Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (546)

Search Parameters:
Keywords = necroptosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1984 KiB  
Article
Absolute Quantitative Lipidomics Reveals Differences in Lipid Compounds in the Blood of Trained and Untrained Yili Horses
by Tongliang Wang, Jun Meng, Jianwen Wang, Wanlu Ren, Xixi Yang, Wusiman Adina, Yike Bao, Yaqi Zeng and Xinkui Yao
Vet. Sci. 2025, 12(3), 255; https://doi.org/10.3390/vetsci12030255 - 10 Mar 2025
Viewed by 42
Abstract
The purpose of this study was to explore the relationship between blood lipid levels and the differences in cardiac structure and function of trained and untrained Yili horses as related to exercise performance. We utilized quantitative lipidomics technology to elucidate how the differences [...] Read more.
The purpose of this study was to explore the relationship between blood lipid levels and the differences in cardiac structure and function of trained and untrained Yili horses as related to exercise performance. We utilized quantitative lipidomics technology to elucidate how the differences in lipid compounds in the blood influenced performance outcomes. Sixteen 18-month-old Yili horses were selected, ten of which received a 15-week training regimen, and six were kept as untrained controls. Cardiac structure and function were assessed by echocardiography, while plasma lipid metabolites were detected and identified by liquid chromatography–mass spectrometry. The results showed that key cardiac structural indices, such as left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular posterior wall thickness, were significantly greater in the trained group compared with the untrained group, indicating that exercise training promotes adaptive cardiac remodeling. Regarding lipid metabolites, significant differences were observed between the trained and untrained groups, with a total of 281 lipids identified—212 upregulated and 69 downregulated. These differentially expressed lipids were primarily enriched in pathways such as necroptosis, ether lipid metabolism, and sphingolipid signaling, which are associated with cell migration, survival, proliferation, and regulation of lipid metabolism. Further correlation analysis revealed that differences in certain lipids, such as PE (20:4_18:0), PC (17:0_18:1), and LPC subclasses, were significantly correlated with exercise-mediated cardiac structural and functional changes and exercise performance enhancement. These findings provide novel molecular insights into the effects of exercise training on cardiac structure and lipid metabolism in horses and can serve as a reference for training strategies and preserving cardiac health in performance horses. Full article
(This article belongs to the Special Issue The Progress of Equine Medical Research in China and Beyond)
Show Figures

Figure 1

19 pages, 1759 KiB  
Review
Autophagy and Programmed Cell Death Modalities Interplay in HIV Pathogenesis
by Harpreet Kaur Lamsira, Andrea Sabatini, Serena Ciolfi, Fabiola Ciccosanti, Alessandra Sacchi, Mauro Piacentini and Roberta Nardacci
Cells 2025, 14(5), 351; https://doi.org/10.3390/cells14050351 - 28 Feb 2025
Viewed by 231
Abstract
Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections. New HIV infections increased during the 2 [...] Read more.
Human immunodeficiency virus (HIV) infection continues to be a major global health challenge, affecting 38.4 million according to the Joint United Nations Program on HIV/AIDS (UNAIDS) at the end of 2021 with 1.5 million new infections. New HIV infections increased during the 2 years after the COVID-19 pandemic. Understanding the intricate cellular processes underlying HIV pathogenesis is crucial for developing effective therapeutic strategies. Among these processes, autophagy and programmed cell death modalities, including apoptosis, necroptosis, pyroptosis, and ferroptosis, play pivotal roles in the host–virus interaction dynamics. Autophagy, a highly conserved cellular mechanism, acts as a double-edged sword in HIV infection, influencing viral replication, immune response modulation, and the fate of infected cells. Conversely, apoptosis, a programmed cell death mechanism, is a critical defense mechanism against viral spread and contributes to the depletion of CD4+ T cells, a hallmark of HIV/AIDS progression. This review aims to dissect the complex interplay between autophagy and these programmed cell death modalities in HIV-induced pathogenesis. It highlights the molecular mechanisms involved, their roles in viral persistence and immune dysfunction, and the challenges posed by the viral reservoir and drug resistance, which continue to impede effective management of HIV pathology. Targeting these pathways holds promise for novel therapeutic strategies to mitigate immune depletion and chronic inflammation, ultimately improving outcomes for individuals living with HIV. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Autophagy—Second Edition)
Show Figures

