Axioms doi: 10.3390/axioms7030058

Authors: Francesca Mazzia Alessandra Sestini

The class of A-stable symmetric one-step Hermite&ndash;Obreshkov (HO) methods introduced by F. Loscalzo in 1968 for dealing with initial value problems is analyzed. Such schemes have the peculiarity of admitting a multiple knot spline extension collocating the differential equation at the mesh points. As a new result, it is shown that these maximal order schemes are conjugate symplectic, which is a benefit when the methods have to be applied to Hamiltonian problems. Furthermore, a new efficient approach for the computation of the spline extension is introduced, adopting the same strategy developed for the BS linear multistep methods. The performances of the schemes are tested in particular on some Hamiltonian benchmarks and compared with those of the Gauss&ndash;Runge&ndash;Kutta schemes and Euler&ndash;Maclaurin formulas of the same order.

]]>Axioms doi: 10.3390/axioms7030057

Authors: Qiaoyan Li Yingcang Ma Florentin Smarandache Shuangwu Zhu

Data clustering is an important field in pattern recognition and machine learning. Fuzzy c-means is considered as a useful tool in data clustering. The neutrosophic set, which is an extension of the fuzzy set, has received extensive attention in solving many real-life problems of inaccuracy, incompleteness, inconsistency and uncertainty. In this paper, we propose a new clustering algorithm, the single-valued neutrosophic clustering algorithm, which is inspired by fuzzy c-means, picture fuzzy clustering and the single-valued neutrosophic set. A novel suitable objective function, which is depicted as a constrained minimization problem based on a single-valued neutrosophic set, is built, and the Lagrange multiplier method is used to solve the objective function. We do several experiments with some benchmark datasets, and we also apply the method to image segmentation using the Lena image. The experimental results show that the given algorithm can be considered as a promising tool for data clustering and image processing.

]]>Axioms doi: 10.3390/axioms7030056

Authors: Taekyun Kim Cheon Seoung Ryoo

In this paper, we study some special polynomials which are related to Euler and Bernoulli polynomials. In addition, we give some identities for these polynomials. Finally, we investigate the zeros of these polynomials by using the computer.

]]>Axioms doi: 10.3390/axioms7030055

Authors: Fernando S. Silva Davidson M. Moreira Marcelo A. Moret

In this paper, we use the conformable fractional derivative to discuss some fractional linear differential equations with constant coefficients. By applying some similar arguments to the theory of ordinary differential equations, we establish a sufficient condition to guarantee the reliability of solving constant coefficient fractional differential equations by the conformable Laplace transform method. Finally, the analytical solution for a class of fractional models associated with the logistic model, the von Foerster model and the Bertalanffy model is presented graphically for various fractional orders. The solution of the corresponding classical model is recovered as a particular case.

]]>Axioms doi: 10.3390/axioms7030054

Authors: Hafize Gümüş Nihal Demir

In our paper, by using the concept of W&minus;asymptotically J&minus; statistical equivalence of order &alpha; which has been previously defined, we present the definitions of W&minus;asymptotically J&lambda;&minus;statistical equivalence of order &alpha;, W&minus;strongly asymptotically J&lambda;&minus;statistical equivalence of order &alpha;, and W&minus;strongly Ces&aacute;ro asymptotically J&minus;statistical equivalence of order &alpha; where 0&lt;&alpha;&le;1. We also extend these notions with a sequence of positive real numbers, p=(pk), and we investigate how our results change if p is constant.

]]>Axioms doi: 10.3390/axioms7030053

Authors: Kelvin C. K. Chan Raymond H. Chan Mila Nikolova

The goal of edge-histogram specification is to find an image whose edge image has a histogram that matches a given edge-histogram as much as possible. Mignotte has proposed a non-convex model for the problem in 2012. In his work, edge magnitudes of an input image are first modified by histogram specification to match the given edge-histogram. Then, a non-convex model is minimized to find an output image whose edge-histogram matches the modified edge-histogram. The non-convexity of the model hinders the computations and the inclusion of useful constraints such as the dynamic range constraint. In this paper, instead of considering edge magnitudes, we directly consider the image gradients and propose a convex model based on them. Furthermore, we include additional constraints in our model based on different applications. The convexity of our model allows us to compute the output image efficiently using either Alternating Direction Method of Multipliers or Fast Iterative Shrinkage-Thresholding Algorithm. We consider several applications in edge-preserving smoothing including image abstraction, edge extraction, details exaggeration, and documents scan-through removal. Numerical results are given to illustrate that our method successfully produces decent results efficiently.

]]>Axioms doi: 10.3390/axioms7030052

Authors: John C. Butcher

The traditional derivation of Runge&ndash;Kutta methods is based on the use of the scalar test problem y&prime;(x)=f(x,y(x)). However, above order 4, this gives less restrictive order conditions than those obtained from a vector test problem using a tree-based theory. In this paper, stumps, or incomplete trees, are introduced to explain the discrepancy between the two alternative theories. Atomic stumps can be combined multiplicatively to generate all trees. For the scalar test problem, these quantities commute, and certain sets of trees form isomeric classes. There is a single order condition for each class, whereas for the general vector-based problem, for which commutation of atomic stumps does not occur, there is exactly one order condition for each tree. In the case of order 5, the only nontrivial isomeric class contains two trees, and the number of order conditions reduces from 17 to 16 for scalar problems. A method is derived that satisfies the 16 conditions for scalar problems but not the complete set based on 17 trees. Hence, as a practical numerical method, it has order 4 for a general initial value problem, but this increases to order 5 for a scalar problem.

]]>Axioms doi: 10.3390/axioms7030051

Authors: Carmela Scalone Nicola Guglielmi

In this article we present and discuss a two step methodology to find the closest low rank completion of a sparse large matrix. Given a large sparse matrix M, the method consists of fixing the rank to r and then looking for the closest rank-r matrix X to M, where the distance is measured in the Frobenius norm. A key element in the solution of this matrix nearness problem consists of the use of a constrained gradient system of matrix differential equations. The obtained results, compared to those obtained by different approaches show that the method has a correct behaviour and is competitive with the ones available in the literature.

]]>Axioms doi: 10.3390/axioms7030050

Authors: Sumera Naz Muhammad Akram Florentin Smarandache

A single-valued neutrosophic set is an instance of a neutrosophic set, which provides us an additional possibility to represent uncertainty, imprecise, incomplete and inconsistent information existing in real situations. In this research study, we present concepts of energy, Laplacian energy and signless Laplacian energy in single-valued neutrosophic graphs (SVNGs), describe some of their properties and develop relationship among them. We also consider practical examples to illustrate the applicability of the our proposed concepts.

]]>Axioms doi: 10.3390/axioms7030049

Authors: Carlo Garoni Mariarosa Mazza Stefano Serra-Capizzano

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices An arising from virtually any kind of numerical discretization of differential equations (DEs). Indeed, when the mesh fineness parameter n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be a GLT sequence or one of its &ldquo;relatives&rdquo;, i.e., a block GLT sequence or a reduced GLT sequence. In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the applicative interest, a solid theory of block GLT sequences has been developed only recently, in 2018. The purpose of the present paper is to illustrate the potential of this theory by presenting a few noteworthy examples of applications in the context of DE discretizations.

]]>Axioms doi: 10.3390/axioms7030048

Authors: Konstantin Zhukovsky Dmitrii Oskolkov Nadezhda Gubina

One-dimensional equations of telegrapher&rsquo;s-type (TE) and Guyer&ndash;Krumhansl-type (GK-type) with substantial derivative considered and operational solutions to them are given. The role of the exponential differential operators is discussed. The examples of their action on some initial functions are explored. Proper solutions are constructed in the integral form and some examples are studied with solutions in elementary functions. A system of hyperbolic-type inhomogeneous differential equations (DE), describing non-Fourier heat transfer with substantial derivative thin films, is considered. Exact harmonic solutions to these equations are obtained for the Cauchy and the Dirichlet conditions. The application to the ballistic heat transport in thin films is studied; the ballistic properties are accounted for by the Knudsen number. Two-speed heat propagation process is demonstrated&mdash;fast evolution of the ballistic quasi-temperature component in low-dimensional systems is elucidated and compared with slow diffusive heat-exchange process. The comparative analysis of the obtained solutions is performed.

