Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,176)

Search Parameters:
Keywords = rats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2200 KiB  
Article
Immunogenicity and Safety Profile of Two Adjuvanted-PD-L1-Based Vaccine Candidates in Mice, Rats, Rabbits, and Cynomolgus Monkeys
by Camila Canaán-Haden, Javier Sánchez-Ramírez, Rafael Martínez-Castillo, Mónica Bequet-Romero, Pedro Puente-Pérez, Isabel Gonzalez-Moya, Yunier Rodríguez-Álvarez, Marta Ayala-Ávila, Jorge Castro-Velazco, Olivia Cabanillas-Bernal, Marco A. De-León-Nava, Alexei F. Licea-Navarro and Yanelys Morera-Díaz
Vaccines 2025, 13(3), 296; https://doi.org/10.3390/vaccines13030296 (registering DOI) - 11 Mar 2025
Abstract
Background: The therapeutic blockade of the PD1/PD-L1 axis with monoclonal antibodies has led to a breakthrough in cancer treatment, as it plays a key role in the immune evasion of tumors. Nevertheless, treating patients with cancer with vaccines that stimulate a targeted immune [...] Read more.
Background: The therapeutic blockade of the PD1/PD-L1 axis with monoclonal antibodies has led to a breakthrough in cancer treatment, as it plays a key role in the immune evasion of tumors. Nevertheless, treating patients with cancer with vaccines that stimulate a targeted immune response is another attractive approach for which few side effects have been observed in combination immunotherapy clinical trials. In this sense, our group has recently developed a therapeutic cancer vaccine candidate called PKPD-L1Vac which contains as an antigen the extracellular domain of human PD-L1 fused to a 47 amino-terminal, part of the LpdA gene of N. meningitides, which is produced in E. coli. The investigation of potential toxicities associated with PD-L1 blockade by a new therapy in preclinical studies is critical to optimizing the efficacy and safety of that new therapy. Methods: Here, we describe immunogenicity and preliminary safety studies in mice, rats, rabbits, and non-human primates that make use of a 200 μg dose of PKPD-L1 in combination with VSSPs or alum phosphate to contribute to the assessment of potential adverse events that are relevant to the future clinical development program of this novel candidate. Results: The administration of PKPD-L1Vac to the four species at the doses studied was immunogenic and did not result in behavioral, clinical, hematological, or serum biochemical changes. Conclusions: Therefore, PKPD-L1Vac could be considered suitable for further complex toxicological studies and the way for its clinical evaluation in humans has been opened. Full article
Show Figures

Graphical abstract

13 pages, 1384 KiB  
Article
The Effects of Methylprednisolone and Hyaluronic Acid on the Endometrium in Experimentally Induced Asherman Syndrome Rat Models: A Prospective Laboratory Study
by Mehmet Genco, Merve Genco, Fisun Vural and Nermin Koç
Medicina 2025, 61(3), 482; https://doi.org/10.3390/medicina61030482 - 10 Mar 2025
Abstract
Background and Objectives: The current study was designed as a prospective laboratory investigation to evaluate the histopathological effects and VEGF (vascular endothelial growth factor) expression in uterine tissue following treatment with a combination of methylprednisolone and hyaluronic acid in a rat model [...] Read more.
Background and Objectives: The current study was designed as a prospective laboratory investigation to evaluate the histopathological effects and VEGF (vascular endothelial growth factor) expression in uterine tissue following treatment with a combination of methylprednisolone and hyaluronic acid in a rat model of experimentally induced Asherman Syndrome. Materials and Methods: Twenty-six female Sprague-Dawley rats were used. Trichloroacetic acid was applied to the right uterine horns of all the groups to induce adhesion formation. First, we induced the Asherman model in two rats (Group 1). The remaining rats were divided into the following three groups: Group 2 received intrauterine hyaluronic acid treatment, Group 3 received oral methylprednisolone treatment, and Group 4 received both treatments. Inflammation, gland count, and fibrosis levels were assessed histopathologically. VEGF levels were analyzed immunohistochemically. Results: Hyaluronic acid treatment increased the uterine lumen diameter and vascularization. Methylprednisolone treatment increased the gland count and uterine wall thickness while decreasing the inflammation and fibrosis scores. Combined treatment provided a statistically significant advantage over single treatments. In particular, the combined treatment group exhibited significantly lower fibrosis (p = 0.184) and inflammation scores (p = 0.071), as well as higher gland counts (p = 0.849) and VEGF expression (p = 0.114), compared to the groups receiving only methylprednisolone or hyaluronic acid. These differences indicate that the synergistic effect of the two agents results in more effective endometrial healing than when either treatment is applied alone. Conclusions: Methylprednisolone treatment significantly prevented adhesion formation and reduced the inflammation and fibrosis scores compared to hyaluronic acid treatment alone. The combined treatment adds to the effects of the hyaluronic acid treatment alone and provides better healing. Full article
Show Figures

