Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,073)

Search Parameters:
Keywords = drought

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1491 KiB  
Article
A Comparative Analysis of the Effect of 24-Epibrassinolide on the Tolerance of Wheat Cultivars with Different Drought Adaptation Strategies Under Water Deficit Conditions
by Azamat Avalbaev, Ruslan Yuldashev, Anton Plotnikov and Chulpan Allagulova
Plants 2025, 14(6), 869; https://doi.org/10.3390/plants14060869 (registering DOI) - 10 Mar 2025
Abstract
Drought is a serious environmental challenge that reduces the productivity of valuable crops, including wheat. Brassinosteroids (BRs) is a group of phytohormones that have been used to enhance wheat drought tolerance. Wheat cultivars with different adaptation strategies could have their own specific drought [...] Read more.
Drought is a serious environmental challenge that reduces the productivity of valuable crops, including wheat. Brassinosteroids (BRs) is a group of phytohormones that have been used to enhance wheat drought tolerance. Wheat cultivars with different adaptation strategies could have their own specific drought tolerance mechanisms, and could react differently to treatment with growth regulators. In this work, the effect of seed pretreatment with 0.4 µM 24-epibrassinolide (EBR) was investigated in two wheat (Triticum aestivum L.) cultivars contrasting in drought behavior, tolerant Ekada 70 (cv. E70) and sensitive Zauralskaya Zhemchuzhina (cv. ZZh), in early ontogenesis under dehydration (PEG-6000) or soil drought conditions. EBR pretreatment mitigated the stress-induced inhibition of seedling emergence and growth, as well as membrane damage in cv.E70 but not in ZZh. An enzyme-linked immunosorbent assay (ELISA) revealed substantial changes in hormonal balance associated with ABA accumulation and a drop in the levels of IAA and cytokinins (CKs) in drought-subjected seedlings of both cultivars, especially ZZh. EBR-pretreatment reduced drought-induced hormone imbalance in cv. E70, while it did not have the same effect on ZZh. EBR-induced changes in the content of wheat germ agglutinin (WGA) belonging to the protective proteins in E70 seedlings suggest its contribution to EBR-dependent adaptive responses. The absence of a detectable protective effect of EBR on the ZZh cultivar may be associated with its insensitivity to pre-sowing EBR treatment. Full article
Show Figures

