fibers: e.g., Sisal/PET0.40dir presented a high tensile strength value of 15.72 MPa, and Sisal/PET0.40op presented a value of approximately 2.5 MPa. An opposite trend was observed regarding the values of elongation at break for these materials. Other properties of the mats are also discussed; such as the index of fiber alignment, average porosity, and surface contact angle. To our knowledge, this is the first time that the influence of fiber alignment on the properties of electrospun mats based on untreated lignocellulosic biomass combined with a recycled polymer, such as PET, has been evaluated. The mats obtained in this study have potential for diversified applications, such as reinforcement for polymeric matrices in nanocomposites, membranes for filtration, and support for enzymes, wherein the fiber alignment, together with other evaluated properties, can impact their effectiveness in these applications. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

14 pages, 2284 KiB  
Article
FA Polymerization Disruption by Protic Polar Solvents
by Guillaume Falco, Nathanaël Guigo, Luc Vincent and Nicolas Sbirrazzuoli
Polymers 2018, 10(5), 529; https://doi.org/10.3390/polym10050529 - 15 May 2018
Cited by 29 | Viewed by 4740
Abstract
Furfuryl alcohol (FA) is a biobased monomer derived from lignocellulosic biomass. The present work describes its polymerization in the presence of protic polar solvents, i.e., water or isopropyl alcohol (IPA), using maleic anhydride (MA) as an acidic initiator. The polymerization was followed from [...] Read more.
Furfuryl alcohol (FA) is a biobased monomer derived from lignocellulosic biomass. The present work describes its polymerization in the presence of protic polar solvents, i.e., water or isopropyl alcohol (IPA), using maleic anhydride (MA) as an acidic initiator. The polymerization was followed from the liquid to the rubbery state by combining DSC and DMA data. In the liquid state, IPA disrupts the expected reactions during the FA polymerization due to a stabilization of the furfuryl carbenium center. This causes the initiation of the polymerization at a higher temperature, which is also reflected by a higher activation energy. In the water system, the MA opening allows the reaction to start at a lower temperature. A higher pre-exponential factor value is obtained in that case. The DMA study of the final branching reaction occurring in the rubbery state has highlighted a continuous increase of elastic modulus until 290 °C. This increasing tendency of modulus was exploited to obtain activation energy dependences (Eα) of FA polymerization in the rubbery state. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

17 pages, 2658 KiB  
Article
Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters
by Valentina Siracusa, Laura Genovese, Carlo Ingrao, Andrea Munari and Nadia Lotti
Polymers 2018, 10(5), 502; https://doi.org/10.3390/polym10050502 - 05 May 2018
Cited by 17 | Viewed by 6362
Abstract
Random copolymers of poly(propylene 1,4-cyclohexanedicarboxylate) containing different amounts of neopentyl glycol sub-unit were investigated from the gas barrier point of view at the standard temperature of analysis (23 °C) with respect to the three main gases used in food packaging field: N2 [...] Read more.
Random copolymers of poly(propylene 1,4-cyclohexanedicarboxylate) containing different amounts of neopentyl glycol sub-unit were investigated from the gas barrier point of view at the standard temperature of analysis (23 °C) with respect to the three main gases used in food packaging field: N2, O2, and CO2. The effect of temperature was also evaluated, considering two temperatures close to the Tg sample (8 and 15 °C) and two above Tg (30 and 38 °C). Barrier performances were checked after food contact simulants and in different relative humidity (RH) environments obtained with two saturated saline solutions (Standard Atmosphere, 23 °C, 85% of RH, with saturated KCl solution; Tropical Climate, 38 °C, 90% RH, with saturated KNO3 solution). The results obtained were compared to those of untreated film, which was used as a reference. The relationships between the gas transmission rate, the diffusion coefficients, the solubility, and the copolymer composition were established. The results highlighted a correlation between barrier performance and copolymer composition and the applied treatment. In particular, copolymerization did not cause a worsening of the barrier properties, whereas the different treatments differently influenced the gas barrier behavior, depending on the chemical polymer structure. After treatment, Fourier transform infrared analysis confirmed the chemical stability of these copolymers. Films were transparent, with a light yellowish color, slightly more intense after all treatments. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

12 pages, 9400 KiB  
Article
Partially Renewable Poly(butylene 2,5-furandicarboxylate-co-isophthalate) Copolyesters Obtained by ROP
by Juan Carlos Morales-Huerta, Antxon Martínez de Ilarduya and Sebastián Muñoz-Guerra
Polymers 2018, 10(5), 483; https://doi.org/10.3390/polym10050483 - 28 Apr 2018
Cited by 12 | Viewed by 4231
Abstract
Cyclic butylene furandicarboxylate (c(BF)n) and butylene isophthalate (c(BI)n) oligomers obtained by high dilution condensation reaction were polymerized in bulk at 200 °C with Sn(Oct)2 catalyst via ring opening polymerization to give homopolyesters and copolyesters [...] Read more.
Cyclic butylene furandicarboxylate (c(BF)n) and butylene isophthalate (c(BI)n) oligomers obtained by high dilution condensation reaction were polymerized in bulk at 200 °C with Sn(Oct)2 catalyst via ring opening polymerization to give homopolyesters and copolyesters (coPBFxIy) with weight average molar masses in the 60,000–70,000 g·mol−1 range and dispersities between 1.3 and 1.9. The composition of the copolyesters as determined by NMR was practically the same as that of the feed, and they all showed an almost random microstructure. The copolyesters were thermally stable up to 300 °C and crystalline for all compositions, and have Tg in the 40–20 °C range with values decreasing almost linearly with their content in isophthalate units in the copolyester. Both melting temperature and enthalpy of the copolyesters decreased as the content in butylene isophthalate units increased up to a composition 30/70 (BF/BI), at which the triclinic crystal phase made exclusively of butylene furanoate units changed to the crystal structure of PBI. The partial replacement of furanoate by isophthalate units decreased substantially the crystallizability of PBF. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