Figure 1

15 pages, 4182 KiB  
Article
Effects of Lactococcus cremoris PS133 in 5-Hydroxytryptophan-Induced Irritable Bowel Syndrome Model Rats
by Fu-Sheng Deng, Miao-Hui Lin, Chin-Lin Huang, Chien-Chen Wu, Ching-Liang Lu and Ying-Chieh Tsai
Int. J. Mol. Sci. 2025, 26(6), 2464; https://doi.org/10.3390/ijms26062464 - 10 Mar 2025
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder marked by abdominal pain and irregular bowel habits. Recently, more and more evidence supports gut microbiota imbalance in IBS and highlights the potential of probiotics in restoring gut health and reducing symptoms. In this [...] Read more.
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder marked by abdominal pain and irregular bowel habits. Recently, more and more evidence supports gut microbiota imbalance in IBS and highlights the potential of probiotics in restoring gut health and reducing symptoms. In this study, we explored the effects of Lactococcus cremoris PS133 (PS133) on an IBS-like condition in rats triggered by 5-hydroxytryptophan (5-HTP), a serotonin precursor. Eight-week-old Sprague Dawley rats received either PS133 or saline for 14 days, followed by 5-HTP to induce IBS-like symptoms. Colorectal distension tests showed that PS133 reduced visceral hypersensitivity. PS133 also protected intestinal mucin against 5-HTP-induced degradation, as seen in alcian blue staining, and increased the levels of tight junction proteins (occludin and zonula occludens-1) in the colon, indicating improved gut barrier integrity. Additionally, PS133 normalized the levels of substance P (a neuropeptide) in the spinal cord and altered 5-hydroxyindoleacetic acid (a serotonin metabolite) in the brain. Gut microbiota analysis revealed PS133 regulated specific bacterial groups, including [Eubacterium]_coprostanoligenes_group and Lactococcus. Overall, PS133 improved gut function, reduced IBS-like symptoms, and modulated gut microbiota, neurotransmitters, and intestinal barrier health in this IBS model. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 1159 KiB  
Article
Parenteral Nanoemulsion for Optimized Delivery of GL-II-73 to the Brain—Comparative In Vitro Blood–Brain Barrier and In Vivo Neuropharmacokinetic Evaluation
by Kristina Jezdić, Jelena Đoković, Ivan Jančić, Tanja Ilić, Biljana Bufan, Bojan Marković, Jana Ivanović, Tijana Stanković, Nebojša D. Cekić, Vassiliki Papadimitriou, Dishary Sharmin, Prithu Mondal, James M. Cook, Snežana D. Savić and Miroslav M. Savić
Pharmaceutics 2025, 17(3), 354; https://doi.org/10.3390/pharmaceutics17030354 - 10 Mar 2025
Viewed by 89
Abstract
Background/Objectives: GL-II-73 is a positive allosteric modulator that is selective for α5GABAA receptors and has physicochemical properties that favor nanocarrier formulations when parenteral delivery to the central nervous system is desired. Our aim was to develop an optimized nanoemulsion containing GL-II-73 [...] Read more.
Background/Objectives: GL-II-73 is a positive allosteric modulator that is selective for α5GABAA receptors and has physicochemical properties that favor nanocarrier formulations when parenteral delivery to the central nervous system is desired. Our aim was to develop an optimized nanoemulsion containing GL-II-73 and subsequently test whether this would improve permeation across the blood–brain barrier (BBB) and availability in the brain. Methods: The nanoemulsions were formulated and subjected to detailed physiochemical characterization. The optimized formulation was tested in comparison to a solution of GL-II-73 in the appropriate solvent in an in vitro model of the blood–brain barrier based on human induced pluripotent stem cell-derived microvascular endothelial cells, astrocytes, and pericytes. Plasma and brain exposure to GL-II-73 and its metabolite MP-III-022 was investigated in an in vivo neuropharmacokinetic study in rats exposed to the selected nanoemulsion and the conventional solution formulation. Results: The selected biocompatible nanoemulsion exhibited satisfactory physicochemical properties for parenteral administration, with a Z-ave of 122.0 ± 1.5, PDI of 0.123 ± 0.009 and zeta potential of −40.7 ± 1.5, pH of 5.16 ± 0.04, and adequate stability after one year of storage, and allowed the localization of GL-II-73 in the stabilization layer. The permeability of GL-II-73 through the BBB was twice as high with the selected nanoemulsion as with the solution. The availability of GL-II-73 and MP-III-022 (also a positive allosteric modulator selective for α5GABAA receptors) in the brain was 24% and 61% higher, respectively, after intraperitoneal administration of the nanoemulsion compared to the solution; the former increase was statistically significant. Conclusions: The increased permeability in vitro proved to be a good predictor for the improved availability of GL-II-73 in brain tissue in vivo from the formulation obtained by encapsulation in a nanoemulsion. The putative additive effect of the parent molecule and its metabolite MP-III-022 could lead to enhanced and/or prolonged modulation of α5GABAA receptors in the brain. Full article
Show Figures