Figure 1

26 pages, 789 KiB  
Article
Foliar Application of K-Silicate and L-Cysteine Enhances Production, Quality, and Antioxidant Activities of Cape Gooseberry Fruits Under Drought Conditions
by Arezoo Khani, Taher Baezegar, Jaefar Nikbakht and Leo Sabatino
Agronomy 2025, 15(3), 675; https://doi.org/10.3390/agronomy15030675 - 10 Mar 2025
Abstract
Water deficit is a notable environmental stress, which leads to negative impacts on crop growth, resulting in yield decline. In the current experiment, the exogenous application of potassium silicate (KSi) and L-cysteine (Cys) was investigated on the productivity, qualitative, and biochemicals of Cape [...] Read more.
Water deficit is a notable environmental stress, which leads to negative impacts on crop growth, resulting in yield decline. In the current experiment, the exogenous application of potassium silicate (KSi) and L-cysteine (Cys) was investigated on the productivity, qualitative, and biochemicals of Cape gooseberry fruits subjected to drought stress condition in a 2-year field experiment (2022 and 2023). Our findings indicated that deficit irrigation reduced yield, the membrane stability index, titratable acidity, and the ascorbic acid content of fruits in comparison to the untreated plants in both years. Nonetheless, MDA, H2O2, and antioxidant enzyme activities were meaningfully enhanced as a consequence of water deficit conditions. The application of KSi and Cys alleviated water deficit stress by reducing MDA accumulation and provided significantly greater content of total soluble solids, soluble carbohydrate, proline, total soluble protein, total phenols, and flavonoids. KSi and Cys have a positive influence on H2O2 accumulation by boosting the actions of antioxidant enzymes. Furthermore, higher values of Cys induced the production of proline, APX, PPO, and PAL activities, which contributed to decreasing the damaging effects of plant drought stress and led to an enhanced yield rate. Overall, the foliar application of KSi and Cys by improving antioxidant components, antioxidant enzyme activity, and proline accumulation had a positive impact on the productivity and quality of Cape gooseberries cultivated under standard and shortage irrigation levels. Full article
33 pages, 2472 KiB  
Review
Multi-Omics Approaches Against Abiotic and Biotic Stress—A Review
by Venkatramanan Varadharajan, Radhika Rajendran, Pandiyan Muthuramalingam, Ashish Runthala, Venkatesh Madhesh, Gowtham Swaminathan, Pooja Murugan, Harini Srinivasan, Yeonju Park, Hyunsuk Shin and Manikandan Ramesh
Plants 2025, 14(6), 865; https://doi.org/10.3390/plants14060865 - 10 Mar 2025
Abstract
Plants face an array of environmental stresses, including both abiotic and biotic stresses. These stresses significantly impact plant lifespan and reduce agricultural crop productivity. Abiotic stresses, such as ultraviolet (UV) radiation, high and low temperatures, salinity, drought, floods, heavy metal toxicity, etc., contribute [...] Read more.
Plants face an array of environmental stresses, including both abiotic and biotic stresses. These stresses significantly impact plant lifespan and reduce agricultural crop productivity. Abiotic stresses, such as ultraviolet (UV) radiation, high and low temperatures, salinity, drought, floods, heavy metal toxicity, etc., contribute to widespread crop losses globally. On the other hand, biotic stresses, such as those caused by insects, fungi, and weeds, further exacerbate these challenges. These stressors can hinder plant systems at various levels, including molecular, cellular, and development processes. To overcome these challenges, multi-omics computational approaches offer a significant tool for characterizing the plant’s biomolecular pool, which is crucial for maintaining homeostasis and signaling response to environmental changes. Integrating multiple layers of omics data, such as proteomics, metabolomics, ionomics, interactomics, and phenomics, simplifies the study of plant resistance mechanisms. This comprehensive approach enables the development of regulatory networks and pathway maps, identifying potential targets for improving resistance through genetic engineering or breeding strategies. This review highlights the valuable insights from integrating multi-omics approaches to unravel plant stress responses to both biotic and abiotic factors. By decoding gene regulation and transcriptional networks, these techniques reveal critical mechanisms underlying stress tolerance. Furthermore, the role of secondary metabolites in bio-based products in enhancing plant stress mitigation is discussed. Genome editing tools offer promising strategies for improving plant resilience, as evidenced by successful case studies combating various stressors. On the whole, this review extensively discusses an advanced multi-omics approach that aids in understanding the molecular basis of resistance and developing novel strategies to improve crops’ or organisms’ resilience to abiotic and biotic stresses. Full article
Show Figures