Figure 1

26 pages, 2630 KiB  
Review
NINJ1 in Cell Death and Ferroptosis: Implications for Tumor Invasion and Metastasis
by Ssu-Yu Chen, Ing-Luen Shyu and Jen-Tsan Chi
Cancers 2025, 17(5), 800; https://doi.org/10.3390/cancers17050800 - 26 Feb 2025
Viewed by 312
Abstract
NINJ1 was initially recognized for its role in nerve regeneration and cellular adhesion. Subsequent studies have uncovered its participation in cancer progression, where NINJ1 regulates critical steps in tumor metastasis, such as cell migration and invasion. More recently, NINJ1 has emerged as a [...] Read more.
NINJ1 was initially recognized for its role in nerve regeneration and cellular adhesion. Subsequent studies have uncovered its participation in cancer progression, where NINJ1 regulates critical steps in tumor metastasis, such as cell migration and invasion. More recently, NINJ1 has emerged as a multifunctional protein mediating plasma membrane rupture (PMR) in several lytic cell death processes, including apoptosis, necroptosis, and pyroptosis. However, its role in ferroptosis—an iron-dependent form of lytic cell death characterized by lipid peroxidation—remained unclear until 2024. Ferroptosis is a tumor suppression mechanism that may be particularly relevant to detached and metastatic cancer cells. This review explores the role of NINJ1 in tumor invasion and metastasis, focusing on its regulation of ferroptosis via a non-canonical mechanism distinct from other cell deaths. We discuss the process of ferroptosis and its implications for cancer invasion and metastasis. Furthermore, we review recent studies highlighting the diverse roles of NINJ1 in ferroptosis regulation, including its canonical function in PMR and its non-canonical function of modulating intracellular levels of glutathione (GSH) and coenzyme A (CoA) via interaction with xCT anti-porter. Given that ferroptosis has been associated with tumor suppression, metastasis, the elimination of treatment-resistant cancer cells, and tumor dormancy, NINJ1′s modulation of ferroptosis presents a promising therapeutic target for inhibiting metastasis. Understanding the dual role of NINJ1 in promoting or restraining ferroptosis depending on cellular context could open avenues for novel anti-cancer strategies to enhance ferroptotic vulnerability in metastatic tumors. Full article
(This article belongs to the Special Issue Cell Biology of Cancer Invasion)
Show Figures