Graphical abstract

19 pages, 32075 KiB  
Article
Network Pharmacology-Based Elucidation of the Hypoglycemic Mechanism of Grifola frondosa GF5000 Polysaccharides via GCK modulation in Diabetic Rats
by Chun Xiao, Chunwei Jiao, Longhua Huang, Huiping Hu, Yizhen Xie and Qingping Wu
Nutrients 2025, 17(6), 964; https://doi.org/10.3390/nu17060964 - 10 Mar 2025
Viewed by 111
Abstract
Background/Objectives: Our lab has previously reported that Grifola frondosa (maitake mushroom) GF5000 has antidiabetic potential owing to its ability to improve insulin resistance. This study aimed to gain insight into the system-level hypoglycemic mechanisms of GF5000 using transcriptomics, proteomics, and network pharmacology. This [...] Read more.
Background/Objectives: Our lab has previously reported that Grifola frondosa (maitake mushroom) GF5000 has antidiabetic potential owing to its ability to improve insulin resistance. This study aimed to gain insight into the system-level hypoglycemic mechanisms of GF5000 using transcriptomics, proteomics, and network pharmacology. This study provides new insights into the hypoglycemic mechanisms of GF5000, identifying key molecular targets involved in mitigating insulin resistance in T2DM. Methods: Liver protein and gene expression in normal control (NC), diabetic control (DC), and GF5000-treated (GF5000) rats were analyzed via iTRAQ and RNA-seq. The relationships between differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and type 2 diabetes (T2DM) disease targets were studied using Metascape and the Cytoscape GeneMANIA plug-in. Results: One hundred and fifty-two DEGs and sixty-two DEPs were identified; twenty DEGs/DEPs exhibited the same trend in mRNA and protein expression levels when comparing the GF5000 vs. DC groups. The Metascape analysis revealed that the T2DM disease targets included four DEGs—Gck, Scd, Abcb4, and Cyp3a9—and two DEPs—glucokinase and acetyl-CoA carboxylase 2. A Cytoscape–GeneMANIA analysis of thirteen DEGs/DEPs related to T2DM showed that Apoa1/Apolipoprotein A-I, Gckr/glucokinase regulatory protein, and Gck/glucokinase had the highest connectivity and centrality in the topological network. The qPCR results confirmed that GF5000 increased the mRNA expression of GCK in GCK-knockdown HepG2 cells. Conclusions: These results provide theoretical evidence for the use of GF5000 as a potential active nutritional ingredient for the prevention and treatment of T2DM. Our findings suggest that GF5000 targets multiple pathways implicated in T2DM, offering a multi-faceted approach to disease management and prevention. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