Figure 1

15 pages, 285 KiB  
Article
Exploring Adolescents’ Future Time Orientation: The Italian Validation of the Scale and Links to Sustainability
by Sara Santilli, Maria Cristina Ginevra and Vinicius Coscioni
Behav. Sci. 2025, 15(3), 338; https://doi.org/10.3390/bs15030338 - 10 Mar 2025
Viewed by 64
Abstract
Adolescents today face significant exposure to social inequalities and environmental crises, including the impacts of climate change, such as heatwaves, floods, and droughts. In addition, they encounter various forms of inequality, such as job insecurity, lack of affordable housing, and growing mental health [...] Read more.
Adolescents today face significant exposure to social inequalities and environmental crises, including the impacts of climate change, such as heatwaves, floods, and droughts. In addition, they encounter various forms of inequality, such as job insecurity, lack of affordable housing, and growing mental health challenges. Future perception is an essential variable in understanding how adolescents address these social and environmental challenges. Thus, this study adapted the Future Time Orientation Scale (FTOS) to the Italian context, assessing its validity and reliability for measuring psychological future orientation among Italian-speaking adolescents. Two studies were conducted: the first validated the FTOS through exploratory and confirmatory factor analyses, revealing two factors, “Impact” and “Distance”. The second study examined the relationship between future time orientation, future orientation in the professional field, and adolescents’ propensity to consider global challenges related to sustainable development. The results indicated that future orientation fully mediates the relationship between future time orientation and the tendency to consider global challenges in career decision-making. These findings underscore the importance of future orientation in shaping adolescents’ sustainable career choices and suggest that career interventions promoting future time orientation may enhance their engagement with global challenges. Full article
(This article belongs to the Special Issue External Influences in Adolescents’ Career Development)
23 pages, 5038 KiB  
Article
Transcriptomic Analysis and Identification of Candidate Genes Involved in Rhizome Development in Agropyron michnoi
by Xintian Huang, Yuchen Li, Jinyu Du, Yan Liang, Huijie Han, Cuiping Gao and Yan Zhao
Agronomy 2025, 15(3), 674; https://doi.org/10.3390/agronomy15030674 - 10 Mar 2025
Viewed by 123
Abstract
Agropyron michnoi is a perennial grass with rhizomes in the genus Agropyron. It has a strong tolerance to drought and low temperature, and it is an established species in sandy flat and hilly slope lands, which constitute sandy grassland. So, it is [...] Read more.
Agropyron michnoi is a perennial grass with rhizomes in the genus Agropyron. It has a strong tolerance to drought and low temperature, and it is an established species in sandy flat and hilly slope lands, which constitute sandy grassland. So, it is an important forage species in dry grassland and desert steppes. Rhizomes not only enable asexual reproducibility but also confer strong resilience to stresses in A. michnoi. However, during production and utilization, it has been found that there are significant differences in the development of rhizomes among individuals of A. michnoi, yet the regulatory mechanism remains unclear. Therefore, in this study, the A. michnoi ‘Baiyinxile’ was used as the material, and the anatomical structures of the rhizomes, roots, and stems were analyzed using the paraffin sectioning technique. The results showed that the anatomical structure composition of the cross-section of the rhizome was similar to that of the root, while the arrangement of the vascular bundles in the stele was different from that of the root but similar to that of the stem. Subsequently, the Agropyron michnoi plants were classified into two types: plants with rhizomes and plants without rhizomes. Root, stem, and rhizome samples were collected from each type, and RNA sequencing was conducted. De novo transcriptomic analysis was performed to identify the candidate genes involved in rhizome development. From the RNA sequencing, a total of 103.73 Gb clean bases were obtained, from which 215,282 unigenes with an average length of 905.67 bp were assembled. Among these unigenes, 161,175 (74.87%) were functionally annotated based on seven common public databases. From pairwise comparisons of differentially expressed genes between the five samples, 129 candidate genes that are potentially specifically expressed in rhizomes were selected. Pathway enrichment analysis revealed that the rhizome-expressed genes are highly enriched in pathways of phenylpropanoid biosynthesis and starch and sucrose metabolism. The rhizome-specific expression pattern of 10 of the 129 candidate genes was further validated using qRT-PCR. Through the analysis of metabolites, 11 metabolites closely related to rhizome development, such as choline and betaine, were successfully identified. CYP family genes were selected for functional verification, and phylogenetic analysis revealed that CYP86B1 was grouped with CYP 86B1 of species such as Triticum aestivum and Lolium rigidum and was named AmrCYP86B1. The cloning results showed that its size was 1599 bp, and its subcellular localization was in the endoplasmic reticulum. Through stable genetic transformation, the study found that AmrCYP86B1 can promote the development of plant roots and stems and increase the dry matter content of the roots. Hormone detection showed that overexpression of AmrCYP 86B1 decreased the content of ABA hormone and increased the content of GA3 hormone in the plants. Combined with previous studies, it was determined that AmrCYP 86B1 promoted rhizome elongation by regulating ABA and GA3 hormones. The selected candidate genes involved in rhizome development, along with the preliminary functional verification, provide a preliminary mechanistic interpretation of rhizome development. This will contribute to in-depth research on the molecular mechanism of rhizome development in A. Michnoi. Full article
(This article belongs to the Special Issue Metabolomics-Centered Mining of Crop Metabolic Diversity and Function)
Show Figures