21 pages, 25113 KiB  
Article
Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications
by Nejib Kasmi, George Z. Papageorgiou, Dimitris S. Achilias and Dimitrios N. Bikiaris
Polymers 2018, 10(5), 471; https://doi.org/10.3390/polym10050471 - 25 Apr 2018
Cited by 40 | Viewed by 8163
Abstract
The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate) (PEF), which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state [...] Read more.
The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate) (PEF), which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state polycondensation under vacuum for 6 h reaction time at 205 °C for the resulting polymer from two-step melt polycondensation process, which is catalyzed by tetrabutyl titanate (TBT). A remelting step was thereafter applied for 15 min at 250 °C for the obtained polyester. Thus, the PEF sample was ground into powder, and was then crystallized for 6 h at 170 °C. This polyester is then submitted to a second solid-state polycondensation (SSP) carried out at different reaction times (1, 2, 3.5, and 5 h) and temperatures 190, 200, and 205 °C, under vacuum. Ultimately, a significant increase in intrinsic viscosity is observed with only 5 h reaction time at 205 °C during the second SSP being needed to obtain very high molecular weight PEF polymer greater than 1 dL/g, which sufficient for manufacturing purposes. Intrinsic viscosity (IV), carboxyl end-group content (–COOH), and thermal properties, via differential scanning calorimetry (DSC), were measured for all resultant polyesters. Thanks to the post-polymerization process, DSC results showed that the melting temperatures of the prepared PEF samples were steadily enhanced in an obvious way as a function of reaction time and temperature increase. It was revealed, as was expected for all SSP samples, that the intrinsic viscosity and the average molecular weight of PEF polyester increased with increasing SSP time and temperature, whereas the number of carboxyl end-group concentration was decreased. A simple kinetic model was also developed and used to predict the time evolution of polyesters IV, as well as the carboxyl and hydroxyl end-groups of PEF during the SSP. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

15 pages, 22599 KiB  
Article
3D Printable Filaments Made of Biobased Polyethylene Biocomposites
by Daniel Filgueira, Solveig Holmen, Johnny K. Melbø, Diego Moldes, Andreas T. Echtermeyer and Gary Chinga-Carrasco
Polymers 2018, 10(3), 314; https://doi.org/10.3390/polym10030314 - 13 Mar 2018
Cited by 58 | Viewed by 7307
Abstract
Two different series of biobased polyethylene (BioPE) were used for the manufacturing of biocomposites, complemented with thermomechanical pulp (TMP) fibers. The intrinsic hydrophilic character of the TMP fibers was previously modified by grafting hydrophobic compounds (octyl gallate and lauryl gallate) by means of [...] Read more.
Two different series of biobased polyethylene (BioPE) were used for the manufacturing of biocomposites, complemented with thermomechanical pulp (TMP) fibers. The intrinsic hydrophilic character of the TMP fibers was previously modified by grafting hydrophobic compounds (octyl gallate and lauryl gallate) by means of an enzymatic-assisted treatment. BioPE with low melt flow index (MFI) yielded filaments with low void fraction and relatively low thickness variation. The water absorption of the biocomposites was remarkably improved when the enzymatically-hydrophobized TMP fibers were used. Importantly, the 3D printing of BioPE was improved by adding 10% and 20% TMP fibers to the composition. Thus, 3D printable biocomposites with low water uptake can be manufactured by using fully biobased materials and environmentally-friendly processes. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

9 pages, 2491 KiB  
Article
Structural Investigation of Poly(ethylene furanoate) Polymorphs
by Lucia Maini, Matteo Gigli, Massimo Gazzano, Nadia Lotti, Dimitrios N. Bikiaris and George Z. Papageorgiou
Polymers 2018, 10(3), 296; https://doi.org/10.3390/polym10030296 - 09 Mar 2018
Cited by 52 | Viewed by 5838
Abstract
α and β crystalline phases of poly(ethylene furanoate) (PEF) were determined using X-ray powder diffraction by structure resolution in direct space and Rietveld refinement. Moreover, the α’ structure of a PEF sample was refined from data previously reported for PEF fiber. Triclinic α-PEF [...] Read more.
α and β crystalline phases of poly(ethylene furanoate) (PEF) were determined using X-ray powder diffraction by structure resolution in direct space and Rietveld refinement. Moreover, the α’ structure of a PEF sample was refined from data previously reported for PEF fiber. Triclinic α-PEF a = 5.729 Å, b = 7.89 Å, c = 9.62 Å, α = 98.1°, β = 65.1°, γ = 101.3°; monoclinic α’-PEF a = 5.912 Å, b = 6.91 Å, c = 19.73 Å, α = 90°, β = 90°, γ = 104.41°; and monoclinic β-PEF a = 5.953 Å, b = 6.60 Å, c = 10.52 Å, α = 90°, β = 107.0°, γ = 90° were determined as the best fitting of X-ray diffraction (XRD) powder patterns. Final atomic coordinates are reported for all polymorphs. In all cases PEF chains adopted an almost planar configuration. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

