The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Response Surface Methodology Approach
2.1.1. Development of the Statistical Models
2.1.2. Determination of the Stationary Points
2.1.3. Validation of the Statistical Models
2.2. Pyrolysis Experimental Setup and Procedure
2.2.1. Description of the Vertical Auger Pyrolysis Reactor
2.2.2. Biomass Selection and Analysis
2.2.3. Pyrolysis Experiments
2.2.4. Products Yield and Biochar Characteristics
3. Results and Discussion
3.1. Analysis of Biomass
3.2. Response Surface Models
3.2.1. Biochar Yield
3.2.2. H/Corg and O/Corg Ratios
3.2.3. C/N Ratio
3.3. Experimental Validation of the Models
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Experimental Data: Box-Behnken Design
Operational Parameters | Products Yields | Biochar Properties | |||||||
---|---|---|---|---|---|---|---|---|---|
T | Res. Time | N2 | Bio-Oil | Liquid Organics | Biochar | Syngas | C/N | H/Corg | O/Corg |
°C | s | L·min−1 | % | % | % | ||||
500 | 60 | 3 | 57.6 | 39.0 | 31.2 | 10.9 | 517 | 0.84 | 0.25 |
500 | 90 | 1 | 61.9 | 39.9 | 24.6 | 13.2 | 491 | 0.68 | 0.19 |
500 | 90 | 5 | 55.2 | 36.3 | 30.2 | 14.2 | 531 | 0.92 | 0.29 |
500 | 120 | 3 | 63.6 | 41.9 | 23.4 | 12.4 | 541 | 0.68 | 0.19 |
575 | 60 | 1 | 49.1 | 31.8 | 22.6 | 28.0 | 483 | 0.68 | 0.19 |
575 | 60 | 5 | 56.8 | 37.8 | 22.2 | 20.5 | 512 | 0.74 | 0.22 |
575 | 90 | 3 | 60.0 | 38.1 | 20.7 | 18.8 | 565 | 0.65 | 0.19 |
575 | 90 | 3 | 60.6 | 40.6 | 20.6 | 18.2 | 487 | 0.65 | 0.18 |
575 | 90 | 3 | 61.5 | 39.4 | 20.2 | 17.8 | 504 | 0.62 | 0.17 |
575 | 120 | 1 | 58.8 | 34.4 | 21.2 | 19.6 | 503 | 0.60 | 0.15 |
575 | 120 | 5 | 54.4 | 35.2 | 19.9 | 25.2 | 500 | 0.63 | 0.18 |
650 | 60 | 3 | 56.0 | 36.8 | 18.3 | 25.2 | 430 | 0.59 | 0.16 |
650 | 90 | 1 | 52.4 | 31.3 | 18.0 | 29.0 | 491 | 0.51 | 0.13 |
650 | 90 | 5 | 48.8 | 27.8 | 17.5 | 33.1 | 497 | 0.57 | 0.15 |
650 | 120 | 3 | 48.6 | 27.4 | 17.6 | 33.3 | 466 | 0.53 | 0.13 |
Operational Parameters | Products Yields | Biochar Properties | |||||||
---|---|---|---|---|---|---|---|---|---|
T | Res. Time | N2 | Bio-Oil | Liquid Organics | Biochar | Syngas | C/N | H/Corg | O/Corg |
°C | s | L·min−1 | % | % | % | % | |||
450 | 60 | 3 | 57.8 | 35.4 | 25.6 | 16.4 | 114 | 0.81 | 0.25 |
450 | 90 | 1 | 59.2 | 34.3 | 26.4 | 14.0 | 106 | 0.77 | 0.21 |
450 | 90 | 5 | 60.1 | 37.1 | 24.9 | 14.4 | 102 | 0.82 | 0.24 |
450 | 120 | 3 | 59.4 | 34.1 | 24.4 | 15.9 | 101 | 0.69 | 0.19 |
525 | 60 | 1 | 61.4 | 34.7 | 20.5 | 17.9 | 100 | 0.64 | 0.18 |
525 | 60 | 5 | 55 | 33.4 | 19.9 | 24.5 | 105 | 0.72 | 0.21 |
525 | 90 | 3 | 58.3 | 37.2 | 20.2 | 21.2 | 115 | 0.60 | 0.16 |
525 | 90 | 3 | 58.5 | 31.0 | 21.3 | 19.9 | 95 | 0.61 | 0.16 |
525 | 90 | 3 | 59 | 30.8 | 20.0 | 20.6 | 99 | 0.58 | 0.14 |
525 | 120 | 1 | 56.8 | 42.3 | 21.9 | 21.1 | 102 | 0.57 | 0.14 |
525 | 120 | 5 | 54.5 | 27.9 | 20.9 | 24.1 | 103 | 0.54 | 0.14 |
600 | 60 | 3 | 51.5 | 30.8 | 16.8 | 30.5 | 98 | 0.58 | 0.15 |
600 | 90 | 1 | 48.9 | 21.3 | 18.7 | 31.9 | 105 | 0.48 | 0.10 |
600 | 90 | 5 | 44.8 | 20.4 | 17.3 | 37.2 | 99 | 0.49 | 0.11 |
600 | 120 | 3 | 48.1 | 21.8 | 18.5 | 32.9 | 102 | 0.46 | 0.10 |
Operational Parameters | Products Yields | Biochar Properties | |||||||
---|---|---|---|---|---|---|---|---|---|
T | Res. Time | N2 | Bio-Oil | Liquid Organics | Biochar | Syngas | C/N | H/Corg | O/Corg |