Figure 1

16 pages, 6816 KiB  
Article
Mutual Water Supply Existed Between the Root Systems of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. Under Extreme Drought Stress
by Aihong Fu, Yuhai Yang, Chenggang Zhu and Zhaoxia Ye
Forests 2025, 16(3), 482; https://doi.org/10.3390/f16030482 - 10 Mar 2025
Viewed by 20
Abstract
To explain one of the reasons why two adjacent deep-rooted desert plants can coexist over long periods, mutual water supply between species was investigated. The study focused on δD and δ18O stable isotopic characteristics of root water and soil water near [...] Read more.
To explain one of the reasons why two adjacent deep-rooted desert plants can coexist over long periods, mutual water supply between species was investigated. The study focused on δD and δ18O stable isotopic characteristics of root water and soil water near the roots of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. in the Tarim River Basin in China during the growing season. The direct comparison method and the Mix SIAR model were employed to analyze the water sources of the plants and the contribution rates of each water source. A similarity proportional index was used to assess the hydraulic connections between plant species. The water sources of T. ramosissima and A. sparsifolia were soil water found at depths of 40 to 90 cm and 220 to 300 cm (a total contribution rate of 58.85%) and 130 to 190 and 240 to 300 cm (a total contribution rate of 81.35%) with groundwater depths of 2.5 to 3.0 m, respectively. When the groundwater depth increased to 4 m, the water sources for both T. ramosissima and A. sparsifolia were soil water at depths of 20 to 100 (a contribution rate of 70.60%) and 20 to 120 cm (a contribution rate of 49.60%), respectively. Both A. sparsifolia and T. ramosissima could lift water from deep soil or groundwater for their own growth needs and supply some water to each other, which suggests that desert plants were allowed to achieve mutual benefits and coexistence through hydraulic connections. These results enrich the theoretical understanding of desert plant coexistence and provide a scientific basis for desert vegetation restoration. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