]]>Axioms doi: 10.3390/axioms7030047

Authors: Muhammad Akram Sidra Sayed Florentin Smarandache

In this research study, we introduce the notion of single-valued neutrosophic incidence graphs. We describe certain concepts, including bridges, cut vertex and blocks in single-valued neutrosophic incidence graphs. We present some properties of single-valued neutrosophic incidence graphs. We discuss the edge-connectivity, vertex-connectivity and pair-connectivity in neutrosophic incidence graphs. We also deal with a mathematical model of the situation of illegal migration from Pakistan to Europe.

]]>Axioms doi: 10.3390/axioms7030046

Authors: Francesca Pitolli

Efficient numerical methods to solve fractional differential problems are particularly required in order to approximate accurately the nonlocal behavior of the fractional derivative. The aim of the paper is to show how optimal B-spline bases allow us to construct accurate numerical methods that have a low computational cost. First of all, we describe in detail how to construct optimal B-spline bases on bounded intervals and recall their main properties. Then, we give the analytical expression of their derivatives of fractional order and use these bases in the numerical solution of fractional differential problems. Some numerical tests showing the good performances of the bases in solving a time-fractional diffusion problem by a collocation&ndash;Galerkin method are also displayed.

]]>Axioms doi: 10.3390/axioms7030045

Authors: Angelamaria Cardone Dajana Conte Raffaele D’Ambrosio Beatrice Paternoster

We present a collection of recent results on the numerical approximation of Volterra integral equations and integro-differential equations by means of collocation type methods, which are able to provide better balances between accuracy and stability demanding. We consider both exact and discretized one-step and multistep collocation methods, and illustrate main convergence results, making some comparisons in terms of accuracy and efficiency. Some numerical experiments complete the paper.

]]>Axioms doi: 10.3390/axioms7030044

Authors: Benedetta Morini

This work studies limited memory preconditioners for linear symmetric positive definite systems of equations. Connections are established between a partial Cholesky factorization from the literature and a variant of Quasi-Newton type preconditioners. Then, a strategy for enhancing the Quasi-Newton preconditioner via available information is proposed. Numerical experiments show the behaviour of the resulting preconditioner.

]]>Axioms doi: 10.3390/axioms7030043

Authors: Cesare Bracco Carlotta Giannelli Rafael Vázquez

The construction of suitable mesh configurations for spline models that provide local refinement capabilities is one of the fundamental components for the analysis and development of adaptive isogeometric methods. We investigate the design and implementation of refinement algorithms for hierarchical B-spline spaces that enable the construction of locally graded meshes. The refinement rules properly control the interaction of basis functions at different refinement levels. This guarantees a bounded number of nonvanishing (truncated) hierarchical B-splines on any mesh element. The performances of the algorithms are validated with standard benchmark problems.

]]>Axioms doi: 10.3390/axioms7020042

Authors: Sergio Manzetti

Anomalous waves and rogue events are closely associated with irregularities and unexpected events occurring at various levels of physics, such as in optics, in oceans and in the atmosphere. Mathematical modeling of rogue waves is a highly active field of research, which has evolved over the last few decades into a specialized part of mathematical physics. The applications of the mathematical models for rogue events is directly relevant to technology development for the prediction of rogue ocean waves and for signal processing in quantum units. In this survey, a comprehensive perspective of the most recent developments of methods for representing rogue waves is given, along with discussion of the devised forms and solutions. The standard nonlinear Schrödinger equation, the Hirota equation, the MMT equation and other models are discussed and their properties highlighted. This survey shows that the most recent advancement in modeling rogue waves give models that can be used to establish methods for the prediction of rogue waves in open seas, which is important for the safety and activity of marine vessels and installations. The study further puts emphasis on the difference between the methods and how the resulting models form the basis for representing rogue waves in various forms, solitary or with a wave background. This review has also a pedagogic component directed towards students and interested non-experts and forms a complete survey of the most conventional and emerging methods published until recently.

]]>Axioms doi: 10.3390/axioms7020041

Authors: Young Bae Jun Seok-Zun Song Florentin Smarandache Hashem Bordbar

The notion of a neutrosophic quadruple BCK/BCI-number is considered, and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. Given subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCI-numbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given. An example to show that the set {0&tilde;} is not a positive implicative ideal in a neutrosophic quadruple BCK-algebra is provided, and conditions for the set {0&tilde;} to be a positive implicative ideal in a neutrosophic quadruple BCK-algebra are then discussed.

]]>Axioms doi: 10.3390/axioms7020040

Authors: Alessandra Aimi Lorenzo Diazzi Chiara Guardasoni

This paper aims to illustrate how SABO (Semi-Analytical method for Barrier Option pricing) is easily applicable for pricing floating strike Asian barrier options with a continuous geometric average. Recently, this method has been applied in the Black–Scholes framework to European vanilla barrier options with constant and time-dependent parameters or barriers and to geometric Asian barrier options with a fixed strike price. The greater efficiency of SABO with respect to classical finite difference methods is clearly evident in numerical simulations. For the first time, a user-friendly MATLAB® code is made available here.

]]>Axioms doi: 10.3390/axioms7020039

Authors: Raffaele Chiappinelli

A nonlinear eigenvalue problem is generally described by an equation of the form F(&lambda;,x)=0, where F(&lambda;,0)=0 for all &lambda;, and contains by definition two unknowns: the eigenvalue parameter &lambda; and the &ldquo;nontrivial&rdquo; vector(s) x corresponding to it. The nonlinear dependence of F can be in either of them (and of course in both), and also the research in this area seems to follow two quite different directions. In this review paper, we try to collect some points of possible common interest for both fields.

]]>Axioms doi: 10.3390/axioms7020038

Authors: Mohammad Masjed-Jamei Wolfram Koepf

Essentially, whenever a generalized hypergeometric series can be summed in terms of gamma functions, the result will be important as only a few such summation theorems are available in the literature. In this paper, we apply two identities of generalized hypergeometric series in order to extend some classical summation theorems of hypergeometric functions such as Gauss, Kummer, Dixon, Watson, Whipple, Pfaff&ndash;Saalsch&uuml;tz and Dougall formulas and also obtain some new summation theorems in the sequel.

]]>Axioms doi: 10.3390/axioms7020037

Authors: Humberto Bustince Javier Fernandez Esteban Induráin

We focus on the articles recently published in the special issue of Axioms devoted to &ldquo;New Trends in Fuzzy Set Theory and Related Items&rdquo;.

]]>Axioms doi: 10.3390/axioms7020036

Authors: Luigi Brugnano Felice Iavernaro

In recent years, the numerical solution of differential problems, possessing constants of motion, has been attacked by imposing the vanishing of a corresponding line integral. The resulting methods have been, therefore, collectively named (discrete) line integral methods, where it is taken into account that a suitable numerical quadrature is used. The methods, at first devised for the numerical solution of Hamiltonian problems, have been later generalized along several directions and, actually, the research is still very active. In this paper we collect the main facts about line integral methods, also sketching various research trends, and provide a comprehensive set of references.

]]>Axioms doi: 10.3390/axioms7020035

Authors: Marta Cardin

In this short paper, we aim at a qualitative framework for modeling multivariate decision problems where each alternative is characterized by a set of properties. To this extent, we consider convex spaces as underlying universes and make use of lattice operations in convex spaces to formalize the notion of quantiles. We also put in evidence that many important models of decision problems can be viewed as convex spaces-based models. Several properties of aggregation operators are translated into this general setting, and independence and invariance are used to provide axiomatic characterizations of quantiles.

]]>Axioms doi: 10.3390/axioms7020034

Authors: Hsien-Chung Wu

The T 1 -spaces induced by the pre-metric spaces along with many forms of triangle inequalities are investigated in this paper. The limits in pre-metric spaces are also studied to demonstrate the consistency of limit concept in the induced topologies.

]]>Axioms doi: 10.3390/axioms7020033

Authors: Muhammad Akram Shumaiza Florentin Smarandache

Technique for the order of preference by similarity to ideal solution (TOPSIS) and elimination and choice translating reality (ELECTRE) are widely used methods to solve multi-criteria decision making problems. In this research article, we present bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I method to solve such problems. We use the revised closeness degree to rank the alternatives in our bipolar neutrosophic TOPSIS method. We describe bipolar neutrosophic TOPSIS method and bipolar neutrosophic ELECTRE-I method by flow charts. We solve numerical examples by proposed methods. We also give a comparison of these methods.