14 pages, 2891 KiB  
Article
Can Botulinum Toxin Type E Serve as a Novel Therapeutic Target for Managing Chronic Orofacial Pain?
by Sung-Koog Jung, Yu-Mi Kim, Min-Jeong Jo, Jo-Young Son, Jin-Sook Ju, Min-Kyoung Park, Min-Kyung Lee, Jae-Young Kim, Jeong-Sun Nam and Dong-Kuk Ahn
Toxins 2025, 17(3), 130; https://doi.org/10.3390/toxins17030130 - 10 Mar 2025
Viewed by 83
Abstract
The existing literature offers limited experimental evidence on the role of botulinum neurotoxin type E (BoNT-E) in pain transmission. The present study investigated the antinociceptive effects of subcutaneously administered BoNT-E in chronic orofacial pain conditions. This study used orofacial formalin-induced pronociceptive behavior and [...] Read more.
The existing literature offers limited experimental evidence on the role of botulinum neurotoxin type E (BoNT-E) in pain transmission. The present study investigated the antinociceptive effects of subcutaneously administered BoNT-E in chronic orofacial pain conditions. This study used orofacial formalin-induced pronociceptive behavior and complete Freund’s adjuvant (CFA)-induced thermal hyperalgesia as inflammatory pain models in male Sprague Dawley rats. A neuropathic pain model was also developed by causing an injury to the inferior alveolar nerve. Subcutaneously administered BoNT-E (6, 10 units/kg) significantly reduced nociceptive behavior during the second phase of the formalin test compared to that of the vehicle treatment. These doses similarly alleviated thermal hypersensitivity in the CFA-treated rats. Moreover, BoNT-E (6, 10 units/kg) markedly attenuated mechanical allodynia in rats with an inferior alveolar nerve injury. At a dose of 10 units/kg, BoNT-E produced antinociceptive effects that became evident 8 h post-injection and persisted for 48 h. Notably, BoNT-E (10 units/kg) significantly reduced the number of c-fos-immunostained neurons in the trigeminal subnucleus caudalis of rats with an inferior alveolar nerve injury. In comparison, intraperitoneally administered gabapentin (30, 100 mg/kg) demonstrated significant mechanical anti-allodynic effects but exhibited lower analgesic efficacy than that of BoNT-E. These findings highlight the potential of BoNT-E as a therapeutic agent for chronic pain management. Full article
(This article belongs to the Special Issue Botulinum Toxins: New Uses in the Treatment of Diseases (2nd Edition))
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Physical Exercise Alleviates Oxidative Stress and Autonomic Dysregulation in a Rat Model of Inflammatory Bowel Disease
by Brenda Lois Barros dos Santos, Alda Cássia Alves da Silva, Juliana Soares Severo, Bruno de Sousa Barbosa, Maisa Campêlo de Sousa, Francisco Assis dos Santos Moreira, Lucas Estevão de Sousa, Heron Silva Soares, Antônio Klingem Leite de Freitas, Francisco Leonardo Torres-Leal, Paulo Correia-de-Sá, Armênio Aguiar dos Santos and Moisés Tolentino Bento da Silva
Antioxidants 2025, 14(3), 328; https://doi.org/10.3390/antiox14030328 - 10 Mar 2025
Viewed by 50
Abstract
Inflammatory bowel disease (IBD) induces immunological and autonomic imbalances. Exercise is a beneficial strategy for controlling IBD symptoms. We investigated the role of exercise on gastrointestinal (GI) motility changes and autonomic parameters in rats with ileitis. Rats were divided into control, ileitis, and [...] Read more.
Inflammatory bowel disease (IBD) induces immunological and autonomic imbalances. Exercise is a beneficial strategy for controlling IBD symptoms. We investigated the role of exercise on gastrointestinal (GI) motility changes and autonomic parameters in rats with ileitis. Rats were divided into control, ileitis, and exercise+ileitis groups. Ileitis was induced by TNBS (40 mM, intraileally). The exercise was swimming (1 h/day/4 weeks, 5%/bw). We assessed eating behaviour and oxidative stress. Body composition was assessed by bioimpedance. Autonomic balance and ECG parameters were measured by an electrocardiogram (ECG). Gastrointestinal motility was evaluated using the phenol red technique. In terms of body composition, total body water (TBW), body mass index (BMI), and fat-free mass (FFM) were higher in the ileitis group (216.80 ± 11.44 mL; 24.09 ± 2.15 g/cm2; 287.1 ± 14.66 g) (p < 0.05) vs. control rats (130.06 ± 28.23 mL; 16.38 ± 2.50 g/cm2; 193 ± 42.21 g) and exercise prevented (91.33 ± 12.33 mL; 11.73 ± 0.47 g/cm2; 133.8 ± 16.82 g) (p < 0.05) these changes. The exercise+ileitis group induces a reduction (p < 0.05) in gastric retention vs. ileitis and control (11.22 ± 1.91% vs. 35.17 ± 1.01% and 33.96 ± 1.77%). Ileitis increased intestinal retention in the duodenum (46.3 ± 2.56% vs. 24.98 ± 1.78%) and jejunum (34.22 ± 2.33% and 34.72 ± 2.83% vs. 47.32 ± 1.48%) (p < 0.05) and decreased intestinal retention in the ileum (p < 0.05) vs. the control group. Exercise+ileitis prevented (p < 0.05) changes in the duodenum (24.96 ± 1.66% vs. 46.3 ± 2.56%) and ileum (40.32 ± 3.75% vs. 14.08 ± 0.88%). Ileitis induces high MDA levels (p < 0.05) vs. control rats (4.43 ± 0.69 vs. 2.15 ± 0.12 nmol/mg of the tissue). This effect was prevented (p < 0.05) in the exercise+ileitis group (2.75 ± 0.21 vs. 4.43 ± 0.69 nmol/mg of the tissue). We observed a reduction in the LF component (p < 0.05) in the ileitis group vs. control group (31.32 ± 3.99 vs. 43.43 ± 3.86). The correlation indicated a stronger interrelationship between the autonomic parameter and intestinal retention in the ileum (r: 0.68; p: 0.04). The current study suggests intestinal ileitis alters GI motility and autonomic balance, and physical exercise can represent an essential non-pharmacological approach to IBD treatment. Full article
Show Figures