28 pages, 9658 KiB  
Article
Assessment of Low-Flow Trends in Four Rivers of Chile: A Statistical Approach
by Fatima Daide, Natalia Julio, Petros Gaganis, Ourania Tzoraki, Hernán Alcayaga, Cleo M. Gaganis and Ricardo Figueroa
Water 2025, 17(6), 791; https://doi.org/10.3390/w17060791 (registering DOI) - 10 Mar 2025
Viewed by 21
Abstract
Understanding and analyzing low river flows are some of key tasks of effective water management, particularly in Chile’s Mediterranean regions, where irregular rainfall distribution leads to drought and water scarcity. This study aims to assess low-flow trends in the four major Chilean river [...] Read more.
Understanding and analyzing low river flows are some of key tasks of effective water management, particularly in Chile’s Mediterranean regions, where irregular rainfall distribution leads to drought and water scarcity. This study aims to assess low-flow trends in the four major Chilean river basins (Maipo, Rapel, Maule, and Biobío) by calculating three key hydrological indices: the mean annual minimum and maximum flows (MAM), the base flow index (BFI), and the standardized precipitation index (SPI), using data from 18 hydrometric stations. The indicators of hydrologic alteration (IHA) tool was applied to calculate the MAM and BFI to assess flow variability and groundwater contributions. The SPI was calculated to examine hydrological drought conditions and evaluate how these conditions affect river flow behavior, correlating reduced low river flows with precipitation trends at the beginning of the dry season. Statistical analysis was conducted through the ordinary least squares (OLS) test for normally distributed data, and non-parametric tests, including the Mann–Kendall test, as well as Sen’s slope estimation, for data not meeting normality requirements. The results, presented both analytically and graphically, reveal trends in river flow indices and variations across the river basins, identifying critical areas of reduced flow that may require enhanced water management strategies. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 2675 KiB  
Article
GABA and Proline Application Induce Drought Resistance in Oilseed Rape
by Sigita Jurkonienė, Virgilija Gavelienė, Rima Mockevičiūtė, Elžbieta Jankovska-Bortkevič, Vaidevutis Šveikauskas, Jurga Jankauskienė, Tautvydas Žalnierius and Liudmyla Kozeko
Plants 2025, 14(6), 860; https://doi.org/10.3390/plants14060860 - 10 Mar 2025
Viewed by 47
Abstract
This study investigates the effects of γ-aminobutyric acid (GABA) and proline, both individually and in combination, on the growth of oilseed rape under drought stress and following the resumption of irrigation. The goal was to determine whether the exogenous application of these compounds [...] Read more.
This study investigates the effects of γ-aminobutyric acid (GABA) and proline, both individually and in combination, on the growth of oilseed rape under drought stress and following the resumption of irrigation. The goal was to determine whether the exogenous application of these compounds enhances the plants response to prolonged water deficit and, if so, to identify the biochemical processes involved in the plant tissue. The experiment was conducted under controlled laboratory conditions. After 21 days of plant cultivation, at the 3–4 leaf stage, seedlings were sprayed with aqueous solutions of GABA (0.1 mM) and proline (0.1 mM). The plants were then subjected to 8 days of severe drought stress, after which irrigation was resumed, and recovery was assessed over 4 days. The results showed that both amino acids alleviated the drought-induced stress as indicated by higher relative water content (RWC), increased levels of endogenous proline and photosynthetic pigments in leaves, and enhanced survival and growth recovery after drought. GABA-treated plants maintained membrane integrity and preserved plasma membrane (PM) ATPase activity during prolonged drought stress while reducing ethylene, H2O2, and MDA levels. Proline also influenced these biochemical responses, though to a lesser extent. The combination of GABA and proline facilitated better recovery of oilseed rape compared to the drought control group following rewatering. Notably, GABA treatment resulted in a significant increase in gene expression compared to the untreated control. Molecular analysis of drought-responsive genes revealed that the gene expression in plants treated with both proline and GABA was typically intermediate between those treated with proline alone and those treated with GABA alone. Based on these findings, we propose that GABA application could serve as an alternative to proline for improving oilseed rape’s drought tolerance, potentially increasing both crop yield and quality. Full article
(This article belongs to the Special Issue Advances in Molecular Genetics and Breeding of Brassica napus L.)
Show Figures

