Venom Peptides: Role of Predatory and Defensive Adaptations in Their Evolution and Chemical Biology

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Animal Venoms".

Deadline for manuscript submissions: closed (31 December 2018) | Viewed by 43959

Special Issue Editors


E-Mail Website
Guest Editor
Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
Interests: mass spectroscopy and novel bioassays to characterise conotoxins; small venom peptides; marine snails; drug development
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Venoms produced by animals provide a rich chemical arsenal of bioactive peptides and proteins evolved to efficiently subdue unsuspecting prey and to deter predators. The prey capture (offensive) advantages of venom have been well documented for many venomous groups including cone snails, snakes, spiders or scorpions, and their defensive use of venom is instinctively associated with some of our deepest fears. However, the inter-related evolution of these adaptations and how separate evolutionary pressures have shaped the composition of injected venoms for the most part remain to be elucidated. In this Special Issue, we aim to bring together contributions that demonstrate predatory and/or defensive influences on the evolution and structure-function of venom peptides from a diverse range of venomous animals.

Prof. Dr. Richard J. Lewis
Dr. Sebastien Dutertre
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Venom
  • Predation
  • Defence
  • Adaptation
  • Evolution
  • Evolutionary mechanisms
  • Biological messiness
  • Venom peptides
  • Structure-function
  • Accelerated diversification

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 5850 KiB  
Article
A Recurrent Motif: Diversity and Evolution of ShKT Domain Containing Proteins in the Vampire Snail Cumia reticulata
by Marco Gerdol, Manuela Cervelli, Paolo Mariottini, Marco Oliverio, Sébastien Dutertre and Maria Vittoria Modica
Toxins 2019, 11(2), 106; https://doi.org/10.3390/toxins11020106 - 12 Feb 2019
Cited by 9 | Viewed by 4018
Abstract
Proteins of the ShK superfamily are characterized by a small conserved domain (ShKT), first discovered in small venom peptides produced by sea anemones, and acting as specific inhibitors of voltage-dependent and calcium-activated K+ channels. The ShK superfamily includes both small toxic peptides [...] Read more.
Proteins of the ShK superfamily are characterized by a small conserved domain (ShKT), first discovered in small venom peptides produced by sea anemones, and acting as specific inhibitors of voltage-dependent and calcium-activated K+ channels. The ShK superfamily includes both small toxic peptides and larger multifunctional proteins with various functions. ShK toxins are often important components of animal venoms, where they perform different biological functions including neurotoxic and immunosuppressive effects. Given their high specificity and effectiveness, they are currently regarded as promising pharmacological lead compounds for the treatment of autoimmune diseases. Here, we report on the molecular analysis of ShKT domain containing proteins produced by the Mediterranean vampire snail Cumia reticulata, an ectoparasitic gastropod that feeds on benthic fishes. The high specificity of expression of most ShK transcripts in salivary glands identifies them as relevant components of C. reticulata venom. These ShK proteins display various structural architectures, being produced either as single-domain secretory peptides, or as larger proteins combining the ShKT with M12 or CAP domains. Both ShKT-containing genes and their internal ShKT domains undergo frequent duplication events in C. reticulata, ensuring a high level of variability that is likely to play a role in increasing the range of their potential molecular targets. Full article
Show Figures