Figure 1

20 pages, 2936 KiB  
Article
The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors
by Amany E. El-Naggar, Mai M. Helmy, Sahar M. El-Gowilly and Mahmoud M. El-Mas
Pharmaceuticals 2025, 18(3), 388; https://doi.org/10.3390/ph18030388 - 9 Mar 2025
Viewed by 245
Abstract
Background/Objectives: Sepsis has been shown to depress arterial baroreceptor function, and this effect is counterbalanced by the cholinergic anti-inflammatory pathway. Considering the importance of central adenosine receptors in baroreceptor function, this study tested whether central adenosine A3 receptors (A3ARs) modulate the cholinergic-baroreflex [...] Read more.
Background/Objectives: Sepsis has been shown to depress arterial baroreceptor function, and this effect is counterbalanced by the cholinergic anti-inflammatory pathway. Considering the importance of central adenosine receptors in baroreceptor function, this study tested whether central adenosine A3 receptors (A3ARs) modulate the cholinergic-baroreflex interaction in sepsis and whether this interaction is modulated by mitogen-activated protein kinases (MAPKs) and related proinflammatory cytokines. Methods: Sepsis was induced by cecal ligation and puncture (CLP) and rats were instrumented with femoral and intracisternal (i.c.) catheters. Baroreflex sensitivity (BRS) was measured 24 h later in conscious animals using the vasoactive method, which correlates changes in blood pressure caused by i.v. phenylephrine (PE) and sodium nitroprusside (SNP) to concomitant reciprocal changes in heart rate. Results: The reduction in reflex bradycardic (BRS-PE), but not tachycardic (BRS-SNP), responses elicited by CLP was reversed by i.v. nicotine in a dose-related manner. The BRS-PE effect of nicotine was blunted following intracisternal administration of IB-MECA (A3AR agonist, 4 µg/rat). The depressant action of IB-MECA on the BRS facilitatory action of nicotine was abrogated following central inhibition of MAPK-JNK (SP 600125), PI3K (wortmannin), and TNFα (infliximab), but not MAPK-ERK (PD 98059). Additionally, the nicotine suppression of sepsis-induced upregulation of NFκB and NOX2 expression in the nucleus tractus solitarius (NTS) was negated by A3AR activation. The molecular effect of IB-MECA on NFκB expression disappeared in the presence of SP 600125, wortmannin, or infliximab. Conclusions: The central PI3K/MAPK-JNK/TNFα pathway contributes to the restraining action of A3ARs on cholinergic amelioration of sepsis-induced central neuroinflammatory responses and impairment of the baroreceptor-mediated negative chronotropism. Full article
(This article belongs to the Section Pharmacology)
17 pages, 3639 KiB  
Article
Lycorine Pre-Treatment Alleviates Microglia Inflammation After Cerebral Ischemia by Inhibiting NF-κB Phosphorylation
by Wuyan Zheng, Wanyu Wu, Yuhan Li, Bo Qin, Yuping Wang, Yunhan Zeng, Betty Yuen Kwan Law and Vincent Kam Wai Wong
Brain Sci. 2025, 15(3), 290; https://doi.org/10.3390/brainsci15030290 - 9 Mar 2025
Viewed by 314
Abstract
Background: Middle-aged and elderly individuals may experience detrimental health effects due to ischemic stroke (IS). The inflammatory response triggered during IS exacerbates neuronal damage, becoming a barrier to effective IS treatment and leading to poor patient prognosis. Nevertheless, the specific role of microglia [...] Read more.
Background: Middle-aged and elderly individuals may experience detrimental health effects due to ischemic stroke (IS). The inflammatory response triggered during IS exacerbates neuronal damage, becoming a barrier to effective IS treatment and leading to poor patient prognosis. Nevertheless, the specific role of microglia in the inflammatory response triggered by IS remains mostly unclear. The primary target of this investigation is to study the neuroinflammatory impact of lycorine (LYC) during the IS process. Our objective is to evaluate whether LYC deploys its anti-inflammatory effect with modulation of the NF-κB signaling pathway, thereby reducing IS symptoms. Methods: In this research, BV-2 cells were pre-treated with LYC for 24 h before LPS was added to induce inflammation. Results: It has been discovered that LYC suppresses BV-2 cell polarization and reduces the levels of inflammatory cytokines (IL-1β, IL-6, TNF-α), showing its potential anti-inflammatory effects in vitro. Furthermore, IκBα and p65 play crucial roles in regulating the inflammatory response within the NF-κB signaling pathway. Mechanistic exploration indicates that LYC can activate the expression of IκBα in LPS-induced BV-2 cells. IκBα inhibits NF-κB by binding to its p65 subunit, sequestering it in the cytoplasm and preventing its translocation to the nucleus, thereby inhibiting inflammation. Additionally, p65 is a key transcription factor for pro-inflammatory genes, and its downregulation leads to decreased transcriptional activity of these genes. The combined effect of increased IκBα and decreased p65 results in significantly reduced NF-κB activity, thereby alleviating the inflammatory response. Meanwhile, in vivo studies indicate that LYC pre-treatment significantly reduces the infarct size caused by middle cerebral artery occlusion (MCAO) in rats. The assessment of cerebral infarction volume, neurological scores, brain edema rate and inflammation levels in MCAO rats pre-treated with LYC indicates positive therapeutic effects. Conclusions: In summary, our research indicates that LYC pre-treatment has significant anti-inflammatory effects by attenuating inflammation levels through NF-κB inhibition, which contributes to potential therapeutic benefits in ischemic stroke (IS) and may improve disease prognosis. LYC may serve as an adjunctive clinical pre-treatment for IS, which has to be confirmed by clinical trials in the future. Full article
(This article belongs to the Special Issue The Role of Glia in Inflammatory Processes)
Show Figures