13 pages, 2050 KiB  
Article
Lipase-Catalyzed Synthesis, Properties Characterization, and Application of Bio-Based Dimer Acid Cyclocarbonate
by Xin He, Guiying Wu, Li Xu, Jinyong Yan and Yunjun Yan
Polymers 2018, 10(3), 262; https://doi.org/10.3390/polym10030262 - 03 Mar 2018
Cited by 10 | Viewed by 4706
Abstract
Dimer acid cyclocarbonate (DACC) is synthesized from glycerol carbonate (GC) and Sapium sebiferum oil-derived dimer acid (DA, 9-[(Z)-non-3-enyl]-10-octylnonadecanedioic acid). Meanwhile, DACC can be used for synthetic materials of bio-based non-isocyanate polyurethane (bio-NIPU). In this study, DACC was synthesized by the esterification [...] Read more.
Dimer acid cyclocarbonate (DACC) is synthesized from glycerol carbonate (GC) and Sapium sebiferum oil-derived dimer acid (DA, 9-[(Z)-non-3-enyl]-10-octylnonadecanedioic acid). Meanwhile, DACC can be used for synthetic materials of bio-based non-isocyanate polyurethane (bio-NIPU). In this study, DACC was synthesized by the esterification of dimer acid and glycerol carbonate using Novozym 435 (Candida antarctica lipase B) as the biocatalyst. Via the optimizing reaction conditions, the highest yield of 76.00% and the lowest acid value of 43.82 mg KOH/g were obtained. The product was confirmed and characterized by Fourier transform-infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Then, the synthetic DACC was further used to synthesize bio-NIPU, which was examined by FTIR, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC), indicating that it possesses very good physio-chemical properties and unique material quality with a potential prospect in applications. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Figure 1

21 pages, 8271 KiB  
Article
Starch-Chitosan Polyplexes: A Versatile Carrier System for Anti-Infectives and Gene Delivery
by Hanzey Yasar, Duy-Khiet Ho, Chiara De Rossi, Jennifer Herrmann, Sarah Gordon, Brigitta Loretz and Claus-Michael Lehr
Polymers 2018, 10(3), 252; https://doi.org/10.3390/polym10030252 - 01 Mar 2018
Cited by 30 | Viewed by 7926
Abstract
Despite the enormous potential of nanomedicine, the search for materials from renewable resources that balance bio-medical requirements and engineering aspects is still challenging. This study proposes an easy method to make nanoparticles composed of oxidized starch and chitosan, both isolated from natural biopolymers. [...] Read more.
Despite the enormous potential of nanomedicine, the search for materials from renewable resources that balance bio-medical requirements and engineering aspects is still challenging. This study proposes an easy method to make nanoparticles composed of oxidized starch and chitosan, both isolated from natural biopolymers. The careful adjustment of C/N ratio, polymer concentration and molecular weight allowed for tuning of particle characteristics. The system’s carrier capability was assessed both for anti-infectives and for nucleic acid. Higher starch content polyplexes were found to be suitable for high encapsulation efficiency of cationic anti-infectives and preserving their bactericidal function. A cationic carrier was obtained by coating the anionic polyplex with chitosan. Coating allowed for a minimal amount of cationic polymer to be employed and facilitated plasmid DNA loading both within the particle core and on the surface. Transfection studies showed encouraging result, approximately 5% of A549 cells with reporter gene expression. In summary, starch-chitosan complexes are suitable carriers with promising perspectives for pharmaceutical use. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

14 pages, 7448 KiB  
Article
Gas Dissolution Foaming as a Novel Approach for the Production of Lightweight Biocomposites of PHB/Natural Fibre Fabrics
by Heura Ventura, Luigi Sorrentino, Ester Laguna-Gutierrez, Miguel Angel Rodriguez-Perez and Monica Ardanuy
Polymers 2018, 10(3), 249; https://doi.org/10.3390/polym10030249 - 28 Feb 2018
Cited by 15 | Viewed by 4672
Abstract
The aim of this study is to propose and explore a novel approach for the production of cellular lightweight natural fibre, nonwoven, fabric-reinforced biocomposites by means of gas dissolution foaming from composite precursors of polyhydroxybutyrate-based matrix and flax fabric reinforcement. The main challenge [...] Read more.
The aim of this study is to propose and explore a novel approach for the production of cellular lightweight natural fibre, nonwoven, fabric-reinforced biocomposites by means of gas dissolution foaming from composite precursors of polyhydroxybutyrate-based matrix and flax fabric reinforcement. The main challenge is the development of a regular cellular structure in the polymeric matrix to reach a weight reduction while keeping a good fibre-matrix stress transfer and adhesion. The viability of the process is evaluated through the analysis of the cellular structure and morphology of the composites. The effect of matrix modification, nonwoven treatment, expansion temperature, and expansion pressure on the density and cellular structure of the cellular composites is evaluated. It was found that the nonwoven fabric plays a key role in the formation of a uniform cellular morphology, although limiting the maximum expansion ratio of the composites. Cellular composites with a significant reduction of weight (relative densities in the range 0.4–0.5) were successfully obtained. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

