Special Issue "Feature Paper 2013"

Quicklinks

A special issue of Proteomes (ISSN 2227-7382).

Deadline for manuscript submissions: closed (31 October 2013)

Special Issue Editor

Guest Editor
Prof. Dr. Jacek R. Wisniewski

Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
Fax: +49 89 85 78 2219
Interests: mass spectrometry based proteomics; quantitative proteomics; clinical proteomics; cancer proteomics; sample preparation for LC-MS/MS analysis

Special Issue Information

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Proteomes is an international peer-reviewed Open Access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 300 CHF (Swiss Francs). English correction and/or formatting fees of 250 CHF (Swiss Francs) will be charged in certain cases for those articles accepted for publication that require extensive additional formatting and/or English corrections.

Published Papers (10 papers)

View options order results:
result details:
Displaying articles 1-10
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Is Five Percent Too Small? Analysis of the Overlaps between Disorder, Coiled Coil and Collagen Predictions in Complete Proteomes
Proteomes 2014, 2(1), 72-83; doi:10.3390/proteomes2010072
Received: 31 October 2013 / Revised: 24 January 2014 / Accepted: 27 January 2014 / Published: 7 February 2014
PDF Full-text (1221 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Identification of intrinsic disorder in proteins and proteomes has revealed important novel aspects of protein function and interactions. However, it has been pointed out that several oligomeric fibrillar protein motifs such as coiled coils and collagen triple helical segments can also identified [...] Read more.
Identification of intrinsic disorder in proteins and proteomes has revealed important novel aspects of protein function and interactions. However, it has been pointed out that several oligomeric fibrillar protein motifs such as coiled coils and collagen triple helical segments can also identified as intrinsically disordered. This feature has not yet been investigated in more detail at the proteome level. The present work aims at the identification and quantification of such overlaps in full proteomes to assess their significance in large-scale studies of protein disorder. It was found that the percentage of cross-predicted residues is around 5% in the human proteome and is generally near that value in other metazoan ones but shows remarkable variation in different organisms. In particular, smaller proteomes are increasingly prone to such cross-predictions, thus, especially the analysis of viral proteomes requires the use of specific prediction tools. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Open AccessArticle Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity
Proteomes 2013, 1(3), 290-308; doi:10.3390/proteomes1030290
Received: 31 October 2013 / Revised: 7 December 2013 / Accepted: 12 December 2013 / Published: 18 December 2013
Cited by 10 | PDF Full-text (1836 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep [...] Read more.
Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001) in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides) subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA) of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p < 0.05) more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH) was 1.54-fold (p = 0.0064) more abundant in HCR than LCR soleus. This discovery was verified using selective reaction monitoring (SRM) of the y5 ion (551.21 m/z) of the doubly-charged peptide SLGVGFATR (454.19 m/z) of residues 23–31 of FABPH. SRM was conducted on technical replicates of each biological sample and exhibited a coefficient of variation of 20%. The abundance of FABPH measured by SRM was 2.84-fold greater (p = 0.0095) in HCR muscle. In addition, SRM of FABPH was performed in vastus lateralis samples of young and elderly humans with different habitual activity levels (collected during a previous study) finding FABPH abundance was 2.23-fold greater (p = 0.0396) in endurance-trained individuals regardless of differences in age. In summary, our findings in HCR/LCR rats provide protein-level confirmation for earlier transcriptome profiling work and show LC-MS is a viable means of profiling the abundance of almost all major metabolic enzymes of skeletal muscle in a highly parallel manner. Moreover, our approach is relatively more time efficient than techniques relying on orthogonal separations, and we demonstrate LC-MS profiling of the HCR/LCR selection model was able to highlight biomarkers that also exhibit differences in trained and untrained human muscle. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Open AccessArticle Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation
Proteomes 2013, 1(3), 275-289; doi:10.3390/proteomes1030275
Received: 8 November 2013 / Revised: 6 December 2013 / Accepted: 10 December 2013 / Published: 16 December 2013
Cited by 3 | PDF Full-text (655 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in [...] Read more.
The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6) and the genome rat (BN/SsNHsd/Mcwi). Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Open AccessArticle Proteomic Analysis of Matched Formalin-Fixed, Paraffin-Embedded Specimens in Patients with Advanced Serous Ovarian Carcinoma