Figure 1

21 pages, 12263 KiB  
Article
Flexural Behavior of Wet Joints with Contact U-Bars
by Yuancong Wu, Songtao Hu, Meng Li and Bin Rong
Buildings 2025, 15(6), 855; https://doi.org/10.3390/buildings15060855 - 10 Mar 2025
Viewed by 119
Abstract
In this study, seven wet joint specimens of contact U-bars are designed in order to evaluate the flexural behavior of the wet joints in precast concrete slabs through four-point bending tests. This study investigates the effects of lap length, wet joint width, and [...] Read more.
In this study, seven wet joint specimens of contact U-bars are designed in order to evaluate the flexural behavior of the wet joints in precast concrete slabs through four-point bending tests. This study investigates the effects of lap length, wet joint width, and water stop strips on the flexural behavior. The test results show that the ultimate bending capacity of the specimen with a lap length of 240 mm is 13.4% and 17.7% higher than that of the specimens with 160 mm and 80 mm. Water stop strips weaken the ductility of the specimen. The numerical model is established in ABAQUS finite element software and verified by the experimental results. Based on both test outcomes and finite element analysis, this study analyzes the deterioration effect of U-bars on the concrete within wet joints and proposes a calculation formula for flexural bending capacity that accounts for this deterioration. The proposed formula is shown to effectively predict the flexural capacity, since the theoretical predictions and the test results differ by less than 10%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 2517 KiB  
Article
Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting
by Furong Li, Zhi Zhang, Can Zhao, Jinqi Han, Jiaye Liu, Yaoyun Guo, Xinyu Tang, Chang Su, Xu Chang and Tong Wu
Minerals 2025, 15(3), 279; https://doi.org/10.3390/min15030279 - 9 Mar 2025
Viewed by 183
Abstract
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of [...] Read more.
The Junggar Basin basement comprises microcontinental blocks amalgamated through successive paleo-oceanic accretion events. Stratigraphic and provenance studies within the basin are crucial for reconstructing its evolution and understanding the closure of paleo-oceanic systems. This study presents an integrated petrographic and geochemical analysis of the Lower Jurassic Badaowan Formation sandstones in the Dongdaohaizi Depression, located in the eastern Junggar Basin. The results reveal a progressive decrease in lithic fragment content and an increase in quartz content from older to younger strata within the Badaowan Formation, indicating an increase in compositional maturity. Provenance analysis indicates that the sandstones are predominantly derived from tuffaceous rocks, granites, basalts, and minor metamorphic rocks. Heavy mineral assemblages, including zircon, chromian spinel, tourmaline, and garnet, suggest parent rocks consisting primarily of intermediate to acidic igneous rocks, mafic igneous rocks, and metamorphic rocks. Integrated petrographic and geochemical data from the surrounding areas of the Dongdaohaizi Depression confirm that the Badaowan Formation sandstones are primarily sourced from the eastern Kelameili Mountain. The continued uplift and migration of the Kelameili Mountain during the Early Jurassic played a dominant role in shaping the sedimentary provenance. LA-ICP-MS analyses reveal that the rare earth element (REE) concentrations in the Lower Jurassic sandstones are slightly lower than the average REE content of the upper continental crust. The sandstones exhibit weak differentiation between light and heavy REEs, reflecting a depositional environment characterized by anoxic reducing conditions. Geochemical results indicate a tectonic setting dominated by a passive continental margin and continental island arc in the source area. Synthesizing these findings with related studies, we propose that the Kelameili Ocean, as part of the Paleo-Asian Ocean, underwent a complex evolution involving multiple oceanic basins and microcontinental subduction–collision systems. From the Middle Ordovician to Late Silurian, the Kelameili region evolved as a passive continental margin. With the onset of subduction during the Middle Devonian to Early Carboniferous, the eastern Junggar Basin transitioned into a continental island arc system. This tectonic transition was likely driven by episodic or bidirectional subduction of the Kelameili Ocean. Full article
Show Figures