21 pages, 7211 KiB  
Article
Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites
by Edgar Castro-Aguirre, Rafael Auras, Susan Selke, Maria Rubino and Terence Marsh
Polymers 2018, 10(2), 202; https://doi.org/10.3390/polym10020202 - 17 Feb 2018
Cited by 68 | Viewed by 7702
Abstract
Poly(lactic acid) (PLA), a well-known biodegradable and compostable polymer, was used in this study as a model system to determine if the addition of nanoclays affects its biodegradation in simulated composting conditions and whether the nanoclays impact the microbial population in a compost [...] Read more.
Poly(lactic acid) (PLA), a well-known biodegradable and compostable polymer, was used in this study as a model system to determine if the addition of nanoclays affects its biodegradation in simulated composting conditions and whether the nanoclays impact the microbial population in a compost environment. Three different nanoclays were studied due to their different surface characteristics but similar chemistry: organo-modified montmorillonite (OMMT), Halloysite nanotubes (HNT), and Laponite® RD (LRD). Additionally, the organo-modifier of MMT, methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (QAC), was studied. PLA and PLA bio-nanocomposite (BNC) films were produced, characterized, and used for biodegradation evaluation with an in-house built direct measurement respirometer (DMR) following the analysis of evolved CO2 approach. A biofilm formation essay and scanning electron microscopy were used to evaluate microbial attachment on the surface of PLA and BNCs. The results obtained from four different biodegradation tests with PLA and its BNCs showed a significantly higher mineralization of the films containing nanoclay in comparison to the pristine PLA during the first three to four weeks of testing, mainly attributed to the reduction in the PLA lag time. The effect of the nanoclays on the initial molecular weight during processing played a crucial role in the evolution of CO2. PLA-LRD5 had the greatest microbial attachment on the surface as confirmed by the biofilm test and the SEM micrographs, while PLA-QAC0.4 had the lowest biofilm formation that may be attributed to the inhibitory effect also found during the biodegradation test when the QAC was tested by itself. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

11 pages, 3119 KiB  
Article
Renewable, Eugenol—Modified Polystyrene Layer for Liquid Crystal Orientation
by Changha Ju, Taehyung Kim and Hyo Kang
Polymers 2018, 10(2), 201; https://doi.org/10.3390/polym10020201 - 17 Feb 2018
Cited by 10 | Viewed by 6524
Abstract
We synthesized a series of plant-based and renewable, eugenol-modified polystyrene (PEUG#) (# = 20, 40, 60, 80, and 100, in which # is the molar content of the eugenol moiety in the side group). Eugenol is extracted from clove oil. We used polymer [...] Read more.
We synthesized a series of plant-based and renewable, eugenol-modified polystyrene (PEUG#) (# = 20, 40, 60, 80, and 100, in which # is the molar content of the eugenol moiety in the side group). Eugenol is extracted from clove oil. We used polymer modification reactions to determine the liquid crystal (LC) orientation properties of the polymer films. In general, the LC cells fabricated using the polymer films with a higher molar content of eugenol side groups exhibited vertical LC orientation behavior. The vertical orientation behavior was well correlated with the surface energy value of the polymer films. The vertical LC orientation could be formed due to the low polar surface energy value on the polymer film generated by the nonpolar carbon group. Electro-optical performances (e.g., voltage holding ratio (VHR), residual DC voltage (R-DC), and thermal orientation stabilities) were good enough to be observed for LC cells using PEUG100 polymer as an eco-friendly LC orientation material. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

5917 KiB  
Article
Crystallization and Stereocomplexation of PLA-mb-PBS Multi-Block Copolymers
by Rosa M. D’Ambrosio, Rose Mary Michell, Rosica Mincheva, Rebeca Hernández, Carmen Mijangos, Philippe Dubois and Alejandro J. Müller
Polymers 2018, 10(1), 8; https://doi.org/10.3390/polym10010008 - 22 Dec 2017
Cited by 13 | Viewed by 6642
Abstract
The crystallization and morphology of PLA-mb-PBS copolymers and their corresponding stereocomplexes were studied. The effect of flexible blocks (i.e., polybutylene succinate, PBS) on the crystallization of the copolymers and stereocomplex formation were investigated using polarized light optical microscopy (PLOM), differential scanning [...] Read more.
The crystallization and morphology of PLA-mb-PBS copolymers and their corresponding stereocomplexes were studied. The effect of flexible blocks (i.e., polybutylene succinate, PBS) on the crystallization of the copolymers and stereocomplex formation were investigated using polarized light optical microscopy (PLOM), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), and carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR). The PLA and PBS multiple blocks were miscible in the melt and in the glassy state. When the PLA-mb-PBS copolymers are cooled from the melt, the PLA component crystallizes first creating superstructures, such as spherulites or axialites, which constitute a template within which the PBS component has to crystallize when the sample is further cooled down. The Avrami theory was able to fit the overall crystallization kinetics of both semi-crystalline components, and the n values for both blocks in all the samples had a correspondence with the superstructural morphology observed by PLOM. Solution mixtures of PLLA-mb-PBS and PLDA-mb-PBS copolymers were prepared, as well as copolymer/homopolymer blends with the aim to study the stereocomplexation of PLLA and PDLA chain segments. A lower amount of stereocomplex formation was observed in copolymer mixtures as compared to neat L100/D100 stereocomplexes. The results show that PBS chain segments perturb the formation of stereocomplexes and this perturbation increases with the amount of PBS in the samples. However, when relatively low amounts of PBS in the copolymer blends are present, the rate of stereocomplex formation is enhanced. This effect dissappears when higher amounts of PBS are present. The stereocomplexation was confirmed by FTIR and solid state 13C-NMR analyses. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