Figure 1

14 pages, 2280 KiB  
Article
Preclinical Validation of an Electrochemical Sensor for Alcohol Consumption Monitoring in a Polydrug Self-Administration Animal Model
by Lucía Garrido-Matilla, Roberto María-Hormigos, Olga Monago-Maraña, Alberto Marcos, Emilio Ambrosio and Agustin G. Crevillen
Chemosensors 2025, 13(3), 97; https://doi.org/10.3390/chemosensors13030097 - 8 Mar 2025
Viewed by 135
Abstract
An electrochemical sensor for identification and monitoring of alcoholism was preclinically validated by analyzing plasma from polydrug-consuming rats (alcohol and cocaine). The sensor measures by adsorptive transfer square wave voltammetry the glycosylation level of transferrin, which is an alcoholism biomarker, through a recently [...] Read more.
An electrochemical sensor for identification and monitoring of alcoholism was preclinically validated by analyzing plasma from polydrug-consuming rats (alcohol and cocaine). The sensor measures by adsorptive transfer square wave voltammetry the glycosylation level of transferrin, which is an alcoholism biomarker, through a recently reported parameter called the electrochemical index of glycosylation (EIG). Three rat groups were designed: saline group, cocaine group, and cocaine–alcohol group. Moreover, two periods of withdrawal were studied, after 2 days and 30 days. The alcohol–cocaine group after 2 days of withdrawal showed significantly lower EIG values (p < 0.1) than the rest of groups and also alcohol–cocaine group after 30 days of withdrawal, so the sensor was able to identify the alcohol consumption in rats and to monitor the recovery of glycosylation level after 30 days of withdrawal, even combined with cocaine. Furthermore, the effect of sex was also considered. Receiver operating characteristic (ROC) curves were developed for each sex and the corresponding cut-off values were determined. The sensor showed a clinical sensitivity of 70% for male and 75% for female, and a specificity of 67% for both sexes. This preclinical validation demonstrated the possibilities of this sensor for point of care testing of alcoholism, even in cocaine addicts, making it a potential tool for diagnosis and monitoring of alcohol consumption in detox treatments for humans. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Graphical abstract

25 pages, 12527 KiB  
Article
A Soluble Epoxide Hydrolase Inhibitor Improves Cerebrovascular Dysfunction, Neuroinflammation, Amyloid Burden, and Cognitive Impairments in the hAPP/PS1 TgF344-AD Rat Model of Alzheimer’s Disease
by Xing Fang, Jane J. Border, Huawei Zhang, Lavanya Challagundla, Jasleen Kaur, Sung Hee Hwang, Bruce D. Hammock, Fan Fan and Richard J. Roman
Int. J. Mol. Sci. 2025, 26(6), 2433; https://doi.org/10.3390/ijms26062433 (registering DOI) - 8 Mar 2025
Viewed by 248
Abstract
Alzheimer’s disease (AD) is an increasing global healthcare crisis with few effective treatments. The accumulation of amyloid plaques and hyper-phosphorylated tau are thought to underlie the pathogenesis of AD. However, current studies have recognized a prominent role of cerebrovascular dysfunction in AD. We [...] Read more.
Alzheimer’s disease (AD) is an increasing global healthcare crisis with few effective treatments. The accumulation of amyloid plaques and hyper-phosphorylated tau are thought to underlie the pathogenesis of AD. However, current studies have recognized a prominent role of cerebrovascular dysfunction in AD. We recently reported that SNPs in soluble epoxide hydrolase (sEH) are linked to AD in human genetic studies and that long-term administration of an sEH inhibitor attenuated cerebral vascular and cognitive dysfunction in a rat model of AD. However, the mechanisms linking changes in cerebral vascular function and neuroprotective actions of sEH inhibitors in AD remain to be determined. This study investigated the effects of administration of an sEH inhibitor, 1-(1-Propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU), on neurovascular coupling, blood–brain barrier (BBB) function, neuroinflammation, and cognitive dysfunction in an hAPP/PS1 TgF344-AD rat model of AD. We observed predominant β-amyloid accumulation in the brains of 9–10-month-old AD rats and that TPPU treatment for three months reduced amyloid burden. The functional hyperemic response to whisker stimulation was attenuated in AD rats, and TPPU normalized the response. The sEH inhibitor, TPPU, mitigated capillary rarefaction, BBB leakage, and activation of astrocytes and microglia in AD rats. TPPU increased the expression of pre- and post-synaptic proteins and reduced loss of hippocampal neurons and cognitive impairments in the AD rats, which was confirmed in a transcriptome and GO analysis. These results suggest that sEH inhibitors could be a novel therapeutic strategy for AD. Full article
Show Figures