°C | s | L·min−1 | % | % | % | % | |||
500 | 60 | 3 | 42.8 | 12.5 | 41.6 | 14.9 | 11.6 | 0.92 | 0.21 |
500 | 90 | 1 | 45.7 | 12.4 | 38.8 | 15.1 | 12.4 | 0.80 | 0.16 |
500 | 90 | 5 | 39.3 | 10.6 | 40.4 | 19.5 | 12.0 | 0.91 | 0.21 |
500 | 120 | 3 | 41.7 | 10.8 | 39.6 | 17.0 | 12.5 | 0.85 | 0.18 |
575 | 60 | 1 | 46.7 | 10.8 | 36.7 | 15.0 | 12.3 | 0.75 | 0.16 |
575 | 60 | 5 | 40.1 | 11.7 | 38.5 | 20.6 | 11.5 | 0.85 | 0.23 |
575 | 90 | 3 | 42.3 | 11.7 | 35.8 | 21.0 | 12.7 | 0.78 | 0.18 |
575 | 90 | 3 | 43.7 | 12.1 | 36.0 | 19.4 | 12.4 | 0.76 | 0.16 |
575 | 90 | 3 | 43.6 | 11.9 | 34.8 | 19.8 | 11.4 | 0.74 | 0.17 |
575 | 120 | 1 | 45.7 | 12.0 | 34.7 | 17.7 | 12.9 | 0.65 | 0.14 |
575 | 120 | 5 | 38.6 | 9.2 | 35.9 | 24.5 | 12.1 | 0.72 | 0.16 |
650 | 60 | 3 | 42.7 | 10.5 | 33.8 | 21.8 | 12.6 | 0.66 | 0.14 |
650 | 90 | 1 | 44.0 | 7.7 | 32.4 | 22.8 | 13.0 | 0.61 | 0.13 |
650 | 90 | 5 | 38.3 | 9.3 | 32.1 | 28.8 | 11.0 | 0.74 | 0.18 |
650 | 120 | 3 | 39.1 | 8.5 | 32.6 | 27.2 | 12.8 | 0.68 | 0.14 |
Appendix B. ANOVA Tables
Wood | Factor | DF | Mean Squares | F Value | Pr > F |
---|---|---|---|---|---|
Temperature | 4 | 53.001 | 29.96 | 0.0011 * | |
Yield | Res. time | 4 | 8.0950 | 4.580 | 0.0632 |
N2 flowrate | 4 | 2.9350 | 1.660 | 0.2936 | |
Temperature | 4 | 0.0287 | 18.78 | 0.0033 * | |
H/Corg | Res. time | 4 | 0.0063 | 4.120 | 0.0763 |
N2 flowrate | 4 | 0.0070 | 4.580 | 0.0631 | |
Temperature | 4 | 0.0043 | 22.04 | 0.0022 * | |
O/Corg | Res. time | 4 | 0.0010 | 4.930 | 0.0552 |
N2 flowrate | 4 | 0.0014 | 7.430 | 0.0247 * | |
Temperature | 4 | 1452.1 | 1.250 | 0.3972 | |
C/N | Res. time | 4 | 471.35 | 0.410 | 0.7982 |
N2 flowrate | 4 | 304.41 | 0.260 | 0.8904 |
Switchgrass | Parameter | DF | Mean Squares | F Value | Pr > F |
---|---|---|---|---|---|
Temperature | 4 | 29.441 | 87.23 | <0.0001 * | |
Yield | Res. time | 4 | 0.8077 | 2.390 | 0.1822 |
N2 flowrate | 4 | 0.7911 | 2.340 | 0.1876 | |
Temperature | 4 | 0.0368 | 45.51 | 0.0004 * | |
H/Corg | Res. time | 4 | 0.0083 | 10.30 | 0.0124 * |
N2 flowrate | 4 | 0.0014 | 1.700 | 0.2847 | |
Temperature | 4 | 0.0061 | 72.32 | 0.0001 * | |
O/Corg | Res. time | 4 | 0.0017 | 20.26 | 0.0027 * |
N2 flowrate | 4 | 0.0003 | 3.000 | 0.1298 | |
Temperature | 4 | 29.954 | 0.530 | 0.7194 | |
C/N | Res. time | 4 | 21.608 | 0.380 | 0.8125 |
N2 flowrate | 4 | 2.1106 | 0.040 | 0.9964 |
SFPM | Parameter | DF | Mean Squares | F Value | Pr > F |
---|---|---|---|---|---|
Temperature | 4 | 27.624 | 96.31 | <0.0001 * | |
Yield | Res. time | 4 | 2.7895 | 9.730 | 0.0141 * |
N2 flowrate | 4 | 0.8267 | 2.880 | 0.1381 | |
Temperature | 4 | 0.0207 | 18.07 | 0.0036 * | |
H/Corg | Res. time | 4 | 0.0030 | 2.630 | 0.1592 |
N2 flowrate | 4 | 0.0054 | 4.680 | 0.0606 | |
Temperature | 4 | 0.0009 | 5.020 | 0.0533 * | |
O/Corg | Res. time | 4 | 0.0008 | 4.470 | 0.0661 |
N2 flowrate | 4 | 0.0014 | 8.040 | 0.021 * | |
Temperature | 4 | 0.2138 | 0.850 | 0.5509 | |
C/N | Res. time | 4 | 0.1987 | 0.790 | 0.5793 |
N2 flowrate | 4 | 0.6988 | 2.770 | 0.1466 |
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report. Contribution of working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
- Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis—A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Haefele, S.M.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.A.; Pfeiffer, E.M.; Knoblauch, C. Effects and fate of biochar from rice residues in rice-based systems. Field Crop. Res. 2011, 121, 430–440. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Brar, S.K.; Dhillon, G.S.; Soccol, C.R. Biotransformation of Waste Biomass into High Value Biochemicals; Springer: New York, NY, USA, 2014; pp. 1–504. [Google Scholar]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Cayuela, M.L.; Van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Foster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 129–234. [Google Scholar]
- Liang, C.; MacDonald, D. Chapter 5: Agriculture (CRF Sector 3). In National Inventory Report 1990–2013: Greenhouse Gas Sources and Sinks in Canada Part 1; Environment and Climate Change Canada: Gatineau, QC, Canada, 2015; pp. 123–146. [Google Scholar]
- Novak, J.M.; Busscher, W.J. Selection and Use of Designer Biochars to Improve Characteristics of Southeastern USA Coastal Plain Degraded Soils. In Advanced Biofuels and Bioproducts; Lee, J.W., Ed.; Springer: New York, NY, USA, 2013; pp. 69–96. [Google Scholar]
- Sun, Y.; Gao, B.; Yao, Y.; Fang, J.; Zhang, M.; Zhou, Y.; Chen, H.; Yang, L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014, 240, 574–578. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved. J. Environ. Manag. 2016, 181, 484–497. [Google Scholar] [CrossRef] [PubMed]
- Budai, A.; Zimmerman, A.R.; Cowie, A.L.; Webber, J.B.W.; Singh, B.P.; Glaser, B.; Masiello, C.A.; Andersson, D.; Shields, F.; Lehmann, J.; et al. Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability. Int. Biochar Initiat. 2013, 1–10. Available online: http://www.biochar-international.org/sites/default/files/IBI_Report_Biochar_Stability_Test_Method_Final.pdf (accessed on 11 January 2017). [Google Scholar]
- Garcia-Perez, M.; Lewis, T.; Kruger, C.E. Methods for Producing Biochar and Advanced Biofuels in Washington State. Part 1: Literature Review of Pyrolysis Reactors; First Project Report; Washington State Department of Ecology: Pullman, WA, USA, 2010; pp. 1–137. [Google Scholar]
- Resende, F.L.P. Chapter 1: Reactor Configurations and Design Parameters for Thermochemical Conversion of Biomass into Fuels, Energy, and Chemicals. In Reactor and Process Design in Sustainable Energy Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–25. [Google Scholar]
- Myers, R.H.; Anderson-Cook, C.M.; Montgomery, D.C. Wiley Series in Probability and Statistics: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed.; Wiley: Somerset, NJ, USA, 2016; p. 20. [Google Scholar]
- Brown, J.N.; Brown, R.C. Process optimization of an auger pyrolyzer with heat carrier using response surface methodology. Bioresour. Technol. 2012, 103, 405–414. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS/STAT® 12.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2007. [Google Scholar]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Antal, M.J., Jr.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Brassard, P.; Palacios, J.H.; Godbout, S.; Bussières, D.; Lagacé, R.; Larouche, J.-P.; Pelletier, F. Comparison of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomasses. Bioresour. Technol. 2014, 155, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, K.B.; Martin, J.H. Stochastic state-space temperature regulation of biochar production. Part II: Application to manure processing via pyrolysis. J. Sci. Food Agric. 2012, 92, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Association Française de Normalisation (AFNOR). Organic Soil improvers and Growing Media: Biochemical Fractionning and Estimation of Biological Stability: Method of Organic Matter Characterisation by Successive Solubilisations; Groupe AFNOR: La Plaine Saint-Denis, France, 2005; pp. 1–16. [Google Scholar]