2708 KiB  
Article
Cardanol Groups Grafted on Poly(vinyl chloride)—Synthesis, Performance and Plasticization Mechanism
by Puyou Jia, Meng Zhang, Lihong Hu, Rui Wang, Chao Sun and Yonghong Zhou
Polymers 2017, 9(11), 621; https://doi.org/10.3390/polym9110621 - 15 Nov 2017
Cited by 55 | Viewed by 8946
Abstract
Internally plasticized poly(vinyl chloride) (PVC) materials are investigated via grafting of propargyl ether cardanol (PEC). The chemical structure of the materials was studied by FT-IR and 1H NMR. The performace of the obtained internally plasticized PVC materials was also investigated with TGA, [...] Read more.
Internally plasticized poly(vinyl chloride) (PVC) materials are investigated via grafting of propargyl ether cardanol (PEC). The chemical structure of the materials was studied by FT-IR and 1H NMR. The performace of the obtained internally plasticized PVC materials was also investigated with TGA, DSC and leaching tests. The results showed that grafting of propargyl ether cardanol (PEC) on PVC increased the free volume and distance of PVC chains, which efficiently decreased the glass transition temperature (Tg). No migration was found in the leaching tests for internally plasticized PVC films compared with plasticized PVC materials with commercial plasticizer dioctyl phthalate (DOP). The internal plasticization mechanism was also disscussed according to lubrication theory and free volume theory. This work provides a meaningful strategy for designing no-migration PVC materials by introducing cardanol groups as branched chains. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

5477 KiB  
Article
Thiolated Chitosan Masked Polymeric Microspheres with Incorporated Mesocellular Silica Foam (MCF) for Intranasal Delivery of Paliperidone
by Stavroula Nanaki, Maria Tseklima, Evi Christodoulou, Konstantinos Triantafyllidis, Margaritis Kostoglou and Dimitrios N. Bikiaris
Polymers 2017, 9(11), 617; https://doi.org/10.3390/polym9110617 - 15 Nov 2017
Cited by 45 | Viewed by 6458
Abstract
In this study, mesocellular silica foam (MCF) was used to encapsulate paliperidone, an antipsychotic drug used in patients suffering from bipolar disorder. MCF with the drug adsorbed was further encapsulated into poly(lactic acid) (PLA) and poly(lactide-co-glycolide) (PLGA) 75/25 w/w [...] Read more.
In this study, mesocellular silica foam (MCF) was used to encapsulate paliperidone, an antipsychotic drug used in patients suffering from bipolar disorder. MCF with the drug adsorbed was further encapsulated into poly(lactic acid) (PLA) and poly(lactide-co-glycolide) (PLGA) 75/25 w/w microspheres and these have been coated with thiolated chitosan. As found by TEM analysis, thiolated chitosan formed a thin layer on the polymeric microspheres’ surface and was used in order to enhance their mucoadhesiveness. These microspheres aimed at the intranasal delivery of paliperidone. The DSC and XRD studies showed that paliperidone was encapsulated in amorphous form inside the MCF silica and for this reason its dissolution profile was enhanced compared to the neat drug. In coated microspheres, thiolated chitosan reduced the initial burst effect of the paliperidone dissolution profile and in all cases sustained release formulations have been prepared. The release mechanism was also theoretically studied and three kinetic models were proposed and successfully fitted for a dissolution profile of prepared formulations to be found. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