]]>Axioms doi: 10.3390/axioms7020032

Authors: Igor Protasov

A class M of coarse spaces is called a variety if M is closed under the formation of subspaces, coarse images, and products. We classify the varieties of coarse spaces and, in particular, show that if a variety M contains an unbounded metric space then M is the variety of all coarse spaces.

]]>Axioms doi: 10.3390/axioms7020031

Authors: Ann-Eva Christensen Jon Johnsen

This article concerns the basic understanding of parabolic final value problems, and a large class of such problems is proved to be well posed. The clarification is obtained via explicit Hilbert spaces that characterise the possible data, giving existence, uniqueness and stability of the corresponding solutions. The data space is given as the graph normed domain of an unbounded operator occurring naturally in the theory. It induces a new compatibility condition, which relies on the fact, shown here, that analytic semigroups always are invertible in the class of closed operators. The general set-up is evolution equations for Lax&ndash;Milgram operators in spaces of vector distributions. As a main example, the final value problem of the heat equation on a smooth open set is treated, and non-zero Dirichlet data are shown to require a non-trivial extension of the compatibility condition by addition of an improper Bochner integral.

]]>Axioms doi: 10.3390/axioms7020030

Authors: Ravi Agarwal Snezhana Hristova Donal O’Regan

One of the main properties of solutions of nonlinear Caputo fractional neural networks is stability and often the direct Lyapunov method is used to study stability properties (usually these Lyapunov functions do not depend on the time variable). In connection with the Lyapunov fractional method we present a brief overview of the most popular fractional order derivatives of Lyapunov functions among Caputo fractional delay differential equations. These derivatives are applied to various types of neural networks with variable coefficients and time-varying delays. We show that quadratic Lyapunov functions and their Caputo fractional derivatives are not applicable in some cases when one studies stability properties. Some sufficient conditions for stability of equilibrium of nonlinear Caputo fractional neural networks with time dependent transmission delays, time varying self-regulating parameters of all units and time varying functions of the connection between two neurons in the network are obtained. The cases of time varying Lipschitz coefficients as well as nonLipschitz activation functions are studied. We illustrate our theory on particular nonlinear Caputo fractional neural networks.

]]>Axioms doi: 10.3390/axioms7020029

Authors: María-Jesús Campión Cristina Gómez-Polo Esteban Induráin Armajac Raventós-Pujol

Different abstract versions of entropy, encountered in science, are interpreted in the light of numerical representations of several ordered structures, as total-preorders, interval-orders and semiorders. Intransitivities, other aspects of entropy as competitive systems, additivity, etc., are also viewed in terms of representability of algebraic structures endowed with some compatible ordering. A particular attention is paid to the problem of the construction of an entropy function or their mathematical equivalents. Multidisciplinary comparisons to other similar frameworks are also discussed, pointing out the mathematical foundations.

]]>Axioms doi: 10.3390/axioms7020028

Authors: Antti Rasila Tommi Sottinen

This paper continues our earlier investigation, where a walk-on-spheres (WOS) algorithm for Monte Carlo simulation of the solutions of the Yukawa and the Helmholtz partial differential equations (PDEs) was developed by using the Duffin correspondence. In this paper, we investigate the foundations behind the algorithm for the case of the Yukawa PDE. We study the panharmonic measure, which is a generalization of the harmonic measure for the Yukawa PDE. We show that there are natural stochastic definitions for the panharmonic measure in terms of the Brownian motion and that the harmonic and the panharmonic measures are all mutually equivalent. Furthermore, we calculate their Radon&ndash;Nikodym derivatives explicitly for some balls, which is a key result behind the WOS algorithm.

]]>Axioms doi: 10.3390/axioms7020027

Authors: Hanaa M. Zayed Mohamed Kamal Aouf Adela O. Mostafa

Using of the principle of subordination, we investigate some subordination and convolution properties for classes of multivalent functions under certain assumptions on the parameters involved, which are defined by a generalized fractional differintegral operator under certain assumptions on the parameters involved.

]]>Axioms doi: 10.3390/axioms7020026

Authors: Seok-Zun Song Hashem Bordbar Young Bae Jun

Relations between I-quasi-valuation maps and ideals in B C K / B C I -algebras are investigated. Using the notion of an I-quasi-valuation map of a B C K / B C I -algebra, the quasi-metric space is induced, and several properties are investigated. Relations between the I-quasi-valuation map and the I-valuation map are considered, and conditions for an I-quasi-valuation map to be an I-valuation map are provided. A congruence relation is introduced by using the I-valuation map, and then the quotient structures are established and related properties are investigated. Isomorphic quotient B C K / B C I -algebras are discussed.

]]>Axioms doi: 10.3390/axioms7020025

Authors: Kevin Burrage Pamela Burrage Ian Turner Fanhai Zeng

In this paper, we study the class of mixed-index time fractional differential equations in which different components of the problem have different time fractional derivatives on the left-hand side. We prove a theorem on the solution of the linear system of equations, which collapses to the well-known Mittag&ndash;Leffler solution in the case that the indices are the same and also generalises the solution of the so-called linear sequential class of time fractional problems. We also investigate the asymptotic stability properties of this class of problems using Laplace transforms and show how Laplace transforms can be used to write solutions as linear combinations of generalised Mittag&ndash;Leffler functions in some cases. Finally, we illustrate our results with some numerical simulations.

]]>Axioms doi: 10.3390/axioms7020024

Authors: Ömer Kişi Hafize Gümüş Ekrem Savas

In this paper, using an infinite matrix of complex numbers, a modulus function and a lacunary sequence, we generalize the concept of I -statistical convergence, which is a recently introduced summability method. The names of our new methods are A I -lacunary statistical convergence and strongly A I -lacunary convergence with respect to a sequence of modulus functions. These spaces are denoted by S θ A I , F and N θ A I , F , respectively. We give some inclusion relations between S A I , F , S θ A I , F and N θ A I , F . We also investigate Cesáro summability for A I and we obtain some basic results between A I -Cesáro summability, strongly A I -Cesáro summability and the spaces mentioned above.

]]>Axioms doi: 10.3390/axioms7020023

Authors: Young Jun Seon Kim Florentin Smarandache

For i , j , k , l , m , n ∈ { 1 , 2 , 3 , 4 } , the notion of ( T ( i , j ) , I ( k , l ) , F ( m , n ) ) -interval neutrosophic subalgebra in B C K / B C I -algebra is introduced, and their properties and relations are investigated. The notion of interval neutrosophic length of an interval neutrosophic set is also introduced, and related properties are investigated.

]]>Axioms doi: 10.3390/axioms7020022

Authors: Yilmaz Simsek

In this paper, by applying umbral calculus methods to generating functions for the combinatorial numbers and the Apostol type polynomials and numbers of order k, we derive some identities and relations including the combinatorial numbers, the Apostol-Bernoulli polynomials and numbers of order k and the Apostol-Euler polynomials and numbers of order k. Moreover, by using p-adic integral technique, we also derive some combinatorial sums including the Bernoulli numbers, the Euler numbers, the Apostol-Euler numbers and the numbers y 1 n , k ; λ . Finally, we make some remarks and observations regarding these identities and relations.

]]>Axioms doi: 10.3390/axioms7020021

Authors: Surapati Pramanik Partha Pratim Dey Florentin Smarandache Jun Ye

The bipolar neutrosophic set is an important extension of the bipolar fuzzy set. The bipolar neutrosophic set is a hybridization of the bipolar fuzzy set and neutrosophic set. Every element of a bipolar neutrosophic set consists of three independent positive membership functions and three independent negative membership functions. In this paper, we develop cross entropy measures of bipolar neutrosophic sets and prove their basic properties. We also define cross entropy measures of interval bipolar neutrosophic sets and prove their basic properties. Thereafter, we develop two novel multi-attribute decision-making strategies based on the proposed cross entropy measures. In the decision-making framework, we calculate the weighted cross entropy measures between each alternative and the ideal alternative to rank the alternatives and choose the best one. We solve two illustrative examples of multi-attribute decision-making problems and compare the obtained result with the results of other existing strategies to show the applicability and effectiveness of the developed strategies. At the end, the main conclusion and future scope of research are summarized.