- American Society for Testing and Materials (ASTM). E 203–16: Standard Test Method for Water Using Using Volumetric Karl-Fischer Titration; ASTM International: West Conshohocken, PA, USA, 2016; pp. 1–9. [Google Scholar]
- American Society for Testing and Materials (ASTM). D 1762–84: Standard Test Method for Chemical Analysis of Wood Charcoal; ASTM International: West Conshohocken, PA, USA, 2011; pp. 1–2. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction; Earthscan: London, UK, 2009; pp. 1–12. [Google Scholar]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, J.Y.; Cho, T.S.; Choi, J.W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 2012, 118, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.S.; Piskorz, J.; Bergougnou, M.A.; Overend, R.P.; Graham, R. The role of temperature in the fast pyrolysis of cellulose and wood. Ind. Eng. Chem. Res. 1988, 27, 8–15. [Google Scholar] [CrossRef]
- Liaw, S.-S.; Wang, Z.; Ndegwa, P.; Frear, C.; Ha, S.; Li, C.-Z.; Garcia-Perez, M. Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood. J. Anal. Appl. Pyrolysis 2012, 93, 52–62. [Google Scholar] [CrossRef]
- Spokas, K.A.; Baker, J.M.; Reicosky, D.C. Ethylene: Potential key for biochar amendment impacts. Plant Soil 2010, 333, 443–452. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 114, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Schimmelpfennig, S.; Glaser, B. One step forward toward characterization: Some important material properties to distinguish biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Manyà, J.J.; Ortigosa, M.A.; Laguarta, S.; Manso, J.A. Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar. Fuel 2014, 133, 163–172. [Google Scholar] [CrossRef]
- Harvey, O.R.; Kuo, L.-J.; Zimmerman, A.R.; Louchouarn, P.; Amonette, J.E.; Herbert, B.E. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ. Sci. Technol. 2012, 46, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256–257, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Blasi, C. Modeling intra- and extra-particle processes of wood fast pyrolysis. AIChE J. 2002, 48, 2386–2397. [Google Scholar] [CrossRef]
- Zheng, J.; Stewart, C.E.; Cotrufo, M.F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 2012, 41, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
Independent Variable | Biomass | Values of the Coded Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Temperature (°C) | Wood | 500 | 575 | 650 |
SFPM | 500 | 575 | 650 | |
Switchgrass | 450 | 525 | 600 | |
Solid residence time (s) | Each biomass | 60 | 90 | 120 |
N2 flowrate (L·min−1) | Each biomass | 1 | 3 | 5 |
Unit | Wood | SFPM | Switchgrass | |
---|---|---|---|---|
Ctot | wt % | 47.7 | 40.0 | 45.8 |
N | wt % | 0.128 | 2.96 | 0.425 |
O | wt % | 40.0 | 28.2 | 42.5 |
H | wt % | 6.39 | 5.85 | 3.23 |
Water content | wt % | 6.5 | 13.0 | 7.2 |