Figure 1

11 pages, 3034 KiB  
Article
Acute Toxicity of the Recombinant and Native Phα1β Toxin: New Analgesic from Phoneutria nigriventer Spider Venom
by Eliane Dallegrave, Eliane Taschetto, Mirna Bainy Leal, Flavia Tasmim Techera Antunes, Marcus Vinicius Gomez and Alessandra Hubner de Souza
Toxins 2018, 10(12), 531; https://doi.org/10.3390/toxins10120531 - 12 Dec 2018
Cited by 11 | Viewed by 3298
Abstract
Phα1β, a purified peptide from the venom of the spider Phoneutria nigriventer, and its recombinant form CTK 01512-2 are voltage-dependent calcium channel (CaV) blockers of types N, R, P/Q, and L with a preference for type N. These peptides [...] Read more.
Phα1β, a purified peptide from the venom of the spider Phoneutria nigriventer, and its recombinant form CTK 01512-2 are voltage-dependent calcium channel (CaV) blockers of types N, R, P/Q, and L with a preference for type N. These peptides show analgesic action in different pain models in rats. The aim of this study was to evaluate the acute intrathecal toxicity of the native and recombinant Phα1β toxin in Wistar rats. Clinical signs, serum biochemistry, organ weight, and histopathological alterations were evaluated in male and/or female rats. Dyspnea was observed in males, hyporesponsiveness in females, and Straub tail and tremors in both genders. There were no significant differences in male organ weight, although significant differences in the female relative weight of the adrenal glands and spleen have been observed; these values are within the normal range. Serum biochemical data revealed a significant reduction within the physiological limits of species related to urea, ALT, AST, and FA. Hepatic and renal congestion were observed for toxin groups. In renal tissue, glomerular infiltrates were observed with increased glomerular space. These histological alterations were presented in focal areas and in mild degree. Therefore, Phα1β and CTK 01512-2 presented a good safety profile with transient toxicity clinical signals in doses higher than used to obtain the analgesic effect. Full article
Show Figures

Figure 1

13 pages, 3695 KiB  
Article
Isolation and Characterization of Poecistasin, an Anti-Thrombotic Antistasin-Type Serine Protease Inhibitor from Leech Poecilobdella manillensis
by Xiaopeng Tang, Mengrou Chen, Zilei Duan, James Mwangi, Pengpeng Li and Ren Lai
Toxins 2018, 10(11), 429; https://doi.org/10.3390/toxins10110429 - 26 Oct 2018
Cited by 17 | Viewed by 3511
Abstract
Antistasin, first identified as a potent inhibitor of the blood coagulation factor Xa, is a novel family of serine protease inhibitors. In this study, we purified a novel antistasin-type inhibitor from leech Poecilobdella manillensis called poecistasin. Amino acid sequencing of this 48-amino-acid protein [...] Read more.
Antistasin, first identified as a potent inhibitor of the blood coagulation factor Xa, is a novel family of serine protease inhibitors. In this study, we purified a novel antistasin-type inhibitor from leech Poecilobdella manillensis called poecistasin. Amino acid sequencing of this 48-amino-acid protein revealed that poecistasin was an antistasin-type inhibitor known to consist of only one domain. Poecistasin inhibited factor XIIa, kallikrein, trypsin, and elastase, but had no inhibitory effect on factor Xa and thrombin. Poecistasin showed anticoagulant activities. It prolonged the activated partial thromboplastin time and inhibited FeCl3-induced carotid artery thrombus formation, implying its potent function in helping Poecilobdella manillensis to take a blood meal from the host by inhibiting coagulation. Poecistasin also suppressed ischemic stroke symptoms in transient middle cerebral artery occlusion mice model. Our results suggest that poecistasin from the leech Poecilobdella manillensis plays a crucial role in blood-sucking and may be an excellent candidate for the development of clinical anti-thrombosis and anti-ischemic stroke medicines. Full article
Show Figures