]]>Axioms doi: 10.3390/axioms7020020

Authors: Sundas Shahzadi Muhammad Akram

In this research article, we present a novel framework for handling intuitionistic fuzzy soft information by combining the theory of intuitionistic fuzzy soft sets with graphs. We introduce the notion of certain types of intuitionistic fuzzy soft graphs including neighbourly edge regular intuitionistic fuzzy soft graphs and strongyl edge irregular intuitionistic fuzzy soft graphs. We illustrate these novel concepts by several examples, and investigate some of their related properties. We present an application of intuitionistic fuzzy soft graph in a decision-making problem and also present our methods as an algorithm that is used in this application.

]]>Axioms doi: 10.3390/axioms7010019

Authors: Muhammad Akram Sundas Shahzadi Florentin Smarandache

Soft sets (SSs), neutrosophic sets (NSs), and rough sets (RSs) are different mathematical models for handling uncertainties, but they are mutually related. In this research paper, we introduce the notions of soft rough neutrosophic sets (SRNSs) and neutrosophic soft rough sets (NSRSs) as hybrid models for soft computing. We describe a mathematical approach to handle decision-making problems in view of NSRSs. We also present an efficient algorithm of our proposed hybrid model to solve decision-making problems.

]]>Axioms doi: 10.3390/axioms7010018

Authors: Manseob Lee

We show that if a C 1 generic diffeomorphism of a closed smooth two-dimensional manifold has the average shadowing property or the asymptotic average shadowing property, then it is Anosov. Moreover, if a C 1 generic vector field of a closed smooth three-dimensional manifold has the average shadowing property or the asymptotic average shadowing property, then it satisfies singular Axiom A without cycles.

]]>Axioms doi: 10.3390/axioms7010017

Authors: Juan Candeal

A general characterization result of projective aggregation functions is shown, the proof of which makes use of the celebrated Arrow’s theorem, thus providing a link between aggregation functions theory and social choice theory. The result can be viewed as a generalization of a theorem obtained by Kim (1990) for real-valued aggregation functions defined on the n-dimensional Euclidean space in the context of measurement theory. In addition, two applications of the core theorem of the article are shown. The first is a simple extension of the main result to the context of multi-valued aggregation functions. The second offers a new characterization of projective bijection aggregators, thus connecting aggregation operators theory with social choice.

]]>Axioms doi: 10.3390/axioms7010016

Authors: Krzysztof Piasecki

Ordered fuzzy numbers are defined by Kosiński. In this way, he was going to supplement a fuzzy number by orientation. A significant drawback of Kosiński’s theory is that there exist such ordered fuzzy numbers which, in fact, are not fuzzy numbers. For this reason, a fully formalized correct definition of ordered fuzzy numbers is proposed here. Also, the arithmetic proposed by Kosiński has a significant disadvantage. The space of ordered fuzzy numbers is not closed under Kosiński’s addition. On the other hand, many mathematical applications require the considered space be closed under used arithmetic operations. Therefore, the Kosinski’s theory is modified in this way that the space of ordered fuzzy numbers is closed under revised arithmetic operations. In addition, it is shown that the multiple revised sum of finite sequence of ordered fuzzy numbers depends on its summands ordering.

]]>Axioms doi: 10.3390/axioms7010015

Authors: Solomon Marcus Florin Nichita

Bringing toghether mathematical and philosophical ideas related to transcendental numbers, this paper begins with a survey on transcendence and transcendental numbers, it then presents several properties of the transcendental numbers e and π , and then it gives the proof of a new inequality for transcendental numbers. Also, in relationship with these topics, we study solutions to the Yang-Baxter equation from hyperbolic functions and from logical implication.

]]>Axioms doi: 10.3390/axioms7010014

Authors: Muhammad Akram Hafsa M. Malik Sundas Shahzadi Florentin Smarandache

Neutrosophic sets (NSs) handle uncertain information while fuzzy sets (FSs) and intuitionistic fuzzy sets (IFs) fail to handle indeterminate information. Soft set theory, neutrosophic set theory, and rough set theory are different mathematical models for handling uncertainties and they are mutually related. The neutrosophic soft rough set (NSRS) model is a hybrid model by combining neutrosophic soft sets with rough sets. We apply neutrosophic soft rough sets to graphs. In this research paper, we introduce the idea of neutrosophic soft rough graphs (NSRGs) and describe different methods of their construction. We consider the application of NSRG in decision-making problems. In particular, we develop efficient algorithms to solve decision-making problems.

]]>Axioms doi: 10.3390/axioms7010013

Authors: Jun Ye Wenhua Cui Zhikang Lu

In practical situations, we often have to handle programming problems involving indeterminate information. Building on the concepts of indeterminacy I and neutrosophic number (NN) (z = p + qI for p, q ∈ ℝ), this paper introduces some basic operations of NNs and concepts of NN nonlinear functions and inequalities. These functions and/or inequalities contain indeterminacy I and naturally lead to a formulation of NN nonlinear programming (NN-NP). These techniques include NN nonlinear optimization models for unconstrained and constrained problems and their general solution methods. Additionally, numerical examples are provided to show the effectiveness of the proposed NN-NP methods. It is obvious that the NN-NP problems usually yield NN optimal solutions, but not always. The possible optimal ranges of the decision variables and NN objective function are indicated when the indeterminacy I is considered for possible interval ranges in real situations.

]]>Axioms doi: 10.3390/axioms7010012

Authors: Kalyan Mondal Surapati Pramanik Bibhas C. Giri Florentin Smarandache

A neutrosophic number (a + bI) is a significant mathematical tool to deal with indeterminate and incomplete information which exists generally in real-world problems, where a and bI denote the determinate component and indeterminate component, respectively. We define score functions and accuracy functions for ranking neutrosophic numbers. We then define a cosine function to determine the unknown weight of the criteria. We define the neutrosophic number harmonic mean operators and prove their basic properties. Then, we develop two novel multi-criteria group decision-making (MCGDM) strategies using the proposed aggregation operators. We solve a numerical example to demonstrate the feasibility, applicability, and effectiveness of the two proposed strategies. Sensitivity analysis with the variation of “I” on neutrosophic numbers is performed to demonstrate how the preference ranking order of alternatives is sensitive to the change of “I”. The efficiency of the developed strategies is ascertained by comparing the results obtained from the proposed strategies with the results obtained from the existing strategies in the literature.

]]>Axioms doi: 10.3390/axioms7010011

Authors: Gerardo Febres

When considering perceptions, the observation scale and resolution are closely related properties. There is consensus on considering resolution as the density of the elementary pieces of information in a specified information space. On the other hand, with the concept of scale, several conceptions compete for a consistent meaning. Scale is typically regarded as a way to indicate the degree of detail in which an observation is performed. Surprisingly, there is not a unified definition of scale as a description’s property. This paper offers a precise definition of scale and a method to quantify it as a property associated with the interpretation of a description. To complete the parameters needed to describe the perception of a description, the concepts of scope and resolution are also revealed with an exact meaning. A model describing a recursive process of interpretation, based on evolving steps of scale, scope and resolution, is introduced. The model relies on the conception of observation scale and its association to the selection of symbols. Five experiments illustrate the application of these concepts, showing that resolution, scale and scope integrate the set of properties to define any point of view from which an observation is performed and interpreted. The results obtained for descriptions expressed in one and two dimensions, are the basis for a comparison of the perceivable symbolic information from different interpretations of the same descriptions. In conclusion, this study provides a framework for building models of our interpretation process and suggests ways to understand some mechanisms in the formation of information from initially meaningless symbols.

]]>Axioms doi: 10.3390/axioms7010010

Authors: Jun Jiang Yuqiang Feng Shougui Li

In this paper, the solvability of nonlinear fractional partial differential equations (FPDEs) with mixed partial derivatives is considered. The invariant subspace method is generalized and is then used to derive exact solutions to the nonlinear FPDEs. Some examples are solved to illustrate the effectiveness and applicability of the method.

]]>Axioms doi: 10.3390/axioms7010009

Authors: Carlton-James Osakwe

In this paper, we examine the real options approach to capital budgeting decision making in the presence of managerial adverse incentives. We show that real options have the potential to be value enhancing or value destroying depending on the managerial incentives that may result from having objectives different from firm value maximization. We further examine the possibility of using a generic residual income based rule of managerial compensation to induce the proper investment incentives and we seek to determine the cost-of-capital that must be employed in such a rule. Using numerical examples it is demonstrated that in general, a range of incentive compatible costs-of-capital exists across all managerial investment horizons but not across all managerial hurdle rates.