Ash | d.b.% | 0.57 | 11.5 | 1.6 |
Cl | mg·kg−1 | 10 | 3 609 | 28 |
Lignin | wt % | 24.0 | 12.9 | 11.2 |
Cellulose | wt % | 30.4 | 11.9 | 42.9 |
Hemicellulose | wt % | 29.9 | 22.0 | 30.1 |
Biochar Yield (wt %) | H/Corg | O/Corg | C/N | |||||
---|---|---|---|---|---|---|---|---|
Wood | Min | Max | Min | Max | Min | Max | Min | Max |
Estimated value | 17.2 | 27.8 | 0.54 | 0.81 | 0.14 | 0.25 | 477 | 539 |
Temperature (°C) | 646 | 507 | 646 | 515 | 642 | 517 | 639 | 522 |
Residence time (s) | 89 | 79 | 99 | 79 | 103 | 80 | 75 | 90 |
N2 Flowrate (L·min−1) | 3.6 | 3.4 | 2.9 | 3.9 | 2.8 | 4.1 | 2.8 | 4.4 |
Switchgrass | ||||||||
Estimated value | 17.4 | 25.2 | 0.47 | 0.77 | 0.10 | 0.23 | 100 | 108 |
Temperature (°C) | 593 | 451 | 588 | 456 | 594 | 462 | 588 | 466 |
Residence time (s) | 78 | 88 | 106 | 80 | 102 | 75 | 74 | 72 |
N2 Flowrate (L·min−1) | 3.3 | 2.8 | 3.1 | 3.4 | 2 | 3.4 | 3.3 | 3.1 |
SFPM | ||||||||
Estimated value | 32.2 | 40 | 0.66 | 0.90 | 0.14 | 0.21 | 11.5 | 12.8 |
Temperature (°C) | 649 | 507 | 628 | 508 | 631 | 543 | 594 | 614 |
Residence time (s) | 95 | 79 | 94 | 79 | 94 | 73 | 84 | 103 |
N2 Flowrate (L·min−1) | 3 | 3.4 | 1.6 | 3.6 | 1.7 | 4.4 | 4.9 | 1.5 |
Unit | B1 | B2 | B3 | B4 1 | B4 2 | B5 | B6 | |
---|---|---|---|---|---|---|---|---|
Pyrolysis parameters | ||||||||
Biomass | Wood | Wood | SG 3 | SG | SG | SFPM 4 | SFPM | |
Temperature | °C | 516 | 644 | 459 | 591 | 591 | 526 | 630 |
Res. time | s | 80 | 101 | 78 | 104 | 104 | 76 | 94 |
N2 flowrate | L·min−1 | 4.0 | 2.9 | 3.4 | 2.6 | 2.6 | 4.0 | 1.7 |
Products yields | ||||||||
Biochar | % (w.b.) | 26.4 | 18.5 | 26.9 | 18.9 | 18.6 | 46.4 | 34.9 |
Bio-oil | % (w.b.) | 58.2 | 51.5 | 60.2 | 49.4 | 49.0 | 37.9 | 41.5 |
Biochar properties | ||||||||
Ctotal | % (w.b.) | 71.6 | 80.0 | 67.1 | 79.5 | 80.2 | 51.5 | 49.2 |
Corg | % (w.b.) | 70.7 | 76.0 | 64.9 | 79.1 | 79.9 | 47.4 | 45.2 |
H | % (w.b.) | 4.8 | 3.73 | 4.85 | 3.36 | 3.35 | 3.73 | 3.36 |
O | % (w.b.) | 21.6 | 13.4 | 22.9 | 10.0 | 9.59 | 15.6 | 13.7 |
N | % (w.b.) | 0.141 | 0.166 | 0.641 | 0.828 | 0.780 | 4.40 | 4.05 |
Psoluble | mg·kg−1 | 13.7 | 7.16 | 109 | 26.7 | 32.1 | 165 | 55.7 |
Water content | % (w.b.) | 0.9 | 1.2 | 1.5 | 1.0 | 1.8 | 0.9 | 0.9 |
Ash (750 °C) | % (d.b.) | 1.4 | 2.1 | 4.1 | 5.6 | 5.4 | 23.6 | 28.1 |
pH | 6.8 | 7.6 | 6.4 | 8.7 | 8.9 | 8.6 | 9.3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brassard, P.; Godbout, S.; Raghavan, V.; Palacios, J.H.; Grenier, M.; Zegan, D. The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration. Energies 2017, 10, 288. https://doi.org/10.3390/en10030288
Brassard P, Godbout S, Raghavan V, Palacios JH, Grenier M, Zegan D. The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration. Energies. 2017; 10(3):288. https://doi.org/10.3390/en10030288
Chicago/Turabian StyleBrassard, Patrick, Stéphane Godbout, Vijaya Raghavan, Joahnn H. Palacios, Michèle Grenier, and Dan Zegan. 2017. "The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration" Energies 10, no. 3: 288. https://doi.org/10.3390/en10030288
APA StyleBrassard, P., Godbout, S., Raghavan, V., Palacios, J. H., Grenier, M., & Zegan, D. (2017). The Production of Engineered Biochars in a Vertical Auger Pyrolysis Reactor for Carbon Sequestration. Energies, 10(3), 288. https://doi.org/10.3390/en10030288