2261 KiB  
Article
Effect of Glycerol Pretreatment on Levoglucosan Production from Corncobs by Fast Pyrolysis
by Liqun Jiang, Nannan Wu, Anqing Zheng, Xiaobo Wang, Ming Liu, Zengli Zhao, Fang He, Haibin Li and Xinjun Feng
Polymers 2017, 9(11), 599; https://doi.org/10.3390/polym9110599 - 10 Nov 2017
Cited by 14 | Viewed by 5871
Abstract
In this manuscript, glycerol was used in corncobs’ pretreatment to promote levoglucosan production by fast pyrolysis first and then was further utilized as raw material for chemicals production by microbial fermentation. The effects of glycerol pretreatment temperatures (220–240 °C), time (0.5–3 h) and [...] Read more.
In this manuscript, glycerol was used in corncobs’ pretreatment to promote levoglucosan production by fast pyrolysis first and then was further utilized as raw material for chemicals production by microbial fermentation. The effects of glycerol pretreatment temperatures (220–240 °C), time (0.5–3 h) and solid-to-liquid ratios (5–20%) were investigated. Due to the accumulation of crystalline cellulose and the removal of minerals, the levoglucosan yield was as high as 35.8% from corncobs pretreated by glycerol at 240 for 3 h with a 5% solid-to-liquid ratio, which was obviously higher than that of the control (2.2%). After glycerol pretreatment, the fermentability of the recovered glycerol remaining in the liquid stream from glycerol pretreatment was evaluated by Klebsiella pneumoniae. The results showed that the recovered glycerol had no inhibitory effect on the growth and metabolism of the microbe, which was a promising substrate for fermentation. The value-added applications of glycerol could reduce the cost of biomass pretreatment. Correspondingly, this manuscript offers a green, sustainable, efficient and economic strategy for an integrated biorefinery process. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

2370 KiB  
Article
Synthesis and Characterization of Cellulose Nanofibril-Reinforced Polyurethane Foam
by Weiqi Leng, Jinghao Li and Zhiyong Cai
Polymers 2017, 9(11), 597; https://doi.org/10.3390/polym9110597 - 10 Nov 2017
Cited by 38 | Viewed by 7474
Abstract
In this study, traditional polyol was partially replaced with green, environmentally friendly cellulose nanofibrils (CNF). The effects of CNF on the performance of CNF-reinforced polyurethane foam nanocomposites were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, thermogravimetric [...] Read more.
In this study, traditional polyol was partially replaced with green, environmentally friendly cellulose nanofibrils (CNF). The effects of CNF on the performance of CNF-reinforced polyurethane foam nanocomposites were investigated using scanning electron microscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and a compression test. The results showed that the introduction of CNF into the polyurethane matrix not only created stronger urethane bonding between the hydroxyl groups in the cellulose chain and isocyanate groups in polymethylene polyphenylisocyanate, but also developed an additional filler–matrix interaction between CNF and polyurethane. With the increase of the CNF replacement ratio, a higher glass transition temperature was obtained, and a higher amount of char residue was generated. In addition, an increase of up to 18-fold in compressive strength was achieved for CNF-PUF (polyurethane foam) nanocomposites with a 40% CNF replacement ratio. CNF has proved to be a promising substitute for traditional polyols in the preparation of polyurethane foams. This study provides an interesting method to synthesize highly green bio-oriented polyurethane foams. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

3634 KiB  
Article
Novel Isocyanate-Modified Carrageenan Polymer Materials: Preparation, Characterization and Application Adsorbent Materials of Pharmaceuticals
by Myrsini Papageorgiou, Stavroula G. Nanaki, George Z. Kyzas, Christina Koulouktsi, Dimitrios N. Bikiaris and Dimitra A. Lambropoulou
Polymers 2017, 9(11), 595; https://doi.org/10.3390/polym9110595 - 10 Nov 2017
Cited by 14 | Viewed by 5481
Abstract
The present study focused on the synthesis and application of novel isocyanate-modified carrageenan polymers as sorbent materials for pre-concentration and removal of diclofenac (DCF) and carbamazepine (CBZ) in different aqueous matrices (surface waters and wastewaters). The polymer materials were characterized using Fourier transform [...] Read more.
The present study focused on the synthesis and application of novel isocyanate-modified carrageenan polymers as sorbent materials for pre-concentration and removal of diclofenac (DCF) and carbamazepine (CBZ) in different aqueous matrices (surface waters and wastewaters). The polymer materials were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The effects on the adsorption behavior were studied, and the equilibrium data were fitted by the Langmuir and Freundlich models. The maximum adsorption capacity (Qmax) was determined by Langmuir–Freundlich model and was ranged for iota-carrageenan (iCAR) from 7.44 to 8.51 mg/g for CBZ and 23.41 to 35.78 mg/g for DCF and for kappa-carrageenan (kCAR) from 7.07 to 13.78 mg/g for CBZ and 22.66 to 49.29 mg/g for DCF. In the next step, dispersive solid phase extraction (D-SPE) methodology followed by liquid desorption and liquid chromatography mass spectrometry (LC/MS) has been developed and validated. The factors, which affect the performance of D-SPE, were investigated. Then, the optimization of extraction time, sorbent mass and eluent’s volume was carried out using a central composite design (CCD) and response surface methodology (RSM). Under the optimized conditions, good linear relationships have been achieved with the correlation coefficient (R2) varying from 0.9901 to 0.995. The limits of detections (LODs) and limits of quantifications (LOQs) ranged 0.042–0.090 μg/L and 0.137–0.298 μg/L, respectively. The results of the recoveries were 70–108% for both analytes, while the precisions were 2.8–17.5% were obtained, which indicated that the method was suitable for the analysis of both compounds in aqueous matrices. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