Figure 1

24 pages, 4323 KiB  
Article
NDMI-Derived Field-Scale Soil Moisture Prediction Using ERA5 and LSTM for Precision Agriculture
by Elham Koohikeradeh, Silvio Jose Gumiere and Hossein Bonakdari
Sustainability 2025, 17(6), 2399; https://doi.org/10.3390/su17062399 - 9 Mar 2025
Viewed by 152
Abstract
Accurate soil moisture prediction is fundamental to precision agriculture, facilitating optimal irrigation scheduling, efficient water resource allocation, and enhanced crop productivity. This study employs a Long Short-Term Memory (LSTM) deep learning model, integrated with high-resolution ERA5 remote sensing data, to improve soil moisture [...] Read more.
Accurate soil moisture prediction is fundamental to precision agriculture, facilitating optimal irrigation scheduling, efficient water resource allocation, and enhanced crop productivity. This study employs a Long Short-Term Memory (LSTM) deep learning model, integrated with high-resolution ERA5 remote sensing data, to improve soil moisture estimation at the field scale. Soil moisture dynamics were analyzed across six commercial potato production sites in Quebec—Goulet, DBolduc, PBolduc, BNiquet, Lalancette, and Gou-new—over a five-year period. The model exhibited high predictive accuracy, with correlation coefficients (R) ranging from 0.991 to 0.998 and Nash–Sutcliffe efficiency (NSE) values reaching 0.996, indicating strong agreement between observed and predicted soil moisture variability. The Willmott index (WI) exceeded 0.995, reinforcing the model’s reliability. The integration of NDMI assessments further validated the predictions, demonstrating a strong correlation between NDMI values and LSTM-based soil moisture estimates. These findings confirm the effectiveness of deep learning in capturing spatiotemporal variations in soil moisture, underscoring the potential of AI-driven models for real-time soil moisture monitoring and irrigation optimization. This research study provides a scientifically robust framework for enhancing data-driven agricultural water management, promoting sustainable irrigation practices, and improving resilience to soil moisture variability in agricultural systems. Full article
17 pages, 2737 KiB  
Article
Effects of Wood-Derived Biochar on Soil Respiration of a European Beech Forest Under Current Climate and Simulated Climate Change
by Andrea Vannini, Debora Tarasconi, Federico Pietropoli, T’ai Gladys Whittingham Forte, Filippo Grillo, Michele Carbognani and Alessandro Petraglia
Forests 2025, 16(3), 474; https://doi.org/10.3390/f16030474 - 8 Mar 2025
Viewed by 323
Abstract
Biochar (BCH) amendments represent a valuable strategy for increasing forest carbon stock, but their effects on soil respiration of beech forests under climate change are largely unknown. We conducted a short-term mesocosm experiment investigating the impact of BCH applications (0%, 10%, 20%, and [...] Read more.
Biochar (BCH) amendments represent a valuable strategy for increasing forest carbon stock, but their effects on soil respiration of beech forests under climate change are largely unknown. We conducted a short-term mesocosm experiment investigating the impact of BCH applications (0%, 10%, 20%, and 50%, v/v) on respiration of a European beech forest soil in N-Italy. The experiment, carried out in Parma, was conducted under both ambient and modified climatic conditions, involving higher soil temperatures (c. +1 K) and reduced precipitation (−50%). The experiment was performed during autumn 2022 and repeated in spring 2023, periods representing late and early summer, respectively. Soil respiration significantly increased with BCH applications when compared to controls, irrespective of the percentage applied. The highest values were recorded in the 20% amendment, while values were significantly lower in BCH 50%, similar to those recorded in BCH 10%. Although soil respiration and soil temperature were positively correlated, no effect of simulated warming was observed. No effects of precipitation reduction were also found, despite respiration being significantly influenced by soil moisture. These results provide an initial insight into the potentially negligible impact of BCH applications on soil respiration in European beech forests under both current and future climate scenarios. Full article
Show Figures

Graphical abstract

14 pages, 4158 KiB  
Article
Vis/NIR Spectroscopy and Chemometrics for Non-Destructive Estimation of Chlorophyll Content in Different Plant Leaves
by Qiang Huang, Meihua Yang, Liao Ouyang, Zimiao Wang and Jiayao Lin
Sensors 2025, 25(6), 1673; https://doi.org/10.3390/s25061673 - 8 Mar 2025
Viewed by 76
Abstract
Vegetation biochemical and biophysical variables, especially chlorophyll content, are pivotal indicators for assessing drought’s impact on plants. Chlorophyll, crucial for photosynthesis, ultimately influences crop productivity. This study evaluates the mean squared Euclidean distance (MSD) method, traditionally applied in soil analysis, for estimating chlorophyll [...] Read more.
Vegetation biochemical and biophysical variables, especially chlorophyll content, are pivotal indicators for assessing drought’s impact on plants. Chlorophyll, crucial for photosynthesis, ultimately influences crop productivity. This study evaluates the mean squared Euclidean distance (MSD) method, traditionally applied in soil analysis, for estimating chlorophyll content in five diverse leaf types across various months using visible/near-infrared (vis/NIR) spectral reflectance. The MSD method serves as a tool for selecting a representative calibration dataset. By integrating MSD with partial least squares regression (PLSR) and the Cubist model, we aim to accurately predict chlorophyll content, focusing on key spectral bands within the ranges of 500–640 nm and 740–1100 nm. In the validation dataset, PLSR achieved a high determination coefficient (R2) of 0.70 and a low mean bias error (MBE) of 0.04 mg g−1. The Cubist model performed even better, demonstrating an R2 of 0.77 and an exceptionally low MBE of 0.01 mg g−1. These results indicate that the MSD method serves as a tool for selecting a representative calibration dataset in leaves, and vis/NIR spectrometry combined with the MSD method is a promising alternative to traditional methods for quantifying chlorophyll content in various leaf types over various months. The technique is non-destructive, rapid, and consistent, making it an invaluable tool for assessing drought impacts on plant health and productivity. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