Figure 1

15 pages, 4708 KiB  
Article
The Novel H10N3 Avian Influenza Virus Triggers Lethal Cytokine Storm by Activating Multiple Forms of Programmed Cell Death in Mammalian Lungs
by Xin Wang, Xiyue Wang, Xiaojuan Hao, Ruyi Gao, Xiaolong Lu, Wenhao Yang, Yu Chen, Jiao Hu, Min Gu, Xiaowen Liu, Shunlin Hu, Kaituo Liu, Xiaoquan Wang and Xiufan Liu
Int. J. Mol. Sci. 2025, 26(5), 1977; https://doi.org/10.3390/ijms26051977 - 25 Feb 2025
Viewed by 163
Abstract
The novel H10N3 avian influenza virus (AIV) has infected four individuals since 2021 and caused severe respiratory damage, posing a significant threat to public health. However, its pathogenic mechanisms remain poorly understood. Our findings revealed that H10N3 infection induces severe lung damage and [...] Read more.
The novel H10N3 avian influenza virus (AIV) has infected four individuals since 2021 and caused severe respiratory damage, posing a significant threat to public health. However, its pathogenic mechanisms remain poorly understood. Our findings revealed that H10N3 infection induces severe lung damage and causes death in mice, even at low doses. The elevated levels of multiple pro-inflammatory factors in the bronchoalveolar lavage fluid were significantly increased during infection, displaying hallmarks of a cytokine storm. Transcriptome sequencing further revealed systematic activation of inflammation-related pathways, predicting that viral infection induces multiple forms of programmed cell death, including apoptosis, pyroptosis, and necroptosis. Protein-level validation showed that the activation of key cell death markers, including Caspase-3, GSDMD, and MLKL, significantly increased as the infection progressed, with their dynamic changes correlating strongly with the expression pattern of viral proteins. This study elucidates the central role of the synergistic effect between the cytokine storm and multiple cell death pathways in H10N3 pathogenesis. These findings not only advance our understanding of the pathogenic mechanisms of AIVs but also provide a critical theoretical basis for the development of targeted therapeutic strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 2776 KiB  
Article
Agomelatine Mitigates Kidney Damage in Obese Insulin-Resistant Rats by Inhibiting Inflammation and Necroptosis via the TNF-α/NF-ĸB/p-RIPK3 Pathway
by Sasivimon Promsan, Nattavadee Pengrattanachot, Nichakorn Phengpol, Prempree Sutthasupha, La-ongdao Thongnak, Krit Jaikumkao and Anusorn Lungkaphin
Int. J. Mol. Sci. 2025, 26(5), 1940; https://doi.org/10.3390/ijms26051940 - 24 Feb 2025
Viewed by 165
Abstract
Obesity is a risk factor for chronic kidney disease. The expansion of adipose tissues in obesity induces insulin resistance and low-grade systemic inflammation, promoting kidney damage. Our previous studies have demonstrated that agomelatine (AGOM) exerts renoprotective effects in experimental models of obesity and [...] Read more.
Obesity is a risk factor for chronic kidney disease. The expansion of adipose tissues in obesity induces insulin resistance and low-grade systemic inflammation, promoting kidney damage. Our previous studies have demonstrated that agomelatine (AGOM) exerts renoprotective effects in experimental models of obesity and insulin resistance through various mechanisms, including the attenuation of ER stress and oxidative stress. This study aimed to further explore the effects of agomelatine on renal inflammation, insulin signaling, and necroptosis in obese, insulin-resistant rats. Obesity was induced in rats with a high-fat diet for 16 weeks, followed by 4 weeks of treatment with 20 mg kg−1 day−1 of AGOM or 10 mg kg−1 day−1 of pioglitazone (PIO). The results showed that insulin resistance was improved after treatment with AGOM and PIO, as demonstrated by the reduction in fasting plasma glucose, insulin, and HOMA-IR. Both treatments restored the levels of renal insulin signaling proteins. Moreover, AGOM inhibited TNFα, TNFR1, NF-ĸB, COX2, and IL1β, which attenuated the necroptosis-related proteins RIPK3 and MLKL. AGOM also prevented kidney DNA fragmentation, as detected by the TUNEL assay. In an obese condition, the level of the tight junction protein claudin-1 (CLDN1) was enhanced after being treated with AGOM. In conclusion, the novel mechanisms associated with AGOM and involved in limiting kidney injury were the inhibition of the TNFα/NF-ĸB/p-RIPK3 pathway and a reduction in inflammation and necroptosis. This suggested that AGOM could be an effective treatment for inhibiting kidney dysfunction in cases of obesity and insulin resistance. These findings open new avenues for the management of renal dysfunction, with implications for personalized medicine. Full article
Show Figures