Proteomes 2013, 1(3), 240-253; doi:10.3390/proteomes1030240
Received: 25 July 2013 / Revised: 8 October 2013 / Accepted: 8 October 2013 / Published: 17 October 2013
PDF Full-text (586 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Objective: The biology of high grade serous ovarian carcinoma (HGSOC) is poorly understood. Little has been reported on intratumoral homogeneity or heterogeneity of primary HGSOC tumors and their metastases. We evaluated the global protein expression profiles of paired primary and metastatic HGSOC [...] Read more.
Objective: The biology of high grade serous ovarian carcinoma (HGSOC) is poorly understood. Little has been reported on intratumoral homogeneity or heterogeneity of primary HGSOC tumors and their metastases. We evaluated the global protein expression profiles of paired primary and metastatic HGSOC from formalin-fixed, paraffin-embedded (FFPE) tissue samples. Methods: After IRB approval, six patients with advanced HGSOC were identified with tumor in both ovaries at initial surgery. Laser capture microdissection (LCM) was used to extract tumor for protein digestion. Peptides were extracted and analyzed by reversed-phase liquid chromatography coupled to a linear ion trap mass spectrometer. Tandem mass spectra were searched against the UniProt human protein database. Differences in protein abundance between samples were assessed and analyzed by Ingenuity Pathway Analysis software. Immunohistochemistry (IHC) for select proteins from the original and an additional validation set of five patients was performed. Results: Unsupervised clustering of the abundance profiles placed the paired specimens adjacent to each other. IHC H-score analysis of the validation set revealed a strong correlation between paired samples for all proteins. For the similarly expressed proteins, the estimated correlation coefficients in two of three experimental samples and all validation samples were statistically significant (p < 0.05). The estimated correlation coefficients in the experimental sample proteins classified as differentially expressed were not statistically significant. Conclusion: A global proteomic screen of primary HGSOC tumors and their metastatic lesions identifies tumoral homogeneity and heterogeneity and provides preliminary insight into these protein profiles and the cellular pathways they constitute. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Open AccessArticle Bioinformatic Analysis of Differential Protein Expression in Calu-3 Cells Exposed to Carbon Nanotubes
Proteomes 2013, 1(3), 219-239; doi:10.3390/proteomes1030219
Received: 26 July 2013 / Revised: 29 September 2013 / Accepted: 30 September 2013 / Published: 14 October 2013
Cited by 2 | PDF Full-text (1620 KB) | HTML Full-text | XML Full-text
Abstract
Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could [...] Read more.
Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 μg/mL and 100 ng/mLof two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 mg/mL; 0.4 mg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon nanotube exposure. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Open AccessArticle Quantitative Analysis of the Human Milk Whey Proteome Reveals Developing Milk and Mammary-Gland Functions across the First Year of Lactation
Proteomes 2013, 1(2), 128-158; doi:10.3390/proteomes1020128
Received: 15 July 2013 / Revised: 15 August 2013 / Accepted: 26 August 2013 / Published: 3 September 2013
Cited by 7 | PDF Full-text (2188 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In-depth understanding of the changing functions of human milk (HM) proteins and the corresponding physiological adaptions of the lactating mammary gland has been inhibited by incomplete knowledge of the HM proteome. We analyzed the HM whey proteome (n = 10 women [...] Read more.
In-depth understanding of the changing functions of human milk (HM) proteins and the corresponding physiological adaptions of the lactating mammary gland has been inhibited by incomplete knowledge of the HM proteome. We analyzed the HM whey proteome (n = 10 women with samples at 1 week and 1, 3, 6, 9 and 12 months) using a quantitative proteomic approach. One thousand three hundred and thirty three proteins were identified with 615 being quantified. Principal component analysis revealed a transition in the HM whey proteome-throughout the first year of lactation. Abundance changes in IgG, sIgA and sIgM display distinct features during the first year. Complement components and other acute-phase proteins are generally at higher levels in early lactation. Proteomic analysis further suggests that the sources of milk fatty acids (FA) shift from more direct blood influx to more de novo mammary synthesis over lactation. The abundances of the majority of glycoproteins decline over lactation, which is consistent with increased enzyme expression in glycoprotein degradation and decreased enzyme expression in glycoprotein synthesis. Cellular detoxification machinery may be transformed as well, thereby accommodating increased metabolic activities in late lactation. The multiple developing functions of HM proteins and the corresponding mammary adaption become more apparent from this study. Full article
(This article belongs to the Special Issue Feature Paper 2013)