20 pages, 4032 KiB  
Review
Climatic Influence on Growth Performance of Abies spectabilis in the Himalayas
by Krishna Prasad Pandey, Camilla Wellstein, Achim Bräuning and Dinesh Raj Bhuju
Forests 2025, 16(3), 473; https://doi.org/10.3390/f16030473 - 8 Mar 2025
Viewed by 199
Abstract
Climate change has affected forest ecosystems across the world over the past century. However, its impact is particularly high in the Himalayas due to increasing temperatures, extreme precipitation events, and regional droughts. In this context, a review of the current stage of research [...] Read more.
Climate change has affected forest ecosystems across the world over the past century. However, its impact is particularly high in the Himalayas due to increasing temperatures, extreme precipitation events, and regional droughts. In this context, a review of the current stage of research was deemed necessary to understand the adaptation of a key conifer species to climate variability in the Central Himalayas. Hence, we conducted a systematic review of published peer-reviewed journal articles addressing the growth performance of Abies spectabilis (D. Don) Spach in the Central Himalayas. From this review, three main patterns of climate response have emerged: a positive correlation of radial tree growth with temperature of the current and previous growing seasons, tree growth limitation by winter temperature, and by temperature or moisture in the pre-monsoon season. Overall, results indicate an elevation-dependent temperature sensitivity, a crucial role of moisture availability, and seasonal shifts in climate–growth relationships, reflecting the species’ adaptability to changing climate conditions. Our review revealed that studies on elevation-dependent adaptation of wood anatomical traits by A. spectabilis are still rare. The tree-ring growth of this species shows a complex response to climate variability, with increasing as well as decreasing growth trends across its distribution range. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species)
Show Figures

Figure 1

19 pages, 8110 KiB  
Article
Moisture Change of Modified Soil and Spatial–Temporal Evolution of Vegetation Cover for Bio-Slope Engineering in a Plateau Railway
by Gui Yu, Zhuoling He, Kun Wu, Junyun Zhang and Yufei Zhang
Water 2025, 17(6), 778; https://doi.org/10.3390/w17060778 - 7 Mar 2025
Viewed by 172
Abstract
Bio-slope engineering protection plays an important role in preventing soil erosion, enhancing slope stability, and improving soil and water conservation capabilities. To establish a foundation for the preparation of modified soil for bio-slope engineering, the common gravel soil used in bio-slope engineering protection [...] Read more.
Bio-slope engineering protection plays an important role in preventing soil erosion, enhancing slope stability, and improving soil and water conservation capabilities. To establish a foundation for the preparation of modified soil for bio-slope engineering, the common gravel soil used in bio-slope engineering protection was selected. Amendments such as peat soil and water-retaining agents were then incorporated to support these preparations. This study examines the influence of the content of peat soil and water-retaining agent on the modified soil’s moisture constants, infiltration coefficient, and water absorption capacity. Additionally, utilizing remote sensing technology, 20 rock cutting sites sprayed with vegetation were monitored over a 15-year period. The results suggest that the addition of peat soil and water-retaining agents aids in augmenting the available water capacity and water absorption speed of the soil, allowing it to absorb and retain a substantial amount of available water capacity. However, as the content of peat soil increases, the modified soil’s wilting point improves, while the infiltration coefficient increases. Based on the findings of the optimum proportion tests and the field spraying experiments, it is recommended that the proportion is granular soil with 80%, peat with 20%, water-retaining agent with 1.0‰, aggregate agent with 1.0‰, and fertilizer with 100 g/m2. A comprehensive analysis of the spatial–temporal evolution characteristics of vegetation cover in the area post-railway construction indicates that vegetation cover in this region wilted extensively only in 2011 due to drought. Subsequently, the vegetation on the sprayed rock slopes has thrived, according to the proportion. The research findings are of considerable importance for guiding the design and construction of substrate spraying for bio-slope engineering protection in railway construction. Full article
Show Figures

Figure 1

Back to TopTop