Figure 1

21 pages, 2755 KiB  
Review
The Triad of Blood–Brain Barrier Integrity: Endothelial Cells, Astrocytes, and Pericytes in Perinatal Stroke Pathophysiology
by Tania Garcia-Martínez, Denise G. Gornatti, Marina Ortiz, Guillem Cañellas, Damià Heine-Suñer and Cristòfol Vives-Bauzà
Int. J. Mol. Sci. 2025, 26(5), 1886; https://doi.org/10.3390/ijms26051886 - 22 Feb 2025
Viewed by 462
Abstract
Pediatric stroke, a significant cause of long-term neurological deficits in children, often arises from disruptions within neurovascular unit (NVU) components. The NVU, a dynamic ensemble of astrocytes, endothelial cells, pericytes, and microglia, is vital for maintaining cerebral homeostasis and regulating vascular brain development. [...] Read more.
Pediatric stroke, a significant cause of long-term neurological deficits in children, often arises from disruptions within neurovascular unit (NVU) components. The NVU, a dynamic ensemble of astrocytes, endothelial cells, pericytes, and microglia, is vital for maintaining cerebral homeostasis and regulating vascular brain development. Its structural integrity, particularly at the blood–brain barrier (BBB), depends on intercellular junctions and the basement membrane, which together restrict paracellular transport and shield the brain from systemic insults. Dysfunction in this intricate system is increasingly linked to pediatric stroke and related cerebrovascular conditions. Mutations disrupting endothelial cell adhesion or pericyte–endothelial interactions can compromise BBB stability, leading to pathological outcomes such as intraventricular hemorrhage in the germinal matrix, a hallmark of vascular brain immaturity. Additionally, inflammation, ferroptosis, necroptosis, and autophagy are key cellular processes influencing brain damage and repair. Excessive activation of these mechanisms can exacerbate NVU injury, whereas targeted therapeutic modulation offers potential pathways to mitigate damage and support recovery. This review explores the cellular and molecular mechanisms underlying NVU dysfunction, BBB disruption, and subsequent brain injury in pediatric stroke. Understanding the interplay between genetic mutations, environmental stressors, and NVU dynamics provides new insights into stroke pathogenesis. The susceptibility of the germinal matrix to vascular rupture further emphasizes the critical role of NVU integrity in early brain development. Targeting inflammatory pathways and cell death mechanisms presents promising strategies to preserve NVU function and improve outcomes for affected neonates. Full article
Show Figures

Figure 1

22 pages, 83734 KiB  
Article
Early Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Infection Induces Necroptosis in Immune Cells of Peripheral Lymphoid Organs
by Jiawei Xu, Caiyun Huo, Yaling Yang, Jun Han, Lei Zhou, Yanxin Hu and Hanchun Yang
Viruses 2025, 17(3), 290; https://doi.org/10.3390/v17030290 - 20 Feb 2025
Viewed by 258
Abstract
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has caused huge economic losses to the pig industry in China. This study evaluated the damage to peripheral immune tissues in the early infection of HP-PRRSV, including the hilar lymph nodes, mandibulares lymph [...] Read more.
The highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has caused huge economic losses to the pig industry in China. This study evaluated the damage to peripheral immune tissues in the early infection of HP-PRRSV, including the hilar lymph nodes, mandibulares lymph nodes, inguinales superficials lymph nodes, spleens, and tonsils. HP-PRRSV infection led to a reduction in CD4+ and CD8+ T cells, as well as CD19+ B cells, in the tonsils. Additionally, CD163+ macrophages and CD56+ NK cells increased in all peripheral lymphoid organs, with NK cells migrating toward the lymphoid follicles. However, no significant changes were observed in CD11c+ dendritic cells. RNA-seq analysis showed the down-regulation of T and B cell functions, while macrophage and NK cell functions were enhanced. Gene Ontology (GO) and KEGG pathway analysis indicated the up-regulation of necroptosis processes. Western blotting and immunofluorescence confirmed that HP-PRRSV induced PKR-mediated necroptosis in immunocytes. This study provides new insights into the effects of early HP-PRRSV infection on peripheral immune organs, highlighting dynamic shifts in immune cell populations, virus-induced immunosuppression, and the role of PKR-mediated necroptosis. These findings improve our understanding of the immunomodulation induced by PRRSV infection. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