Graphical abstract

16 pages, 3784 KiB  
Article
Evaluating the Bioactivity of a Novel Broad-Spectrum Antimicrobial Peptide Brevinin-1GHa from the Frog Skin Secretion of Hylarana guentheri and Its Analogues
by Qi Chen, Peng Cheng, Chengbang Ma, Xinping Xi, Lei Wang, Mei Zhou, Huimin Bian and Tianbao Chen
Toxins 2018, 10(10), 413; https://doi.org/10.3390/toxins10100413 - 13 Oct 2018
Cited by 25 | Viewed by 4422
Abstract
Many antimicrobial peptides (AMPs) have been identified from the skin secretion of the frog Hylarana guentheri (H.guentheri), including Temporin, Brevinin-1, and Brevinin-2. In this study, an antimicrobial peptide named Brevinin-1GHa was identified for the first time by using ‘shotgun’ cloning. The [...] Read more.
Many antimicrobial peptides (AMPs) have been identified from the skin secretion of the frog Hylarana guentheri (H.guentheri), including Temporin, Brevinin-1, and Brevinin-2. In this study, an antimicrobial peptide named Brevinin-1GHa was identified for the first time by using ‘shotgun’ cloning. The primary structure was also confirmed through mass spectral analysis of the skin secretion purified by reversed-phase high-performance liquid chromatography (RP-HPLC). There was a Rana-box (CKISKKC) in the C-terminal of Brevinin-1GHa, which formed an intra-disulfide bridge. To detect the significance of Rana-box and reduce the hemolytic activity, we chemically synthesized Brevinin-1GHb (without Rana-box) and Brevinin-1GHc (Rana-box in central position). Brevinin-1GHa exhibited a strong and broad-spectrum antimicrobial activity against seven microorganisms, while Brevinin-1GHb only inhibited the growth of Staphylococcus aureus (S. aureus), which indicates Rana-box was necessary for the antimicrobial activity of Brevinin-1GHa. The results of Brevinin-1GHc suggested transferring Rana-box to the central position could reduce the hemolytic activity, but the antimicrobial activity also declined. Additionally, Brevinin-1GHa demonstrated the capability of permeating cell membrane and eliminating biofilm of S. aureus, Escherichia coli (E. coli), and Candida albicans (C. albicans). The discovery of this research may provide some novel insights into natural antimicrobial drug design. Full article
Show Figures

Figure 1

9 pages, 1689 KiB  
Article
Engineering Gain-of-Function Analogues of the Spider Venom Peptide HNTX-I, A Potent Blocker of the hNaV1.7 Sodium Channel
by Yunxiao Zhang, Qiuchu Yang, Qingfeng Zhang, Dezheng Peng, Minzhi Chen, Songping Liang, Xi Zhou and Zhonghua Liu
Toxins 2018, 10(9), 358; https://doi.org/10.3390/toxins10090358 - 04 Sep 2018
Cited by 9 | Viewed by 3430
Abstract
Pain is a medical condition that interferes with normal human life and work and reduces human well-being worldwide. Human voltage-gated sodium channel NaV1.7 (hNaV1.7) is a compelling target that plays a key role in human pain signaling. The 33-residue peptide µ-TRTX-Hhn2b (HNTX-I), a [...] Read more.
Pain is a medical condition that interferes with normal human life and work and reduces human well-being worldwide. Human voltage-gated sodium channel NaV1.7 (hNaV1.7) is a compelling target that plays a key role in human pain signaling. The 33-residue peptide µ-TRTX-Hhn2b (HNTX-I), a member of NaV-targeting spider toxin (NaSpTx) family 1, has shown negligible activity on mammalian voltage-gated sodium channels (VGSCs), including the hNaV1.7 channel. We engineered analogues of HNTX-I based on sequence conservation in NaSpTx family 1. Substitution of Asn for Ser at position 23 or Asp for His at position 26 conferred potent activity against hNaV1.7. Moreover, multiple site mutations combined together afforded improvements in potency. Ultimately, we generated an analogue E1G–N23S–D26H–L32W with >300-fold improved potency compared with wild-type HNTX-I on hNaV1.7 (IC50 0.036 ± 0.007 µM). Structural simulation suggested that the charged surface and the hydrophobic surface of the modified peptide are responsible for binding affinity to the hNaV1.7 channel, while variable residues may determine pharmacological specificity. Therefore, this study provides a profile for drug design targeting the hNaV1.7 channel. Full article
Show Figures

