

Special Issue: Emerging Applications of FPGAs and Reconfigurable Computing System

Guest Editors:

Dr. José V. Frances-Villora

jose.v.frances@uv.es

School of Engineering (ETSE), University of Valencia, 46100 Burjassot, Spain

Special Issue Website:

https://www.mdpi.com/journal/electronics/specia 1 issues/5923EM72V7

Deadline for manuscript submissions: 15 November 2024

Dear Colleagues,

The continuous modernizing of the characteristics and features of FPGA devices has led to this becoming the natural choice of many final designs. Over the last three decades, these devices have evolved from a few thousand logic blocks to systems-on-chip, integrating billions of transistors. And the current result of this evolution is a set of flexibility and reconfigurability capabilities without precedents, capabilities that enable rapid prototyping, massive parallel designs, and high energy efficiency. Moreover, current FPGAs enable the integration of microprocessor architectures, thus becoming a powerful alternative to create highly efficient computer systems.

Thus, FPGA devices can be reconfigured to implement tailored designs and architectures based on the characteristics of target applications. This is the reason why the use of FPGAs and reconfigurable computing systems are rapidly increasing, bringing new opportunities for engineering across a wide range of applications.

Potential topics include, but are not limited to, the following:

- Control
 Image processing
 Signal processing
 Cybersecurity
 Embedded systems
 Power systems
 Intelligent systems
 Machine learning
 Biomedical applications
- 10. Robotics
 11. IoT applications
 12. Telecommunications
 13. Networking
 14. High-performance computing
 15. Reconfigurable computing
 16. Particle physics
 17. Manufacturing
 18. Deep neural networks