2 pages, 534 KiB  
Correction
Correction: Oliveira et al. Discovery of a Necroptosis Inhibitor Improving Dopaminergic Neuronal Loss after MPTP Exposure in Mice. Int. J. Mol. Sci. 2021, 22, 5289
by Sara R. Oliveira, Pedro A. Dionísio, Maria M. Gaspar, Maria B. T. Ferreira, Catarina A. B. Rodrigues, Rita G. Pereira, Mónica S. Estevão, Maria J. Perry, Rui Moreira, Carlos A. M. Afonso, Joana D. Amaral and Cecília M. P. Rodrigues
Int. J. Mol. Sci. 2025, 26(4), 1612; https://doi.org/10.3390/ijms26041612 - 14 Feb 2025
Viewed by 273
Abstract
In the original publication [...] Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 3

14 pages, 1811 KiB  
Article
COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case–Control Study
by Raíssa Campos D’Amico, Seigo Nagashima, Lucas Baena Carstens, Karina de Guadalupe Bertoldi, Sabrina Mataruco, Júlio Cesar Honório D’Agostini, Elisa Carolina Hlatchuk, Sofia Brunoro da Silva, Lucia de Noronha and Cristina Pellegrino Baena
Int. J. Mol. Sci. 2025, 26(4), 1541; https://doi.org/10.3390/ijms26041541 - 12 Feb 2025
Viewed by 465
Abstract
Obesity has been identified as an independent risk factor for severe COVID-19 unfavorable outcomes. Several factors, such as increased ACE2 receptor expression and chronic inflammation, can contribute to this relationship, yet the activation of the NLRP3 inflammasome pathway is also a key element. [...] Read more.
Obesity has been identified as an independent risk factor for severe COVID-19 unfavorable outcomes. Several factors, such as increased ACE2 receptor expression and chronic inflammation, can contribute to this relationship, yet the activation of the NLRP3 inflammasome pathway is also a key element. Our primary goal was to determine whether chronic NLRP3 inflammasome activation in people with obesity is different in critical COVID-19 and in critical chronic conditions. A retrospective analysis was conducted using clinical data and post-mortem lung tissue samples from 14 COVID-19 patients with obesity (group A) and 9 patients with obesity who died from non-COVID-19 causes (group B). Immunohistochemical analysis assessed twelve markers related to the NLRP3 inflammasome pathway. Group A showed a significantly higher expression of ASC (p = 0.0387) and CASP-1 (p = 0.0142). No significant differences were found for IL-8, TNF-α, NF-kB, NLRP3, IL-1β, and gasdermin-D. Group B had higher levels of IL-6 (p < 0.0001), IL-18 (p = 0.002), CASP-9 (p < 0.0001), and HIF (p = 0.0327). We concluded that COVID-19 activates the NLRP3 inflammasome pathway, possibly leading to pyroptotic cell death mediated by caspase-1. In contrast, people with obesity without COVID-19, despite exhibiting some markers of the NLRP3 inflammasome, are more likely to experience necroptosis mediated by caspase-9. Full article
(This article belongs to the Special Issue Roles of Inflammasomes in Inflammatory Responses and Human Diseases)
Show Figures