5172 KiB  
Article
Fully Biodegradable Biocomposites with High Chicken Feather Content
by Ibon Aranberri, Sarah Montes, Itxaso Azcune, Alaitz Rekondo and Hans-Jürgen Grande
Polymers 2017, 9(11), 593; https://doi.org/10.3390/polym9110593 - 09 Nov 2017
Cited by 56 | Viewed by 9927
Abstract
The aim of this work was to develop new biodegradable polymeric materials with high loadings of chicken feather (CF). In this study, the effect of CF concentration and the type of biodegradable matrix on the physical, mechanical and thermal properties of the biocomposites [...] Read more.
The aim of this work was to develop new biodegradable polymeric materials with high loadings of chicken feather (CF). In this study, the effect of CF concentration and the type of biodegradable matrix on the physical, mechanical and thermal properties of the biocomposites was investigated. The selected biopolymers were polylactic acid (PLA), polybutyrate adipate terephthalate (PBAT) and a PLA/thermoplastic copolyester blend. The studied biocomposites were manufactured with a torque rheometer having a CF content of 50 and 60 wt %. Due to the low tensile strength of CFs, the resulting materials were penalized in terms of mechanical properties. However, high-loading CF biocomposites resulted in lightweight and thermal-insulating materials when compared with neat bioplastics. Additionally, the adhesion between CFs and the PLA matrix was also investigated and a significant improvement of the wettability of the feathers was obtained with the alkali treatment of the CFs and the addition of a plasticizer like polyethylene glycol (PEG). Considering all the properties, these 100% fully biodegradable biocomposites could be adequate for panel components, flooring or building materials as an alternative to wood–plastic composites, contributing to the valorisation of chicken feather waste as a renewable material. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

4157 KiB  
Article
Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal
by Wei Wang, Qian Bai, Tao Liang, Huiyu Bai and Xiaoya Liu
Polymers 2017, 9(9), 455; https://doi.org/10.3390/polym9090455 - 16 Sep 2017
Cited by 27 | Viewed by 6644
Abstract
  1. Porous regenerated cellulose (RC) membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized
[...] Read more.
  1. Porous regenerated cellulose (RC) membranes were prepared with cotton linter pulp as a raw material. These membranes were first oxidized on both sides by a modified (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation system using a controlled oxidation reaction technique. Then, the oxidized RC membranes were functionalized with polyethylenimine (PEI) via the glutaraldehyde crosslinking method to obtain bifunctional (carboxyl and amino) porous RC membranes, as revealed by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and zeta potential measurement. The scanning electron microscopy (SEM) and the tests of the mechanical properties and permeability characteristics of modified RC membranes demonstrated that the porous structure and certain mechanical properties could be retained. The adsorption performance of the modified membranes towards dyes was subsequently investigated. The modified membranes displayed good adsorption capacities, rapid adsorption equilibrium and removal efficiencies towards both anionic (xylenol orange (XO)) and cationic (methylene blue (MB)) dyes, making them suitable bioadsorbents for wastewater treatment.
Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

3814 KiB  
Article
Hyaluronic Acid Promotes the Osteogenesis of BMP-2 in an Absorbable Collagen Sponge
by Hairong Huang, Jianying Feng, Daniel Wismeijer, Gang Wu and Ernst B. Hunziker
Polymers 2017, 9(8), 339; https://doi.org/10.3390/polym9080339 - 04 Aug 2017
Cited by 27 | Viewed by 5530
Abstract
(1) Background: We tested the hypothesis that hyaluronic acid (HA) can significantly promote the osteogenic potential of BMP-2/ACS (absorbable collagen sponge), an efficacious product to heal large oral bone defects, thereby allowing its use at lower dosages and, thus, reducing its side-effects due [...] Read more.
(1) Background: We tested the hypothesis that hyaluronic acid (HA) can significantly promote the osteogenic potential of BMP-2/ACS (absorbable collagen sponge), an efficacious product to heal large oral bone defects, thereby allowing its use at lower dosages and, thus, reducing its side-effects due to the unphysiologically-high doses of BMP-2; (2) Methods: In a subcutaneous bone induction model in rats, we first sorted out the optimal HA-polymer size and concentration with micro CT. Thereafter, we histomorphometrically quantified the effect of HA on new bone formation, total construct volume, and densities of blood vessels and macrophages in ACS with 5, 10, and 20 μg of BMP-2; (3) Results: The screening experiments revealed that the 100 µg/mL HA polymer of 48 kDa molecular weight could yield the highest new bone formation. Eighteen days post-surgery, HA could significantly enhance the total volume of newly-formed bone by approximately 100%, and also the total construct volume in the 10 μg BMP-2 group. HA could also significantly enhance the numerical area density of blood vessels in 5 μg BMP-2 and 10 μg BMP-2 groups. HA did not influence the numerical density of macrophages; and (4) Conclusions: An optimal combined administration of HA could significantly promote osteogenic and angiogenic activity of BMP-2/ACS, thus potentially minimizing its potential side-effects. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Figure 1