]]>Axioms doi: 10.3390/axioms7010008

Authors: Christian Servin Gerardo Muela Vladik Kreinovich

In modern mathematics, many concepts and ideas are described in terms of category theory. From this viewpoint, it is desirable to analyze what can be determined if, instead of the basic category of sets, we consider a similar category of fuzzy sets. In this paper, we describe a natural fuzzy analog of the category of sets and functions, and we show that, in this category, fuzzy relations (a natural fuzzy analogue of functions) can be determined in category terms—of course, modulo 1-1 mapping of the corresponding universe of discourse and 1-1 re-scaling of fuzzy degrees.

]]>Axioms doi: 10.3390/axioms7010007

Authors: Young Jun Seok-Zun Song Seon Kim

As a new extension of a cubic set, the notion of a cubic interval-valued intuitionistic fuzzy set is introduced, and its application in B C K / B C I -algebra is considered. The notions of α -internal, β -internal, α -external and β -external cubic IVIF set are introduced, and the P-union, P-intersection, R-union and R-intersection of α -internal and α -external cubic IVIF sets are discussed. The concepts of cubic IVIF subalgebra and ideal in B C K / B C I -algebra are introduced, and related properties are investigated. Relations between cubic IVIF subalgebra and cubic IVIF ideal are considered, and characterizations of cubic IVIF subalgebra and cubic IVIF ideal are discussed.

]]>Axioms doi: 10.3390/axioms7010006

Authors: Tahsin Oner Tugce Katican

In this work, we introduce Wajsberg algebras which are equivalent structures to MV-algebras in their implicational version, and then we define new notions and give new solutions to the set-theoretical Yang-Baxter equation by using Wajsberg algebras.

]]>Axioms doi: 10.3390/axioms7010005

Authors: Sidra Sayed Nabeela Ishfaq Muhammad Akram Florentin Smarandache

A rough neutrosophic set model is a hybrid model which deals with vagueness by using the lower and upper approximation spaces. In this research paper, we apply the concept of rough neutrosophic sets to graphs. We introduce rough neutrosophic digraphs and describe methods of their construction. Moreover, we present the concept of self complementary rough neutrosophic digraphs. Finally, we consider an application of rough neutrosophic digraphs in decision-making.

]]>Axioms doi: 10.3390/axioms7010004

Authors: Teresa González-Arteaga Rocio de Andrés Calle Luis Martínez

The need for organizations to evaluate their environmental practices has been recently increasing. This fact has led to the development of many approaches to appraise such practices. In this paper, a novel decision model to evaluate company’s environmental practices is proposed to improve traditional evaluation process in different facets. Firstly, different reviewers’ collectives related to the company’s activity are taken into account in the process to increase company internal efficiency and external legitimacy. Secondly, following the standard ISO 14031, two general categories of environmental performance indicators, management and operational, are considered. Thirdly, since the assumption of independence among environmental indicators is rarely verified in environmental context, an aggregation operator to bear in mind the relationship among such indicators in the evaluation results is proposed. Finally, this new model integrates quantitative and qualitative information with different scales using a multi-granular linguistic model that allows to adapt diverse evaluation scales according to appraisers’ knowledge.

]]>Axioms doi: 10.3390/axioms7010003

Authors: Young Jun Florentin Smarandache Seok-Zun Song Madad Khan

The notion of a neutrosophic positive implicative N -ideal in B C K -algebras is introduced, and several properties are investigated. Relations between a neutrosophic N -ideal and a neutrosophic positive implicative N -ideal are discussed. Characterizations of a neutrosophic positive implicative N -ideal are considered. Conditions for a neutrosophic N -ideal to be a neutrosophic positive implicative N -ideal are provided. An extension property of a neutrosophic positive implicative N -ideal based on the negative indeterminacy membership function is discussed.

]]>Axioms doi: 10.3390/axioms7010002

Authors: Axioms Editorial Office

Peer review is an essential part in the publication process, ensuring that Axioms maintains high quality standards for its published papers.[...]

]]>Axioms doi: 10.3390/axioms7010001

Authors: Nor Jaini Sergey Utyuzhnikov

The aim of this paper is to present a trade-off ranking method in a fuzzy multi-criteria decision-making environment. The triangular fuzzy numbers are used to represent the imprecise numerical quantities in the criteria values of each alternative and the weight of each criterion. A fuzzy trade-off ranking method is developed to rank alternatives in the fuzzy multi-criteria decision-making problem with conflicting criteria. The trade-off ranking method tackles this type of multi-criteria problems by giving the least compromise solution as the best option. The proposed method for the fuzzy decision-making problems is compared against two other fuzzy decision-making approaches, fuzzy Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) and fuzzy VlseKriterijuska Optimizacija I Komoromisno Resenje (VIKOR), used for ranking alternatives.

]]>Axioms doi: 10.3390/axioms6040035

Authors: Ümit Budak Yanhui Guo Abdulkadir Şengür Florentin Smarandache

Hough transform (HT) is a useful tool for both pattern recognition and image processing communities. In the view of pattern recognition, it can extract unique features for description of various shapes, such as lines, circles, ellipses, and etc. In the view of image processing, a dozen of applications can be handled with HT, such as lane detection for autonomous cars, blood cell detection in microscope images, and so on. As HT is a straight forward shape detector in a given image, its shape detection ability is low in noisy images. To alleviate its weakness on noisy images and improve its shape detection performance, in this paper, we proposed neutrosophic Hough transform (NHT). As it was proved earlier, neutrosophy theory based image processing applications were successful in noisy environments. To this end, the Hough space is initially transferred into the NS domain by calculating the NS membership triples (T, I, and F). An indeterminacy filtering is constructed where the neighborhood information is used in order to remove the indeterminacy in the spatial neighborhood of neutrosophic Hough space. The potential peaks are detected based on thresholding on the neutrosophic Hough space, and these peak locations are then used to detect the lines in the image domain. Extensive experiments on noisy and noise-free images are performed in order to show the efficiency of the proposed NHT algorithm. We also compared our proposed NHT with traditional HT and fuzzy HT methods on variety of images. The obtained results showed the efficiency of the proposed NHT on noisy images.

]]>Axioms doi: 10.3390/axioms6040034

Authors: Juan-José Miñana Oscar Valero

The notion of indistinguishability operator was introduced by Trillas, E. in 1982, with the aim of fuzzifying the crisp notion of equivalence relation. Such operators allow for measuring the similarity between objects when there is a limitation on the accuracy of the performed measurement or a certain degree of similarity can be only determined between the objects being compared. Since Trillas introduced such kind of operators, many authors have studied their properties and applications. In particular, an intensive research line is focused on the metric behavior of indistinguishability operators. Specifically, the existence of a duality between metrics and indistinguishability operators has been explored. In this direction, a technique to generate metrics from indistinguishability operators, and vice versa, has been developed by several authors in the literature. Nowadays, such a measurement of similarity is provided by the so-called fuzzy metrics when the degree of similarity between objects is measured relative to a parameter. The main purpose of this paper is to extend the notion of indistinguishability operator in such a way that the measurements of similarity are relative to a parameter and, thus, classical indistinguishability operators and fuzzy metrics can be retrieved as a particular case. Moreover, we discuss the relationship between the new operators and metrics. Concretely, we prove the existence of a duality between them and the so-called modular metrics, which provide a dissimilarity measurement between objects relative to a parameter. The new duality relationship allows us, on the one hand, to introduce a technique for generating the new indistinguishability operators from modular metrics and vice versa and, on the other hand, to derive, as a consequence, a technique for generating fuzzy metrics from modular metrics and vice versa. Furthermore, we yield examples that illustrate the new results.

]]>Axioms doi: 10.3390/axioms6040033

Authors: Vsevolod Gubarev

Universal enveloping commutative Rota–Baxter algebras of pre- and post-commutative algebras are constructed. The pair of varieties (RBλCom, postCom) is proved to be a Poincaré–Birkhoff–Witt-pair (PBW)-pair and the pair (RBCom, preCom) is proven not to be.

]]>Axioms doi: 10.3390/axioms6040032

Authors: Simon Lentner Andreas Lochmann

A ubiquitous observation for finite-dimensional Nichols algebras is that as a graded algebra the Hilbert series factorizes into cyclotomic polynomials. For Nichols algebras of diagonal type (e.g., Borel parts of quantum groups), this is a consequence of the existence of a root system and a Poincare-Birkhoff-Witt (PBW) basis basis, but, for nondiagonal examples (e.g., Fomin–Kirillov algebras), this is an ongoing surprise. In this article, we discuss this phenomenon and observe that it continues to hold for the graded character of the involved group and for automorphisms. First, we discuss thoroughly the diagonal case. Then, we prove factorization for a large class of nondiagonal Nichols algebras obtained by the folding construction. We conclude empirically by listing all remaining examples, which were in size accessible to the computer algebra system GAP and find that again all graded characters factorize.