Figure 1

37 pages, 44373 KiB  
Article
Quantitative Proteomics and Molecular Mechanisms of Non-Hodgkin Lymphoma Mice Treated with Incomptine A, Part II
by Normand García-Hernández, Fernando Calzada, Elihú Bautista, José Manuel Sánchez-López, Miguel Valdes, Marta Elena Hernández-Caballero and Rosa María Ordoñez-Razo
Pharmaceuticals 2025, 18(2), 242; https://doi.org/10.3390/ph18020242 - 11 Feb 2025
Viewed by 511
Abstract
Background/Objectives: Incomptine A (IA) has cytotoxic activity in non-Hodgkin lymphoma (NHL) cancer cell lines. Its effects on U-937 cells include induction of apoptosis, production of reactive oxygen species, and inhibition of glycolytic enzymes. We examined the altered protein levels present in the lymph [...] Read more.
Background/Objectives: Incomptine A (IA) has cytotoxic activity in non-Hodgkin lymphoma (NHL) cancer cell lines. Its effects on U-937 cells include induction of apoptosis, production of reactive oxygen species, and inhibition of glycolytic enzymes. We examined the altered protein levels present in the lymph nodes of an in vivo mouse model. Methods: We induced an in vivo model with Balb/c mice with U-937 cells and treated it with IA or methotrexate, as well as healthy mice. We determined expressed proteins by TMT based on the LC-MS/MS method (Data are available via ProteomeXchange with identifier PXD060392) and a molecular docking study targeting 15 deregulated proteins. We developed analyses through the KEGG, Reactome, and Gene Ontology databases. Results: A total of 2717 proteins from the axillary and inguinal lymph nodes were analyzed and compared with healthy mice. Of 412 differentially expressed proteins, 132 were overexpressed (FC ≥ 1.5) and 117 were underexpressed (FC ≤ 0.67). This altered expression was associated with 20 significantly enriched processes, including chromatin remodeling, transcription, translation, metabolic and energetic processes, oxidative phosphorylation, glycolysis/gluconeogenesis, cell proliferation, cytoskeletal organization, and with cell death with necroptosis. Conclusions: We confirmed the previously observed dose-dependent effect of IA as a secondary metabolite with important potential as an anticancer agent for the treatment of NHL, showing that the type of drug or the anatomical location influences the response to treatment. The IA promises to be a likely safer and more effective treatment to improve outcomes, reduce toxicities, and improve survival in patients with NHL, initially targeting histones and transcription factors that will affect cell death proteins. Full article
Show Figures

Graphical abstract

21 pages, 2121 KiB  
Review
Therapeutic Management of Ebola Virus: Targeting Oxidative Stress and Inflammatory Pathways
by Martin Ndayambaje, Hicham Wahnou, Abdallah Naya and Mounia Oudghiri
BioChem 2025, 5(1), 3; https://doi.org/10.3390/biochem5010003 - 11 Feb 2025
Viewed by 541
Abstract
The Ebola virus (EBOV), a highly lethal pathogen causing hemorrhagic fever, poses a persistent public health threat, with devastating multi-organ complications and high transmission potential through bodily fluids. EBOV’s pathogenesis is marked by severe oxidative stress and immune dysregulation, where increased reactive oxygen [...] Read more.
The Ebola virus (EBOV), a highly lethal pathogen causing hemorrhagic fever, poses a persistent public health threat, with devastating multi-organ complications and high transmission potential through bodily fluids. EBOV’s pathogenesis is marked by severe oxidative stress and immune dysregulation, where increased reactive oxygen species (ROS) levels foster cellular damage, hinder immune defenses, and facilitate viral replication. Through immune evasion and suppression of cellular stress responses, EBOV affects both innate and adaptive immunity, activating pyroptosis, PANoptosis, necroptosis, and lymphocyte apoptosis, thereby amplifying inflammation and disease severity. Recent research suggests that bioactive molecules, including quercetin, curcumin, eugenol, and p-anisaldehyde, may offer therapeutic potential due to their antioxidant, anti-inflammatory, and immunomodulatory effects. This review also underscores the potential of conventional treatments, including amiodarone, favipiravir, remdesivir, azithromycin, chloroquine, and nitazoxanide, as therapeutic agents against EBOV, thanks to their antiviral and anti-inflammatory properties, although their efficacy varies across experimental models. These natural compounds could enhance immune resilience by scavenging ROS, modulating inflammation, and mitigating immune dysregulation, presenting promising adjunctive strategies to support conventional EBOV therapies. Full article
Show Figures

