Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method of rGONF
2.3. Adsorption Characteristic Studies of rGONF
2.4. 2-pKa-Diffusion Layer Modeling (2-pKa-DLM) Fitting by Using the Visual Minteq-3.0 Software
2.5. Preparation of Real Ground Water Spiked with Pb(II) or Cr(III)
3. Results and Discussion
3.1. Characterization of Prepared rGONF and the Adsorption Mechanism of Pb(II) and Cr(III) onto rGONF
3.1.1. Structural Characterization of Prepared rGONF
3.1.2. Surface Morphology and Size Characterization of Prepared rGONF
3.1.3. Magnetic Characterization of Prepared rGONF
3.1.4. Adsorption Mechanism of rGONF for the Removal of Pb(II) and Cr(III)
3.2. Factors Affecting the Removal of Metal Ions by Using rGONF
3.2.1. Time Profile and Adsorbent Dosage Studies
3.2.2. pH and Ionic Strength Effect
3.3. Evaluation of Metal Ions Uptake Characteristics of rGONF by the Adsorption Isotherms
3.4. Regeneration of Saturated rGONF
3.5. Advantages of the as Prepared rGONF
3.6. Application of the as Prepared rGONF for Pb(II) and Cr(III) Spiked Real Ground Water
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Kim, Y.K.; Shin, D.; Ryoo, S.R.; Hong, B.H.; Min, D.H. Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 2013, 46, 2211–2224. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 2014, 89, 196–205. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, S.; Gu, H.; Rapole, S.B.; Wang, Q.; Luo, Z.; Haldolaarachchige, N.; Young, D.P.; Guo, Z. One-pot synthesis of magnetic graphene nanocomposites decorated with core@ double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 2011, 46, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chen, M.; Qu, H.; Zhang, X.; Wei, H.; Luo, Z.; Colorado, H.A.; Wei, S.; Guo, Z. Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 2012, 53, 5953–5964. [Google Scholar] [CrossRef]
- Fan, L.; Luo, C.; Sun, M.; Qiu, H. Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. J. Mater. Chem. 2012, 22, 24577–24583. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Chen, C.; Zhao, G.; Yang, X.; Li, J.; Wang, X. Removal of Cu(II) and fluvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 4991–5000. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, Y.; Wang, H.; Chen, A.; Zeng, G.; Liu, S.; Guo, Y.; Hu, X.; Li, T.; Wang, Y.; et al. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 2013, 108, 189–195. [Google Scholar] [CrossRef]
- Gollavelli, G.; Chang, C.C.; Ling, Y.C. Facile Synthesis of smart magnetic graphene for safe drinking water: Heavy metal removal and disinfection control. ACS Sustain. Chem. Eng. 2013, 1, 462–472. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Choi, Y.L.; Kim, I.S.; Chang, Y.Y.; Koduru, J.R.; Yang, J.K. Porous graphene oxide based inverse spinel nickel ferrite nanocomposites for the enhanced adsorption removal of arsenic. RSC Adv. 2016, 6, 73776–73789. [Google Scholar] [CrossRef]
- Yao, Y.; Miao, S.; Liu, S.; Ma, L.P.; Sun, H.; Wang, S. Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 2012, 184, 326–332. [Google Scholar] [CrossRef]
- Deng, J.H.; Zhang, X.R.; Zeng, G.M.; Gong, J.L.; Niu, Q.Y.; Liang, J. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem. Eng. J. 2013, 226, 189–200. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, X.; Zhang, Y.; Gu, W.; Li, B.; Xian, Y. Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J. Mater. Chem. A 2013, 1, 1745–1753. [Google Scholar] [CrossRef]
- Sun, H.; Cao, L.; Lu, L. Magnetite/reduced graphene oxide nanocomposites: One step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res. 2011, 4, 550–562. [Google Scholar] [CrossRef]
- Ai, L.; Zhang, C.; Chen, Z. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 2011, 192, 1515–1524. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Shen, X.; Zhong, X.; Liu, Y.; Zhu, G.; Xu, X.; Chen, K. One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon 2012, 50, 2337–2346. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Choi, Y.L.; Chang, Y.Y.; Yang, J.K. Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nanocomposite as sorbent. Hydrometallurgy 2016, 165, 64–72. [Google Scholar] [CrossRef]
- Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S. K.; Liu, J.; Duan, J.L. Synthesis and magnetic characterization of nickel ferrite nano particles prepared by co-precipitation route. J. Magn. Magn. Mater. 2009, 321, 1838–1842. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Choi, Y.L.; Kim, I.S.; Yang, J.K.; Koduru, J.R.; Chang, Y.Y. Preparation and characterization of porous reduced graphene oxidebased inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J. Hazard. Mater. 2017, 326, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, Z.R.; Fu, X.; Xu, Y.J. TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 2010, 4, 7303–7314. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zurayk, R.A.; Bakain, R.Z.A.; Hamadneh, I.; Al-Dujaili, A.H. Adsorption of Pb(II), Cr(III) and Cr(VI) from aqueous solution by surfactant-modified diatomaceous earth: Equilibrium, kinetic and thermodynamic modeling studies. Int. J. Miner. Process. 2015, 140, 79–87. [Google Scholar] [CrossRef]
- Yang, S.; Li, L.; Pei, Z.; Li, C.; Lv, J.; Xie, J.; Wen, B.; Zhang, S. Adsorption kinetics, isotherms and thermodynamics of Cr(III) on graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 100–106. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Jyothi, R.K.; Chang, Y.Y.; Yang, J.K. Factors effect on bioremediation of Co(II) and Pb(II) onto Lonicera japonica flowers powder. Desalin. Water Treat. 2016, 57, 13066–13080. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Lee, S.M. Three-dimensional porous spinel ferrite as an adsorbent for Pb(II) removal from aqueous solutions. Ind. Eng. Chem. Res. 2013, 52, 15789–15800. [Google Scholar] [CrossRef]
- Ahmet, S.; Mustafa, T.; Mustafa, S. Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J. Hazard. Mater. 2007, 144, 41–46. [Google Scholar]
Adsorbent | Metal Ion Removal, mg·g−1 | |
---|---|---|
Pb(II) | Cr(III) | |
Magnetic-GO [8] | 6 | - |
Coal fly ash [20] | 45.25 | 22.94 |
Diatomaceous earth clay (DAT) [21] | 19.608 | 14.225 |
DAT-Hexadecyltrimethylammonium Bromide [21] | 24.271 | 22.779 |
GO [22] | - | 92.65 |
Lonicera japonica flower powder [23] | 19.61 | - |
Porous NiFe2O4 [24] | 48.98 | - |
Celtek clay [25] | 18.08 | 21.55 |
rGONF [This Work] | 121.95 | 126.58 |
GO [This Work] | 44.56 | 36.45 |
Nickel Ferrite (NiFe2O4) [This Work] | 25.78 | 20.58 |
Physical or Chemical Compositions | Value or Concentration |
---|---|
pH | 6.72 |
Oxidation-Reduction Potential (ORP) | 171.3 mV |
Dissolved Oxigen (DO) | 2.73 mg·L−1 |
Electrical Conductivity (EC) | 0.265 mS·cm−1 |
Ca2+ | 65.06 mg·L−1 |
Na+ | 16.09 mg·L−1 |
K+ | 1.16 mg·L−1 |
Mg2+ | 7.68 mg·L−1 |
Cl- | 14.29 mg·L−1 |
NO3− | 14.30 mg·L−1 |
SO42− | 21.10 mg·L−1 |
F- | Not detected |
HCO3− | 166.4 mg·L−1 |
Pb2+ or Cr3+ | Not detected |
Metal Ion | Nano-Composite | Langmuir | Freundlich | Temkin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qmax, mg·g−1 | KL, L·mg−1 | R2 | KF, mg·g−1 (L·mg−1)1/n | n | R2 | KT, L·mg−1 | B | R2 | ||
Pb(II) | rGONF | 121.95 ± 0.20 | 1.78 ± 0.04 | 0.991 | 59.25 ± 0.12 | 1.42 ± 0.01 | 0.977 | 26.40 ± 0.03 | 52.16 ± 0.25 | 0.967 |
GO | 44.56 ± 0.16 | 0.16 ± 0.16 | 0.994 | 8.35 ± 0.18 | 0.56 ± 0.24 | 0.893 | 0.86 ± 0.26 | 12.46 ± 0.16 | 0.856 | |
Cr(III) | rGONF | 126.58 ± 0.30 | 1.93 ± 0.04 | 0.995 | 57.08 ± 0.21 | 1.53 ± 0.01 | 0.974 | 25.63 ± 0.06 | 55.74 ± 0.32 | 0.967 |
GO | 36.45 ± 0.36 | 0.86 ± 0.22 | 0.994 | 10.46 ± 0.26 | 0.86 ± 0.35 | 0.856 | 2.46 ± 0.12 | 13.26 ± 0.21 | 0.921 |
Metal Ions | qmax (mg·g−1) | ||
---|---|---|---|
298 K | 308 K | 328 K | |
Pb(II) | 121.95 ± 0.20 | 130.95 ± 0.20 | 142.45 ± 0.20 |
Cr(III) | 126.58 ± 0.30 | 135.55 ± 0.32 | 148.36 ± 0.24 |
Sample Number | Pb(II) Added, mg·L−1 | Cr(III) Added, mg·L−1 | Adsorption Amount, mg·g−1 | |
---|---|---|---|---|
Pb(II) | Cr(III) | |||
1 | 4.0 | 4.0 | 3.963 | 3.965 |
2 | 6.0 | 6.0 | 5.980 | 5.989 |
3 | 10.0 | 10.0 | 9.983 | 9.972 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lingamdinne, L.P.; Kim, I.-S.; Ha, J.-H.; Chang, Y.-Y.; Koduru, J.R.; Yang, J.-K. Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite. Metals 2017, 7, 225. https://doi.org/10.3390/met7060225
Lingamdinne LP, Kim I-S, Ha J-H, Chang Y-Y, Koduru JR, Yang J-K. Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite. Metals. 2017; 7(6):225. https://doi.org/10.3390/met7060225
Chicago/Turabian StyleLingamdinne, Lakshmi Prasanna, Im-Soon Kim, Jeong-Hyub Ha, Yoon-Young Chang, Janardhan Reddy Koduru, and Jae-Kyu Yang. 2017. "Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite" Metals 7, no. 6: 225. https://doi.org/10.3390/met7060225
APA StyleLingamdinne, L. P., Kim, I. -S., Ha, J. -H., Chang, Y. -Y., Koduru, J. R., & Yang, J. -K. (2017). Enhanced Adsorption Removal of Pb(II) and Cr(III) by Using Nickel Ferrite-Reduced Graphene Oxide Nanocomposite. Metals, 7(6), 225. https://doi.org/10.3390/met7060225