Figure 1

12 pages, 1286 KiB  
Article
Purification and Characterization of a Novel Insecticidal Toxin, μ-sparatoxin-Hv2, from the Venom of the Spider Heteropoda venatoria
by Zhen Xiao, Yunxiao Zhang, Jiao Zeng, Songping Liang, Cheng Tang and Zhonghua Liu
Toxins 2018, 10(6), 233; https://doi.org/10.3390/toxins10060233 - 07 Jun 2018
Cited by 10 | Viewed by 4153
Abstract
The venom of the spider Heteropoda venatoria produced lethal effect to cockroaches as reported in our previous study, and could be a resource for naturally-occurring insecticides. The present study characterized a novel cockroach voltage-gated sodium channels (NaVs) antagonist, μ-sparatoxin-Hv2 (μ-SPRTX-Hv2 for [...] Read more.
The venom of the spider Heteropoda venatoria produced lethal effect to cockroaches as reported in our previous study, and could be a resource for naturally-occurring insecticides. The present study characterized a novel cockroach voltage-gated sodium channels (NaVs) antagonist, μ-sparatoxin-Hv2 (μ-SPRTX-Hv2 for short), from this venom. μ-SPRTX-Hv2 is composed of 37 amino acids and contains six conserved cysteines. We synthesized the toxin by using the chemical synthesis method. The toxin was lethal to cockroaches when intraperitoneally injected, with a LD50 value of 2.8 nmol/g of body weight. Electrophysiological data showed that the toxin potently blocked NaVs in cockroach dorsal unpaired median (DUM) neurons, with an IC50 of 833.7 ± 132.2 nM, but it hardly affected the DUM voltage-gated potassium channels (KVs) and the DUM high-voltage-activated calcium channels (HVA CaVs). The toxin also did not affect NaVs, HVA CaVs, and Kvs in rat dorsal root ganglion (DRG) neurons, as well as NaV subtypes NaV1.3–1.5, NaV1.7, and NaV1.8. No envenomation symptoms were observed when μ-SPRTX-Hv2 was intraperitoneally injected into mouse at the dose of 7.0 μg/g. In summary, μ-SPRTX-Hv2 is a novel insecticidal toxin from H. venatoria venom. It might exhibit its effect by blocking the insect NaVs and is a candidate for developing bioinsecticide. Full article
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 12438 KiB  
Review
Snake Venom Peptides: Tools of Biodiscovery
by Aisha Munawar, Syed Abid Ali, Ahmed Akrem and Christian Betzel
Toxins 2018, 10(11), 474; https://doi.org/10.3390/toxins10110474 - 14 Nov 2018
Cited by 73 | Viewed by 20202
Abstract
Nature endowed snakes with a lethal secretion known as venom, which has been fine-tuned over millions of years of evolution. Snakes utilize venom to subdue their prey and to survive in their natural habitat. Venom is known to be a very poisonous mixture, [...] Read more.
Nature endowed snakes with a lethal secretion known as venom, which has been fine-tuned over millions of years of evolution. Snakes utilize venom to subdue their prey and to survive in their natural habitat. Venom is known to be a very poisonous mixture, consisting of a variety of molecules, such as carbohydrates, nucleosides, amino acids, lipids, proteins and peptides. Proteins and peptides are the major constituents of the dry weight of snake venoms and are of main interest for scientific investigations as well as for various pharmacological applications. Snake venoms contain enzymatic and non-enzymatic proteins and peptides, which are grouped into different families based on their structure and function. Members of a single family display significant similarities in their primary, secondary and tertiary structures, but in many cases have distinct pharmacological functions and different bioactivities. The functional specificity of peptides belonging to the same family can be attributed to subtle variations in their amino acid sequences. Currently, complementary tools and techniques are utilized to isolate and characterize the peptides, and study their potential applications as molecular probes, and possible templates for drug discovery and design investigations. Full article
Show Figures

Figure 1

Back to TopTop