Figure 1

11 pages, 1067 KiB  
Article
Seroprevalence and Risk Factors of Crimean–Congo Hemorrhagic Fever Exposure in Wild and Domestic Animals in Benin
by Roland Eric Yessinou, Souaïbou Farougou, James Olukayode Olopade, Daniel Oladimeji Oluwayelu, Anise Happi, Christian Happi and Martin Groschup
Viruses 2025, 17(3), 387; https://doi.org/10.3390/v17030387 - 8 Mar 2025
Viewed by 148
Abstract
Crimean–Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease prevalent in Africa. While infection is asymptomatic in animals, it can cause severe illness with hemorrhagic manifestations and high mortality rates in humans. This study aimed to determine the seroprevalence and potential risk [...] Read more.
Crimean–Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease prevalent in Africa. While infection is asymptomatic in animals, it can cause severe illness with hemorrhagic manifestations and high mortality rates in humans. This study aimed to determine the seroprevalence and potential risk factors of CCHF in wild (rodents, birds) and domestic (cattle, horses) animals in Benin. A cross-sectional study was carried out from 2022 to 2024 with the assistance of cattle breeders, hunters, farmers and bushmeat sellers in 15 districts found in three agroecological zones in the country. A total of 366 serum samples were analyzed, comprising 254 collected from wild animals and 112 from domestic animals. Among the wild animals tested, 1.18% (95% CI: 0.31–3.70; n = 3) were seropositive for antibodies against CCHF virus (CCHFV). The seroprevalence rates were 3.7% (95% CI: 0.19–20.89) in squirrels, 5.88% (95% CI: 0.31–30.76) in hares and 1.19% (95% CI: 0.06–7.38) in giant rats. In domestic animals, anti-CCHFV antibodies were detected in 38 of the 112 samples, resulting in an overall seroprevalence of 33.93% (95% CI: 25.42–43.56). Specifically, antibodies were identified in 34 out of 81 cattle (41.98%, 95% CI: 31.26–53.46) and 4 out of 24 horses (16.67%, 95% CI: 5.48–38.19). No positive samples were reported in pigeons. This study provides the first seroprevalence data on CCHF in wild and domestic animals in Benin. It highlights the risk and epidemiological dynamics of the disease and underscores the need for further investigations into tick vectors and human populations. Full article
(This article belongs to the Special Issue Viral Hemorrhagic Disease)
Show Figures

Figure 1

31 pages, 17619 KiB  
Article
Investigating the Mechanism of Action of Ipomoea pes-caprae in the Treatment of Rheumatoid Arthritis Based on Serum Metabolomics and Network Pharmacology
by Fangfei Zhong, Siwei Li, Xianglong Pan, Juan Wen, Jinling Xie, Zhengcai Du, Erwei Hao, Jiagang Deng and Xiaotao Hou
Mar. Drugs 2025, 23(3), 114; https://doi.org/10.3390/md23030114 - 7 Mar 2025
Viewed by 167
Abstract
Ipomoea pes-caprae (L.) Sweet (Convolvulaceae) is a commonly used marine Chinese medicine in the coastal areas of southern China. Traditionally, it has been used in the treatment of rheumatoid arthritis (RA). However, the mechanism of action against RA remains unclear. This study aimed [...] Read more.
Ipomoea pes-caprae (L.) Sweet (Convolvulaceae) is a commonly used marine Chinese medicine in the coastal areas of southern China. Traditionally, it has been used in the treatment of rheumatoid arthritis (RA). However, the mechanism of action against RA remains unclear. This study aimed to explore the mechanism of action of Ipomoea pes-caprae water extract (IPE) in the treatment of RA through serum metabolomics and network pharmacology. Rat models of RA with wind-dampness cold bi-syndrome (WCM) and wind-dampness heat bi-syndrome (WHM) were established to evaluate the therapeutic effect of IPE against RA. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) technology was used to analyze the absorbed components of IPE in the plasma of the two models. Serum metabolomics was employed to identify potential biomarkers and metabolic pathways of IPE in the treatment of RA. The key targets and related pathways of RA were screened using network pharmacology and validated using molecular docking. The biomarker-pathway-target network was mapped via the combination of metabolomics and network pharmacology. A total of 10 chemical constituents were identified from WHM rat plasma, and eight chemical constituents were identified from WCM rat plasma. Serum metabolomics research identified 20 endogenous potential biomarkers, and 10 major metabolic pathways closely related to WHM and WCM. Network pharmacology analysis yielded 65 overlapping targets, with the core targets being ALB, AKT1, EGFR, and CASP3. Molecular docking showed that the four absorbed components in plasma had a strong binding activity with ALB and AKT1. Combining metabolomics and network pharmacology, two major biomarkers and two major pathways were identified. IPE can effectively relieve the symptoms of RA, and the potential mechanism of IPE in treating RA has been preliminarily elucidated. These results can provide a scientific basis for further drug research and development, as well as clinical application. Full article
(This article belongs to the Special Issue Bioactive Specialized Metabolites from Marine Plants)
Show Figures