]]>Axioms doi: 10.3390/axioms6040030

Authors: Jin Liang Yunyi Mu

In this paper, we present new existence theorems of mild solutions to Cauchy problem for some fractional differential equations with delay. Our main tools to obtain our results are the theory of analytic semigroups and compact semigroups, the Kuratowski measure of non-compactness, and fixed point theorems, with the help of some estimations. Examples are also given to illustrate the applicability of our results.

]]>Axioms doi: 10.3390/axioms6040031

Authors: Mehmet Şahin Rızvan Erol

This study proposes a mathematical model of dynamic pricing for soccer game tickets. The logic behind the dynamic ticket pricing model is price change based on multipliers which reflect the effects of time and inventory. Functions are formed for the time and inventory multipliers. The optimization algorithm attempts to find optimal values of these multipliers in order to maximize revenue. By multiplying the mean season ticket price (used as the reference price) by the multipliers, dynamic ticket prices are obtained. Demand rates at different prices are needed for the model, and they are provided by a unique fuzzy logic model. The results of this model are compared with real data to test the model’s effectiveness. According to the results of the dynamic pricing model, the total revenue generated is increased by 8.95% and 0.76% compared with the static pricing strategy in the first and second cases, respectively. The results of the fuzzy logic model are also found to be competitive and effective. This is the first time a fuzzy logic model has been designed to forecast the attendance of soccer games. It is also the first time this type of mathematical model of dynamic pricing for soccer game tickets has been designed.

]]>Axioms doi: 10.3390/axioms6040029

Authors: Paolo Bevilacqua Gianni Bosi Magalì Zuanon

Looking at decisiveness as crucial, we discuss the existence of an order-preserving function for the nontotal crisp preference relation naturally associated to a nontotal fuzzy preference relation. We further present conditions for the existence of an upper semicontinuous order-preserving function for a fuzzy binary relation on a crisp topological space.

]]>Axioms doi: 10.3390/axioms6040028

Authors: Ol’ga Sipacheva

Various notions of large sets in groups, including the classical notions of thick, syndetic, and piecewise syndetic sets and the new notion of vast sets in groups, are studied with emphasis on the interplay between such sets in Boolean groups. Natural topologies closely related to vast sets are considered; as a byproduct, interesting relations between vast sets and ultrafilters are revealed.

]]>Axioms doi: 10.3390/axioms6040027

Authors: George Willis

The scale of an endomorphism of a totally disconnected, locally compact group G is defined and an example is presented which shows that the scale function is not always continuous with respect to the Braconnier topology on the automorphism group of G. Methods for computing the scale, which is a positive integer, are surveyed and illustrated by applying them in diverse cases, including when G is compact; an automorphism group of a tree; Neretin’s group of almost automorphisms of a tree; and a p-adic Lie group. The information required to compute the scale is reviewed from the perspective of the, as yet incomplete, general theory of totally disconnected, locally compact groups.

]]>Axioms doi: 10.3390/axioms6030026

Authors: Eli Appleboim

This paper gives a study of a two dimensional version of the theory of normal surfaces; namely, a study o normal curves and their relations with respect to geodesic curves. This study results with a nice discrete approximation of geodesics embedded in a triangulated orientable Riemannian surface. Experimental results of the two dimensional case are given as well.

]]>Axioms doi: 10.3390/axioms6030025

Authors: Leire Legarreta Inmaculada Lizasoain Iraide Mardones-Pérez

Aggregation functions are mathematical operators that merge given data in order to obtain a global value that preserves the information given by the data as much as possible. In most practical applications, this value is expected to be between the infimum and the supremum of the given data, which is guaranteed only when the aggregation functions are idempotent. Ordered weighted averaging (OWA) operators are particular cases of this kind of function, with the particularity that the obtained global value depends on neither the source nor the expert that provides each datum, but only on the set of values. They have been classified by means of the orness—a measurement of the proximity of an OWA operator to the OR-operator. In this paper, the concept of orness is extended to the framework of idempotent aggregation functions defined both on the real unit interval and on a complete lattice with a local finiteness condition.

]]>Axioms doi: 10.3390/axioms6030024

Authors: Paul Alsing Howard Blair Matthew Corne Gordon Jones Warner Miller Konstantin Mischaikow Vidit Nanda

We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point) from local singularity formation (neckpinch). Finally, we discuss the interpretation and implication of these results and future applications.

]]>Axioms doi: 10.3390/axioms6030023

Authors: Taras Banakh

Let C → be a category whose objects are semigroups with topology and morphisms are closed semigroup relations, in particular, continuous homomorphisms. An object X of the category C → is called C → -closed if for each morphism Φ ⊂ X × Y in the category C → the image Φ ( X ) = { y ∈ Y : ∃ x ∈ X ( x , y ) ∈ Φ } is closed in Y. In the paper we survey existing and new results on topological groups, which are C → -closed for various categories C → of topologized semigroups.

]]>Axioms doi: 10.3390/axioms6030022

Authors: Pablo Hernández Susana Cubillo Carmen Torres-Blanc José Guerrero

Since Lotfi A. Zadeh introduced the concept of fuzzy sets in 1965, many authors have devoted their efforts to the study of these new sets, both from a theoretical and applied point of view. Fuzzy sets were later extended in order to get more adequate and flexible models of inference processes, where uncertainty, imprecision or vagueness is present. Type 2 fuzzy sets comprise one of such extensions. In this paper, we introduce and study an extension of the fuzzy numbers (type 1), the type 2 generalized fuzzy numbers and type 2 fuzzy numbers. Moreover, we also define a partial order on these sets, which extends into these sets the usual order on real numbers, which undoubtedly becomes a new option to be taken into account in the existing total preorders for ranking interval type 2 fuzzy numbers, which are a subset of type 2 generalized fuzzy numbers.

]]>Axioms doi: 10.3390/axioms6030021

Authors: Christopher Fuchs Michael Hoang Blake Stacey

Recent years have seen significant advances in the study of symmetric informationally complete (SIC) quantum measurements, also known as maximal sets of complex equiangular lines. Previously, the published record contained solutions up to dimension 67, and was with high confidence complete up through dimension 50. Computer calculations have now furnished solutions in all dimensions up to 151, and in several cases beyond that, as large as dimension 844. These new solutions exhibit an additional type of symmetry beyond the basic definition of a SIC, and so verify a conjecture of Zauner in many new cases. The solutions in dimensions 68 through 121 were obtained by Andrew Scott, and his catalogue of distinct solutions is, with high confidence, complete up to dimension 90. Additional results in dimensions 122 through 151 were calculated by the authors using Scott’s code. We recap the history of the problem, outline how the numerical searches were done, and pose some conjectures on how the search technique could be improved. In order to facilitate communication across disciplinary boundaries, we also present a comprehensive bibliography of SIC research.

]]>Axioms doi: 10.3390/axioms6030019

Authors: María Campión Edurne Falcó José García-Lapresta Esteban Induráin

In this paper, we study different methods of scoring linguistic expressions defined on a finite set, in the search for a linear order that ranks all those possible expressions. Among them, particular attention is paid to the canonical extension, and its representability through distances in a graph plus some suitable penalization of imprecision. The relationship between this setting and the classical problems of numerical representability of orderings, as well as extension of orderings from a set to a superset is also explored. Finally, aggregation procedures of qualitative rankings and scorings are also analyzed.

]]>Axioms doi: 10.3390/axioms6030020

Authors: Xiaosheng Zhuang

In this paper, we generalize the family of Deslauriers–Dubuc’s interpolatory masks from dimension one to arbitrary dimensions with respect to the quincunx dilation matrices, thereby providing a family of quincunx fundamental refinable functions in arbitrary dimensions. We show that a family of unique quincunx interpolatory masks exists and such a family of masks is of real value and has the full-axis symmetry property. In dimension d = 2 , we give the explicit form of such unique quincunx interpolatory masks, which implies the nonnegativity property of such a family of masks.