Review

Jump to: Research, Other

Open AccessReview Dynamic New World: Refining Our View of Protein Structure, Function and Evolution
Proteomes 2014, 2(1), 128-153; doi:10.3390/proteomes2010128
Received: 17 December 2013 / Revised: 12 February 2014 / Accepted: 20 February 2014 / Published: 7 March 2014
Cited by 1 | PDF Full-text (665 KB) | HTML Full-text | XML Full-text
Abstract
Proteins are crucial to the functioning of all lifeforms. Traditional understanding posits that a single protein occupies a single structure (“fold”), which performs a single function. This view is radically challenged with the recognition that high structural dynamism—the capacity to be extra [...] Read more.
Proteins are crucial to the functioning of all lifeforms. Traditional understanding posits that a single protein occupies a single structure (“fold”), which performs a single function. This view is radically challenged with the recognition that high structural dynamism—the capacity to be extra “floppy”—is more prevalent in functional proteins than previously assumed. As reviewed here, this dynamic take on proteins affects our understanding of protein “structure”, function, and evolution, and even gives us a glimpse into protein origination. Specifically, this review will discuss historical developments concerning protein structure, and important new relationships between dynamism and aspects of protein sequence, structure, binding modes, binding promiscuity, evolvability, and origination. Along the way, suggestions will be provided for how key parts of textbook definitions—that so far have excluded membership to intrinsically disordered proteins (IDPs)—could be modified to accommodate our more dynamic understanding of proteins. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Open AccessReview Proteomic Applications in the Study of Human Mesenchymal Stem Cells
Proteomes 2014, 2(1), 53-71; doi:10.3390/proteomes2010053
Received: 4 December 2013 / Revised: 15 January 2014 / Accepted: 26 January 2014 / Published: 7 February 2014
Cited by 1 | PDF Full-text (723 KB) | HTML Full-text | XML Full-text
Abstract
Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic [...] Read more.
Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Open AccessReview Respiratory Proteomics Today: Are Technological Advances for the Identification of Biomarker Signatures Catching up with Their Promise? A Critical Review of the Literature in the Decade 2004–2013
Proteomes 2014, 2(1), 18-52; doi:10.3390/proteomes2010018
Received: 15 October 2013 / Revised: 8 January 2014 / Accepted: 10 January 2014 / Published: 22 January 2014
PDF Full-text (776 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical [...] Read more.
To improve the knowledge on a variety of severe disorders, research has moved from the analysis of individual proteins to the investigation of all proteins expressed by a tissue/organism. This global proteomic approach could prove very useful: (i) for investigating the biochemical pathways involved in disease; (ii) for generating hypotheses; or (iii) as a tool for the identification of proteins differentially expressed in response to the disease state. Proteomics has not been used yet in the field of respiratory research as extensively as in other fields, only a few reproducible and clinically applicable molecular markers, which can assist in diagnosis, having been currently identified. The continuous advances in both instrumentation and methodology, which enable sensitive and quantitative proteomic analyses in much smaller amounts of biological material than before, will hopefully promote the identification of new candidate biomarkers in this area. The aim of this report is to critically review the application over the decade 2004–2013 of very sophisticated technologies to the study of respiratory disorders. The observed changes in protein expression profiles from tissues/fluids of patients affected by pulmonary disorders opens the route for the identification of novel pathological mediators of these disorders. Full article
(This article belongs to the Special Issue Feature Paper 2013)

Other

Jump to: Research, Review

Open AccessOpinion Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides
Proteomes 2014, 2(2), 154-168; doi:10.3390/proteomes2020154
Received: 17 December 2013 / Revised: 27 February 2014 / Accepted: 20 March 2014 / Published: 25 March 2014
Cited by 1 | PDF Full-text (476 KB) | HTML Full-text | XML Full-text
Abstract
While the repertoire of protein folds that exists today underlies most of life’s capabilities, our mechanistic picture of protein fold origination is incomplete. This paper discusses a hypothetical mechanism for the emergence of the protein fold repertoire from highly dynamic and collapsed [...] Read more.
While the repertoire of protein folds that exists today underlies most of life’s capabilities, our mechanistic picture of protein fold origination is incomplete. This paper discusses a hypothetical mechanism for the emergence of the protein fold repertoire from highly dynamic and collapsed peptides, exemplified by peptides with high oil content or hydrophobicity. These peptides are called pluripotent to emphasize their capacity to evolve into numerous folds transiently available to them. As evidence, the paper will discuss previous simulation work on the superior fold evolvability of oily peptides, trace (“fossil”) evidence within proteomes seen today, and a general relationship between protein dynamism and evolvability. Aside from implications on the origination of protein folds, the hypothesis implies that the vanishing utility of a random peptide in protein origination may be relatively exaggerated, as some random peptides with a certain composition (e.g., oily) may fare better than others. In later sections, the hypothesis is discussed in the context of existing discussions regarding the spontaneous origination of biomolecules. Full article
(This article belongs to the Special Issue Feature Paper 2013)
Figures

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.


Journal Contact

MDPI AG
Proteomes Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
proteomes@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Proteomes
Back to Top