Graphical abstract

25 pages, 2665 KiB  
Article
A Combined GLP-1/PPARa/CB1-Based Therapy to Restore the Central and Peripheral Metabolic Dysregulation Induced by a High-Fructose High-Fat Diet
by Marialuisa de Ceglia, Nabila Rasheed, Rubén Tovar, Inés Pareja-Cerbán, Andrea Arias-Sáez, Ana Gavito, Silvana Gaetani, Carlo Cifani, Fernando Rodríguez de Fonseca and Juan Decara
Int. J. Mol. Sci. 2025, 26(6), 2420; https://doi.org/10.3390/ijms26062420 - 7 Mar 2025
Viewed by 168
Abstract
Obesity remains a major epidemic in developed countries, with a limited range of effective pharmacological treatments. The pharmacological modulation of PPARα, CB1, or GLP-1 receptor activity has demonstrated beneficial effects, including anti-obesity actions. In this study, we evaluated a novel amide derivative of [...] Read more.
Obesity remains a major epidemic in developed countries, with a limited range of effective pharmacological treatments. The pharmacological modulation of PPARα, CB1, or GLP-1 receptor activity has demonstrated beneficial effects, including anti-obesity actions. In this study, we evaluated a novel amide derivative of oleic acid and tyrosol (Oleyl hydroxytyrosol ether, OLHHA), a PPARα agonist, and CB1 antagonist, in combination with the GLP-1 agonist liraglutide (LIG), as an effective multitarget therapy to improve both the peripheral and central alterations in an animal model of diet-induced obesity. In rats, exposure to a high-fat high-fructose diet (HFHFD) induced weight gain and increased plasma triglycerides, LDL, and hepatic parameters. In the brain, the HFHFD provoked disruptions in the expression of proteins regulating food intake, the endocannabinoid system, the insulin pathway, and inflammation and resulted in altered tau expression and phosphorylation, thus indicating neurodegenerative changes. Based on our results, the administration of LIG or OLHHA alone was insufficient to completely reverse the alterations noticed at the peripheral and central levels. On the other hand, the combined treatment with both compounds (OLHHA+LIG) was the most effective in promoting body weight loss and ameliorating both the central and peripheral alterations induced by HFHFDs in rats. This multitarget therapeutic approach could represent a promising strategy for treating obesity and associated comorbidities. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

30 pages, 13089 KiB  
Article
Polylactic-Co-Glycolic Acid/Alginate/Neem Oil-Reduced Graphene Oxide as a pH-Sensitive Nanocarrier for Hesperidin Drug Delivery: Antimicrobial and Acute Otitis Media Assessments
by Saeed Abdul Kareem Saeed Al-Zuhairy, Sammar Fathy Elhabal, Mohamed Fathi Mohamed Elrefai, Sandra Hababeh, Jakline Nelson, Marwa Fady, Nahla A. Elzohairy, Tassneim M. Ewedah, Ibrahim S. Mousa and Ahmed Mohsen Elsaid Hamdan
Pharmaceuticals 2025, 18(3), 381; https://doi.org/10.3390/ph18030381 (registering DOI) - 7 Mar 2025
Viewed by 183
Abstract
Background/Objectives: Hesperidin (HSP) is a potent phytochemical antioxidant and anti-inflammatory agent that protects against otitis media. However, due to its low solubility and bioavailability, a suitable delivery method is needed to overcome these problems. A hydrogel is a promising nanocarrier for controlled [...] Read more.
Background/Objectives: Hesperidin (HSP) is a potent phytochemical antioxidant and anti-inflammatory agent that protects against otitis media. However, due to its low solubility and bioavailability, a suitable delivery method is needed to overcome these problems. A hydrogel is a promising nanocarrier for controlled drug delivery in response to external stimuli, such as pH variations. Methods: Graphene oxide (GO)-based nanocarriers that encapsulate hesperidin (HSP) were further coated with a polylactic-co-glycolic acid/alginate (PLGA-Alg) hydrogel before being integrated into a green neem oil (N.O.) double emulsion to produce a synergistic effect and then characterized by different assays. Results: The nanocarriers exhibited a substantial particle size (168 ± 0.32 nm), with high encapsulation (89.86 ± 0.23%) and a zeta potential of 37 ± 0.43 mV. In vitro release studies conducted over 96 h indicated a sustained HSP release of 82% at pH 5.4 and 65% at pH 7.4. The GO-HSP-loaded neem oil double emulsion formulation exhibits substantial antibacterial activity, as evidenced by inhibition zones of 39 ± 0.02 mm against Staphylococcus epidermidis, and considerable antifungal activity against Candida albicans, with an inhibition zone of 43 ± 0.13 mm, along with biofilm inhibition activity. The formulation demonstrated antioxidant activity (5.21 µg/mL) and increased cell viability (90–95%) while maintaining low cytotoxicity in HSE-2 cells. A histopathological analysis confirmed that treatment with the nanocarriers reduced the levels of pro-inflammatory cytokines (IL-1β, TNF-α, TLR4, IL-6) and raised the levels of antioxidant markers (Nrf-2, SOD) in an in vivo rat model of otitis media. Conclusions: GO-based nanocarriers integrated into a neem oil double emulsion and coated with PLGA-Alg hydrogel deliver hesperidin with sustained release and enhanced antibacterial, antifungal, and antioxidant properties. This formulation may be used to treat otitis media and other oxidative stress diseases. Full article
(This article belongs to the Special Issue Progress of Hydrogel Applications in Novel Drug Delivery Platforms)
Show Figures

Figure 1

Back to TopTop