Graphical abstract

31 pages, 5173 KiB  
Review
Innate Immune Sensors and Cell Death—Frontiers Coordinating Homeostasis, Immunity, and Inflammation in Skin
by Ye Mon Soe, Seen Ling Sim and Snehlata Kumari
Viruses 2025, 17(2), 241; https://doi.org/10.3390/v17020241 - 10 Feb 2025
Viewed by 726
Abstract
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In [...] Read more.
The skin provides a life-sustaining interface between the body and the external environment. A dynamic communication among immune and non-immune cells in the skin is essential to ensure body homeostasis. Dysregulated cellular communication can lead to the manifestation of inflammatory skin conditions. In this review, we will focus on the following two key frontiers in the skin: innate immune sensors and cell death, as well as their cellular crosstalk in the context of skin homeostasis and inflammation. This review will highlight the recent advancements and mechanisms of how these pathways integrate signals and orchestrate skin immunity, focusing on inflammatory skin diseases and skin infections in mice and humans. Full article
(This article belongs to the Special Issue PANoptosis in Viral Infection)
Show Figures

Figure 1

26 pages, 2738 KiB  
Review
The Emerging Role of m6A and Programmed Cell Death in Cardiovascular Diseases
by Haixia Wang, Juanjuan Han, Hui Kong, Ce Ma and Xin-an Zhang
Biomolecules 2025, 15(2), 247; https://doi.org/10.3390/biom15020247 - 8 Feb 2025
Viewed by 630
Abstract
N6-methyladenosine (m6A) is the most prevalent internal chemical modification in eukaryotic messenger RNA (mRNA), significantly impacting its lifecycle through dynamic and reversible processes involving methyltransferase, demethylase, and binding proteins. These processes regulate mRNA stability, splicing, nuclear export, translation, and degradation. Programmed cell death [...] Read more.
N6-methyladenosine (m6A) is the most prevalent internal chemical modification in eukaryotic messenger RNA (mRNA), significantly impacting its lifecycle through dynamic and reversible processes involving methyltransferase, demethylase, and binding proteins. These processes regulate mRNA stability, splicing, nuclear export, translation, and degradation. Programmed cell death (PCD), a tightly controlled process encompassing apoptosis, pyroptosis, ferroptosis, autophagy, and necroptosis, plays a crucial role in maintaining cellular homeostasis, tissue development, and function. Recently, m6A modification has emerged as a significant research area due to its role in regulating PCD and its implications in cardiovascular diseases (CVDs). In this review, we delve into the intricate relationship between various PCD types and m6A modification, emphasizing their pivotal roles in the initiation and progression of CVDs such as myocardial ischemia-reperfusion (I/R), atherosclerosis (AS), pulmonary hypertension (PH), cardiomyopathy, doxorubicin (Dox)-induced cardiotoxicity (DIC), heart failure (HF), and myocardial infarction (MI). Our findings underscore the potential of elucidating the roles of m6A and PCD in CVD to pave new pathways for prevention and treatment strategies. Full article
Show Figures