]]>Axioms doi: 10.3390/axioms6030018

Authors: Ram Saxena Rakesh Parmar

We aim to present some formulas for the Saigo hypergeometric fractional integral and differential operators involving the generalized Mathieu series S μ ( r ) , which are expressed in terms of the Hadamard product of the generalized Mathieu series S μ ( r ) and the Fox–Wright function p Ψ q ( z ) . Corresponding assertions for the classical Riemann–Liouville and Erdélyi–Kober fractional integral and differential operators are deduced. Further, it is emphasized that the results presented here, which are for a seemingly complicated series, can reveal their involved properties via the series of the two known functions.

]]>Axioms doi: 10.3390/axioms6030017

Authors: Tahsin Oner Ibrahim Senturk Gulsah Oner

The aim of this paper is to give a new equivalent set of axioms for MV-algebras, and to show that the axioms are independent. In addition to this, we handle Yang–Baxter equation problem. In conclusion, we construct a new set-theoretical solution for the Yang–Baxter equation by using MV-algebras.

]]>Axioms doi: 10.3390/axioms6020016

Authors: Kai Liu YangQuan Chen Xi Zhang

Strong coupling between values at different times that exhibit properties of long range dependence, non-stationary, spiky signals cannot be processed by the conventional time series analysis. The autoregressive fractional integral moving average (ARFIMA) model, a fractional order signal processing technique, is the generalization of the conventional integer order models—autoregressive integral moving average (ARIMA) and autoregressive moving average (ARMA) model. Therefore, it has much wider applications since it could capture both short-range dependence and long range dependence. For now, several software programs have been developed to deal with ARFIMA processes. However, it is unfortunate to see that using different numerical tools for time series analysis usually gives quite different and sometimes radically different results. Users are often puzzled about which tool is suitable for a specific application. We performed a comprehensive survey and evaluation of available ARFIMA tools in the literature in the hope of benefiting researchers with different academic backgrounds. In this paper, four aspects of ARFIMA programs concerning simulation, fractional order difference filter, estimation and forecast are compared and evaluated, respectively, in various software platforms. Our informative comments can serve as useful selection guidelines.

]]>Axioms doi: 10.3390/axioms6020015

Authors: Miao Jin Su Xia Hongyi Wu Xianfeng Gu

This work proposes a novel connectivity-based localization algorithm, well suitable for large-scale sensor networks with complex shapes and a non-uniform nodal distribution. In contrast to current state-of-the-art connectivity-based localization methods, the proposed algorithm is highly scalable with linear computation and communication costs with respect to the size of the network; and fully distributed where each node only needs the information of its neighbors without cumbersome partitioning and merging process. The algorithm is theoretically guaranteed and numerically stable. Moreover, the algorithm can be readily extended to the localization of networks with a one-hop transmission range distance measurement, and the propagation of the measurement error at one sensor node is limited within a small area of the network around the node. Extensive simulations and comparison with other methods under various representative network settings are carried out, showing the superior performance of the proposed algorithm.

]]>Axioms doi: 10.3390/axioms6020014

Authors: Sonja Jäckle Karsten Keller

The Tsallis entropy given for a positive parameter α can be considered as a generalization of the classical Shannon entropy. For the latter, corresponding to α = 1 , there exist many axiomatic characterizations. One of them based on the well-known Khinchin-Shannon axioms has been simplified several times and adapted to Tsallis entropy, where the axiom of (generalized) Shannon additivity is playing a central role. The main aim of this paper is to discuss this axiom in the context of Tsallis entropy. We show that it is sufficient for characterizing Tsallis entropy, with the exceptions of cases α = 1 , 2 discussed separately.

]]>Axioms doi: 10.3390/axioms6020013

Authors: Gianluca Paolini Saharon Shelah

We prove that if G is a Polish group and A a group admitting a system of generators whose associated length function satisfies: (i) if 0 &lt; k &lt; ω , then l g ( x ) ≤ l g ( x k ) ; (ii) if l g ( y ) &lt; k &lt; ω and x k = y , then x = e , then there exists a subgroup G * of G of size b (the bounding number) such that G * is not embeddable in A. In particular, we prove that the automorphism group of a countable structure cannot be an uncountable right-angled Artin group. This generalizes analogous results for free and free abelian uncountable groups.

]]>Axioms doi: 10.3390/axioms6020012

Authors: Zengqiang Chen Matthias Dehmer Frank Emmert-Streib Abbe Mowshowitz Yongtang Shi

In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness) of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions) as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.

]]>Axioms doi: 10.3390/axioms6020010

Authors: Evgenii Proutorov Hiroshi Koibuchi

We study triangulated surface models with nontrivial surface metrices for membranes. The surface model is defined by a mapping r from a two-dimensional parameter space M to the three-dimensional Euclidean space R 3 . The metric variable g a b , which is always fixed to the Euclidean metric δ a b , can be extended to a more general non-Euclidean metric on M in the continuous model. The problem we focus on in this paper is whether such an extension is well defined or not in the discrete model. We find that a discrete surface model with a nontrivial metric becomes well defined if it is treated in the context of Finsler geometry (FG) modeling, where triangle edge length in M depends on the direction. It is also shown that the discrete FG model is orientation asymmetric on invertible surfaces in general, and for this reason, the FG model has a potential advantage for describing real physical membranes, which are expected to have some asymmetries for orientation-changing transformations.

]]>Axioms doi: 10.3390/axioms6020011

Authors: Dhannya Joseph

In this paper, I consider multivariate analogues of the extended gamma density, which will provide multivariate extensions to Tsallis statistics and superstatistics. By making use of the pathway parameter β , multivariate generalized gamma density can be obtained from the model considered here. Some of its special cases and limiting cases are also mentioned. Conditional density, best predictor function, regression theory, etc., connected with this model are also introduced.

]]>Axioms doi: 10.3390/axioms6020009

Authors: Jianzhong Wang

For a given pair of s-dimensional real Laurent polynomials ( a → ( z ) , b → ( z ) ) , which has a certain type of symmetry and satisfies the dual condition b → ( z ) T a → ( z ) = 1 , an s × s Laurent polynomial matrix A ( z ) (together with its inverse A - 1 ( z ) ) is called a symmetric Laurent polynomial matrix extension of the dual pair ( a → ( z ) , b → ( z ) ) if A ( z ) has similar symmetry, the inverse A - 1 ( Z ) also is a Laurent polynomial matrix, the first column of A ( z ) is a → ( z ) and the first row of A - 1 ( z ) is ( b → ( z ) ) T . In this paper, we introduce the Euclidean symmetric division and the symmetric elementary matrices in the Laurent polynomial ring and reveal their relation. Based on the Euclidean symmetric division algorithm in the Laurent polynomial ring, we develop a novel and effective algorithm for symmetric Laurent polynomial matrix extension. We also apply the algorithm in the construction of multi-band symmetric perfect reconstruction filter banks.

]]>Axioms doi: 10.3390/axioms6020008

Authors: David Galas Gregory Dewey James Kunert-Graf Nikita Sakhanenko

Inferring and comparing complex, multivariable probability density functions is fundamental to problems in several fields, including probabilistic learning, network theory, and data analysis. Classification and prediction are the two faces of this class of problem. This study takes an approach that simplifies many aspects of these problems by presenting a structured, series expansion of the Kullback-Leibler divergence—a function central to information theory—and devise a distance metric based on this divergence. Using the Möbius inversion duality between multivariable entropies and multivariable interaction information, we express the divergence as an additive series in the number of interacting variables, which provides a restricted and simplified set of distributions to use as approximation and with which to model data. Truncations of this series yield approximations based on the number of interacting variables. The first few terms of the expansion-truncation are illustrated and shown to lead naturally to familiar approximations, including the well-known Kirkwood superposition approximation. Truncation can also induce a simple relation between the multi-information and the interaction information. A measure of distance between distributions, based on Kullback-Leibler divergence, is then described and shown to be a true metric if properly restricted. The expansion is shown to generate a hierarchy of metrics and connects this work to information geometry formalisms. An example of the application of these metrics to a graph comparison problem is given that shows that the formalism can be applied to a wide range of network problems and provides a general approach for systematic approximations in numbers of interactions or connections, as well as a related quantitative metric.