2560 KiB  
Article
Tailoring Drug Release Properties by Gradual Changes in the Particle Engineering of Polysaccharide Chitosan Based Powders
by Ednaldo G. Do Nascimento, Lilia B. De Caland, Arthur S.A. De Medeiros, Matheus F. Fernandes-Pedrosa, José L. Soares-Sobrinho, Kátia S.C.R. Dos Santos and Arnóbio Antonio Da Silva-Júnior
Polymers 2017, 9(7), 253; https://doi.org/10.3390/polym9070253 - 29 Jun 2017
Cited by 16 | Viewed by 5297
Abstract
Chitosan is a natural copolymer generally available in pharmaceutical and food powders associated with drugs, vitamins, and nutraceuticals. This study focused on monitoring the effect of the morphology and structural features of the chitosan particles for controlling the release profile of the active [...] Read more.
Chitosan is a natural copolymer generally available in pharmaceutical and food powders associated with drugs, vitamins, and nutraceuticals. This study focused on monitoring the effect of the morphology and structural features of the chitosan particles for controlling the release profile of the active pharmaceutical ingredient (API) propranolol hydrochloride. Chitosan with distinct molecular mass (low and medium) were used in the formulations as crystalline and irregular particles from commercial raw material, or as spherical, uniform, and amorphous spray-dried particles. The API–copolymer interactions were assessed when adding the drug before (drug-loaded particles) or after the spray drying (only mixed with blank particles). The formulations were further compared with physical mixtures of the API with chitin and microcrystalline cellulose. The scanning electron microscopy (SEM) images, surface area, particle size measurements, X-ray diffraction (XRD) analysis and drug loading have supported the drug release behavior. The statistical analysis of experimental data demonstrated that it was possible to control the drug release behavior (immediate or slow drug release) from chitosan powders using different types of particles. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

24 pages, 1185 KiB  
Review
Plant Secondary Metabolite-Derived Polymers: A Potential Approach to Develop Antimicrobial Films
by Ahmed Al-Jumaili, Avishek Kumar, Kateryna Bazaka and Mohan V. Jacob
Polymers 2018, 10(5), 515; https://doi.org/10.3390/polym10050515 - 10 May 2018
Cited by 25 | Viewed by 13115
Abstract
The persistent issue of bacterial and fungal colonization of artificial implantable materials and the decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one [...] Read more.
The persistent issue of bacterial and fungal colonization of artificial implantable materials and the decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e., plant secondary metabolites (PSMs) and their naturally occurring combinations (i.e., essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action, and diversity of available chemistries, plant secondary metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without a significant loss of activity is not trivial. Using selected examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer coatings from volatile renewable resources. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

22 pages, 2379 KiB  
Review
Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends
by Jingyao Sun, Jingjing Shen, Shoukai Chen, Merideth A. Cooper, Hongbo Fu, Daming Wu and Zhaogang Yang
Polymers 2018, 10(5), 505; https://doi.org/10.3390/polym10050505 - 07 May 2018
Cited by 142 | Viewed by 14604
Abstract
The increasing demand for environmental protection has led to the rapid development of greener and biodegradable polymers, whose creation provided new challenges and opportunities for the advancement of nanomaterial science. Biodegradable polymer materials and even nanofillers (e.g., natural fibers) are important because of [...] Read more.
The increasing demand for environmental protection has led to the rapid development of greener and biodegradable polymers, whose creation provided new challenges and opportunities for the advancement of nanomaterial science. Biodegradable polymer materials and even nanofillers (e.g., natural fibers) are important because of their application in greener industries. Polymers that can be degraded naturally play an important role in solving public hazards of polymer materials and maintaining ecological balance. The inherent shortcomings of some biodegradable polymers such as weak mechanical properties, narrow processing windows, and low electrical and thermal properties can be overcome by composites reinforced with various nanofillers. These biodegradable polymer composites have wide-ranging applications in different areas based on their large surface area and greater aspect ratio. Moreover, the polymer composites that exploit the synergistic effect between the nanofiller and the biodegradable polymer matrix can lead to enhanced properties while still meeting the environmental requirement. In this paper, a broad review on recent advances in the research and development of nanofiller reinforced biodegradable polymer composites that are used in various applications, including electronics, packing materials, and biomedical uses, is presented. We further present information about different kinds of nanofillers, biodegradable polymer matrixes, and their composites with specific concern to our daily applications. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

4683 KiB  
Review
The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed
by Hajime Nakajima, Peter Dijkstra and Katja Loos
Polymers 2017, 9(10), 523; https://doi.org/10.3390/polym9100523 - 18 Oct 2017
Cited by 285 | Viewed by 27912
Abstract
The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering [...] Read more.
The main motivation for development of biobased polymers was their biodegradability, which is becoming important due to strong public concern about waste. Reflecting recent changes in the polymer industry, the sustainability of biobased polymers allows them to be used for general and engineering applications. This expansion is driven by the remarkable progress in the processes for refining biomass feedstocks to produce biobased building blocks that allow biobased polymers to have more versatile and adaptable polymer chemical structures and to achieve target properties and functionalities. In this review, biobased polymers are categorized as those that are: (1) upgrades from biodegradable polylactides (PLA), polyhydroxyalkanoates (PHAs), and others; (2) analogous to petroleum-derived polymers such as bio-poly(ethylene terephthalate) (bio-PET); and (3) new biobased polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The recent developments and progresses concerning biobased polymers are described, and important technical aspects of those polymers are introduced. Additionally, the recent scientific achievements regarding high-spec engineering-grade biobased polymers are presented. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources)
Show Figures

Graphical abstract

Back to TopTop