Figure 1

17 pages, 5589 KiB  
Article
Eleutheroside B Ameliorates Cardiomyocytes Necroptosis in High-Altitude-Induced Myocardial Injury via Nrf2/HO-1 Signaling Pathway
by Huxinyue Duan, Yue Han, Hongying Zhang, Tianyue Zhou, Chunjie Wu, Zhenxing Wang and Yacong He
Antioxidants 2025, 14(2), 190; https://doi.org/10.3390/antiox14020190 - 7 Feb 2025
Viewed by 489
Abstract
This study was designed to evaluate the protective effects of eleutheroside B (EB) in high-altitude-induced myocardial injury (HAMI) and to unravel the underlying molecular mechanisms. SD rats were used for in vivo experiments. Following pretreatment with EB, the SD rats were exposed to [...] Read more.
This study was designed to evaluate the protective effects of eleutheroside B (EB) in high-altitude-induced myocardial injury (HAMI) and to unravel the underlying molecular mechanisms. SD rats were used for in vivo experiments. Following pretreatment with EB, the SD rats were exposed to a hypobaric environment within a hypobaric chamber for 48 h. Electrocardiograms, H&E staining, and serum biochemical indices were measured to evaluate the protective effects of EB on HAMI. Immunofluorescence and Western blotting were utilized to detect the expression of associated proteins. In parallel, a hypobaric hypoxic cell incubator was used to establish an in vitro model of hypobaric hypoxia-induced cell injury. The anti-necroptotic effect and its potential underlying mechanisms were investigated and verified in vitro. Exposure to hypobaric hypoxia led to electrocardiogram disorders, pathological changes in myocardial tissue, increased concentrations of BNP and CK-MB, and elevated levels of oxidative stress indicators and inflammatory factors. Additionally, the expression of necroptosis-related proteins was upregulated. Pretreatment with EB effectively ameliorated myocardial injury caused by hypobaric hypoxia, mitigated oxidative stress and inflammation, and suppressed necroptosis. Furthermore, EB facilitated the translocation of Nrf2 into the nucleus. In conclusion, this study provides evidence suggesting that EB may exert a protective effect against HAMI by inhibiting cardiomyocyte necroptosis via the Nrf2/HO-1 signaling pathway. Full article
Show Figures

Figure 1

13 pages, 5822 KiB  
Article
The Potential Roles of IL-1β, IL-6, and RIPK3 in the Pathogenesis of Stevens–Johnson Syndrome/Toxic Epidermal Necrolysis
by Chandana Sooranahalli, Vidhya R. Rao, Brandon Zelman, Mallika Shekhar, Sevnur Komurlu Keceli, Charles Bouchard and Omer Iqbal
Diagnostics 2025, 15(3), 290; https://doi.org/10.3390/diagnostics15030290 - 26 Jan 2025
Viewed by 644
Abstract
Background/Objectives: Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis (SJS/TEN) are rare but severe skin conditions, often triggered by medications, that can be life-threatening. These conditions frequently affect the eyes, causing ocular surface disease, which can result in visual impairment or blindness. Although the exact [...] Read more.
Background/Objectives: Stevens–Johnson Syndrome and Toxic Epidermal Necrolysis (SJS/TEN) are rare but severe skin conditions, often triggered by medications, that can be life-threatening. These conditions frequently affect the eyes, causing ocular surface disease, which can result in visual impairment or blindness. Although the exact mechanisms behind SJS/TEN remain unclear, key inflammatory mediators such as IL-1β, IL-6, and RIPK3 are believed to play critical roles in inflammation, necroptosis, and regulatory processes. Investigating these factors offers new insights into the disease’s underlying mechanisms and potential targets for treatment. This study aims to determine the roles of IL-1β, IL-6, and RIPK3 in the pathogenesis of SJS/TEN. Methods: The study examined the expression levels of IL-1β, IL-6, and RIPK3 in skin biopsies from patients with biopsy-confirmed SJS/TEN, using lichen planus as a positive control and normal skin as a baseline control. Immunohistochemistry was employed for this analysis. Additionally, the impact of SJS/TEN patient plasma on mitochondrial function was assessed in platelets and human corneal epithelial (H-CET) cells. Using a fluorescent plate reader, mitochondrial activity and superoxide ion levels were measured, comparing plasma from SJS/TEN patients to normal human plasma. Results: Skin biopsies from SJS/TEN patients showed a significantly higher expression of IL-1β, IL-6, and RIPK3 compared to both lichen planus and normal controls. Furthermore, plasma from SJS/TEN patients significantly reduced platelet viability and increased mitochondrial and total cellular superoxide ions, as demonstrated by elevated levels of MitoSOX Red and CellROX Red. Conclusions: These findings suggest that IL-1β, IL-6, and RIPK3 may contribute to the pathogenesis of SJS/TEN and highlight their potential as targets for therapeutic intervention. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Skin Disease)
Show Figures

Figure 1

Back to TopTop