]]>Axioms doi: 10.3390/axioms6020007

Authors: John Herr Eric Weber

Using the Kaczmarz algorithm, we prove that for any singular Borel probability measure μ on [ 0 , 1 ) , every f ∈ L 2 ( μ ) possesses a Fourier series of the form f ( x ) = ∑ n = 0 ∞ c n e 2 π i n x . We show that the coefficients c n can be computed in terms of the quantities f ^ ( n ) = ∫ 0 1 f ( x ) e − 2 π i n x d μ ( x ) . We also demonstrate a Shannon-type sampling theorem for functions that are in a sense μ -bandlimited.

]]>Axioms doi: 10.3390/axioms6010006

Authors: Peter Casazza Dorsa Ghoreishi Shani Jose Janet Tremain

We make a detailed study of norm retrieval. We give several classification theorems for norm retrieval and give a large number of examples to go with the theory. One consequence is a new result about Parseval frames: If a Parseval frame is divided into two subsets with spans W 1 , W 2 and W 1 ∩ W 2 = { 0 } , then W 1 ⊥ W 2 .

]]>Axioms doi: 10.3390/axioms6010005

Authors: Dagmar Markechová

The main aim of this contribution is to define the notions of Kullback-Leibler divergence and conditional mutual information in fuzzy probability spaces and to derive the basic properties of the suggested measures. In particular, chain rules for mutual information of fuzzy partitions and for Kullback-Leibler divergence with respect to fuzzy P-measures are established. In addition, a convexity of Kullback-Leibler divergence and mutual information with respect to fuzzy P-measures is studied.

]]>Axioms doi: 10.3390/axioms6010004

Authors: Dana Černá Václav Finĕk

We propose a construction of a Hermite cubic spline-wavelet basis on the interval and hypercube. The basis is adapted to homogeneous Dirichlet boundary conditions. The wavelets are orthogonal to piecewise polynomials of degree at most seven on a uniform grid. Therefore, the wavelets have eight vanishing moments, and the matrices arising from discretization of differential equations with coefﬁcients that are piecewise polynomials of degree at most four on uniform grids are sparse. Numerical examples demonstrate the efﬁciency of an adaptive wavelet method with the constructed wavelet basis for solving the one-dimensional elliptic equation and the two-dimensional Black–Scholes equation with a quadratic volatility.

]]>Axioms doi: 10.3390/axioms6010003

Authors: M. Khokulan K. Thirulogasanthar S. Srisatkunarajah

An introductory theory of frames on finite dimensional left quaternion Hilbert spaces is demonstrated along the lines of their complex counterpart.

]]>Axioms doi: 10.3390/axioms6010002

Authors: Axioms Editorial Office

The editors of Axioms would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...]

]]>Axioms doi: 10.3390/axioms6010001

Authors: Dan Kučerovský

The classical Cuntz semigroup has an important role in the study of C*-algebras, being one of the main invariants used to classify recalcitrant C*-algebras up to isomorphism. We consider C*-algebras that have Hopf algebra structure, and find additional structure in their Cuntz semigroups. We show that in many cases, isomorphisms of Cuntz semigroups that respect this additional structure can be lifted to Hopf algebra (bi)isomorphisms, up to a possible flip of the co-product. This shows that the Cuntz semigroup provides an interesting invariant of C*-algebraic quantum groups.

]]>Axioms doi: 10.3390/axioms5040029

Authors: Konstantin Zhukovsky Hari Srivastava

A method for the solution of linear differential equations (DE) of non-integer order and of partial differential equations (PDE) by means of inverse differential operators is proposed. The solutions of non-integer order ordinary differential equations are obtained with recourse to the integral transforms and the exponent operators. The generalized forms of Laguerre and Hermite orthogonal polynomials as members of more general Appèl polynomial family are used to find the solutions. Operational definitions of these polynomials are used in the context of the operational approach. Special functions are employed to write solutions of DE in convolution form. Some linear partial differential equations (PDE) are also explored by the operational method. The Schrödinger and the Black–Scholes-like evolution equations and solved with the help of the operational technique. Examples of the solution of DE of non-integer order and of PDE are considered with various initial functions, such as polynomial, exponential, and their combinations.

]]>Axioms doi: 10.3390/axioms5040028

Authors: Konstantin Zhukovsky

We studied physical problems related to heat transport and the corresponding differential equations, which describe a wider range of physical processes. The operational method was employed to construct particular solutions for them. Inverse differential operators and operational exponent as well as operational definitions and operational rules for generalized orthogonal polynomials were used together with integral transforms and special functions. Examples of an electric charge in a constant electric field passing under a potential barrier and of heat diffusion were compared and explored in two dimensions. Non-Fourier heat propagation models were studied and compared with each other and with Fourier heat transfer. Exact analytical solutions for the hyperbolic heat equation and for its extensions were explored. The exact analytical solution for the Guyer-Krumhansl type heat equation was derived. Using the latter, the heat surge propagation and relaxation was studied for the Guyer-Krumhansl heat transport model, for the Cattaneo and for the Fourier models. The comparison between them was drawn. Space-time propagation of a power–exponential function and of a periodic signal, obeying the Fourier law, the hyperbolic heat equation and its extended Guyer-Krumhansl form were studied by the operational technique. The role of various terms in the equations was explored and their influence on the solutions demonstrated. The accordance of the solutions with maximum principle is discussed. The application of our theoretical study for heat propagation in thin films is considered. The examples of the relaxation of the initial laser flash, the wide heat spot, and the harmonic function are considered and solved analytically.

]]>Axioms doi: 10.3390/axioms5040027

Authors: David Gu Emil Saucan

Science does not necessarily evolve along the lines that are taught to us in High School history classes and in popular films, that is, from simple to complex.[...]

]]>Axioms doi: 10.3390/axioms5040026

Authors: Melanie Weber Jürgen Jost Emil Saucan

We present a viable geometric solution for the detection of dynamic effects in complex networks. Building on Forman’s discretization of the classical notion of Ricci curvature, we introduce a novel geometric method to characterize different types of real-world networks with an emphasis on peer-to-peer networks. We study the classical Ricci-flow in a network-theoretic setting and introduce an analytic tool for characterizing dynamic effects. The formalism suggests a computational method for change detection and the identification of fast evolving network regions and yields insights into topological properties and the structure of the underlying data.

]]>Axioms doi: 10.3390/axioms5040025

Authors: Jonathan Smith

Quantum quasigroups are algebraic structures providing a general self-dual framework for the nonassociative extension of Hopf algebra techniques. They also have one-sided analogues, which are not self-dual. The paper presents a survey of recent work on these structures, showing how they furnish various solutions to the quantum Yang–Baxter equation.

]]>Axioms doi: 10.3390/axioms5030023

Authors: Marcin Łyczak Marek Porwolik Kordula Świętorzecka

Stanisław Leśniewski’s mereology was originally conceived as a theory of foundations of mathematics and it is also for this reason that it has philosophical connotations. The ‘philosophical significance’ of mereology was upheld by Bolesław Sobociński who expressed the view in his correspondence with J.M. Bocheński. As he wrote to Bocheński in 1948: “[...] it is interesting that, being such a simple deductive theory, mereology may prove a number of very general theses reminiscent of metaphysical ontology”. The theses which Sobociński had in mind were related to the mereological notion of “the Universe”. Sobociński listed them in the letter adding his philosophical commentary but he did not give proofs for them and did not specify precisely the theory lying behind them. This is what we want to supply in the first part of our paper. We indicate some connections between the notion of the universe and other specific mereological notions. Motivated by Sobociński’s informal suggestions showing his preference for mereology over the axiomatic set theory in application to philosophy we propose to consider Sobociński’s formalism in a new frame which is the ZFM theory—an extension of Zermelo-Fraenkel set theory by mereological axioms, developed by A. Pietruszczak. In this systematic part we investigate reasons of ’philosophical hopes’ mentioned by Sobociński, pinned on the mereological concept of “the Universe”.

]]>Axioms doi: 10.3390/axioms5030024

Authors: Shanoja Naik Hans Haubold

Motivated by statistical mechanics contexts, we study the properties of the q-Laplace transform, which is an extension of the well-known Laplace transform. In many circumstances, the kernel function to evaluate certain integral forms has been studied. In this article, we establish relationships between q-exponential and other well-known functional forms, such as Mittag–Leffler functions, hypergeometric and H-function, by means of the kernel function of the integral. Traditionally, we have been applying the Laplace transform method to solve differential equations and boundary value problems. Here, we propose an alternative, the q-Laplace transform method, to solve differential equations, such as as the fractional space-time diffusion equation, the generalized kinetic equation and the time fractional heat equation.

]]>