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Abstract: Experimental and theoretical results about entropy limits for macroscopic and single-
particle systems are reviewed. All experiments confirm the minimum system entropy S > k ln 2.
We clarify in which cases it is possible to speak about a minimum system entropy k ln 2 and in which
cases about a quantum of entropy. Conceptual tensions with the third law of thermodynamics, with
the additivity of entropy, with statistical calculations, and with entropy production are resolved.
Black hole entropy is surveyed. Claims for smaller system entropy values are shown to contradict
the requirement of observability, which, as possibly argued for the first time here, also implies the
minimum system entropy k ln 2. The uncertainty relations involving the Boltzmann constant and the
possibility of deriving thermodynamics from the existence of minimum system entropy enable one to
speak about a general principle that is valid across nature.

Keywords: minimum system entropy; quantum of entropy; lower entropy limit; third law of
thermodynamics; entropy quantization; black hole; Boltzmann constant

1. Introduction

In thermodynamics, the concepts of minimum system entropy and of quantum of entropy
are rarely mentioned. Only a small number of authors have suggested that the Boltz-
mann constant k plays the role of a quantum of entropy that contains and implies all of
thermodynamics. Notable examples include Zimmermann [1–5] and Cohen-Tannoudji [6].

In this article, we argue that the Boltzmann constant k ≈ 1.4 · 10−23 J/K introduced
by Planck is not merely a conversion factor relating energy and temperature, but that it
has a deeper meaning in nature: k fixes, with a prefactor ln 2, the lower limit to system
entropy. Conversely, the lower limit k ln 2 for system entropy can be seen as characterizing
thermodynamics. We show this by exploring two questions.

First, is there a ‘quantum of entropy’ in nature at all? We explore which systems have
a lower limit for entropy, even though most systems do not have quantized entropy values.

Secondly, is thermodynamics characterized by the Boltzmann constant k in the same
way that special relativity is characterized by the speed of light c and quantum theory
is characterized by the quantum of action h̄? In other words, we test whether there is a
principle of limit entropy k ln 2.

In the past, different authors have arrived at different conclusions. We review the
published arguments in favor and against, give an overview of the results from low-
temperature physics up to quantum gravity, and conclude with a structured and coherent
summary of the quantum of entropy and its domain of application. In Section 8, system
entropy is even shown to be bounded a priori, using an argument that appears to be new.
In the discussion, we find it often useful to be somewhat imprecise and to call both k and
k ln 2 the ‘quantum of entropy’.
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The expression k ln 2 derives from a thermodynamic system with two microstates. Can
this be the smallest system entropy? Can there be a quantum of entropy in nature at all?
We start with two issues that appear to provide a negative answer.

2. The Definition of Entropy

The physical observable called entropy measures disorder. A useful description is to
describe entropy as the carrier of thermal energy, in the same way that a fuel is a carrier of
chemical energy or momentum is a carrier of kinetic energy [7]. Like all energy carriers,
entropy is also an extensive quantity. As is well known, in closed systems, the value
of entropy never decreases. This second law of thermodynamics describes and allows
dissipative processes, i.e., processes which produce entropy, and forbids processes that
destroy entropy.

In classical thermodynamics, entropy is a continuous quantity, without any minimum
value. Only statistical mechanics changes the situation.

Furthermore, in classical thermodynamics, entropy is regularly stated to be defined
only up to an additive constant [8–12]. However, this statement has been questioned by
Steane [13]. In any case, in statistical physics, Boltzmann defined entropy as a consequence
of the number of microstates that lead to the same macrostate. In statistical physics, there is
no freedom of choosing the additive constant in the definition of entropy.

An overview of different definitions of entropy is given by Šafránek et al. [14]. They
summarize the definitions in the unifying concept of observational entropy. Entropy
remains a fascinating topic of research to this day. Its applications range from self-
organization [15] to the configuration of optical networks [16,17].

In short, in the following, the term ‘entropy’ refers to the observational entropy of a
closed system at equilibrium, except when mentioned otherwise. The second law by itself
does not provide a lower entropy limit, but does not exclude it either. However, a further
argument seems to contradict a minimum entropy value k ln 2 in nature.

3. The Third Law of Thermodynamics

Starting in 1905, Nernst deduced a theorem about entropy that today is called the
third law of thermodynamics [18]. He formulated it in various equivalent ways [19]. Two
of Nernst’s formulations are:

The entropy change associated with a chemical or physical transition between con-
densed phases approaches zero when the temperature approaches absolute zero.

Absolute zero temperature cannot be reached in a finite number of steps.

In the years following its discovery, the third law was rephrased in additional ways. A
frequently used one is attributed to Einstein [19]:

The entropy of a system approaches a constant value when its temperature ap-
proaches absolute zero.

Another formulation proposed by Planck is popular. He presented it in reference [20],
where he wrote: “Entropie eines jeden chemisch homogenen (§67), dauernd ungehemmt
im inneren Gleichgewicht befindlichen Körpers von endlicher Dichte nähert sich bei bis
zum absoluten Nullpunkt abnehmender Temperatur einem bestimmten, vom Druck, vom
Aggregatzustand usw. sowie von der speziellen chemischen Modifikation unabhängigen
Wert. Da die Entropie bisher nur bis auf eine willkürliche additive Konstante definiert
ist, können wir unbeschadet der Allgemeinheit diesen Grenzwert gleich Null setzen”.
Translation by the authors: The entropy of any chemically homogeneous (§67), body of finite
density and in permanent uninhibited inner equilibrium approaches, when the temperature
decreases to absolute zero, a specific value that is independent of pressure, physical state,
etc., and of the particular chemical modification. Since the entropy was defined so far only
up to an arbitrary additive constant is defined, we can set this limit, without prejudice
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to generality, equal to zero. Planck also wrote in reference [21] “Dieselbe besagt, daß die
Entropie eines kondensierten (d.h. festen oder flüssigen) chemisch einheitlichen Stoffes
beim Nullpunkt der absoluten Temperatur den Wert Null besitzt [. . . ]”. Translation by
the authors: It states that the entropy of a condensed (i.e., solid or liquid) chemically
homogeneous substance has the value zero at the zero point of the absolute temperature
[. . . ]. Planck’s result is usually stated as:

At zero temperature, the entropy of a chemically homogeneous body in equilib-
rium is zero.

In this last formulation, the details are important. For example, in the case of glasses,
which have a high configuration entropy, equilibrium is not attained, and the third law can
only be formulated with the unattainability of zero temperature [22]. As another example,
a crystalline solid is stated to have zero entropy only if it is perfect, without any impuri-
ties, dislocations, or any other crystal defects, and with all nuclear spins locked against
each other.

In addition, all formulations of the third law are valid in the thermodynamic limit,
i.e., for systems that have an infinite number of particles, infinite volume, but constant
density. Presentations, summaries and research on the third law of thermodynamics, its
various formulations and their differences are found, for example, in references [23–34].

In short, before using the third law to argue against a minimum system entropy, the
conditions and the precision for the predicted zero entropy value appearing in the various
formulations of the third law must be checked. Given that the third law was derived using
the thermodynamic limit and classical physics, several questions arise.

– Is the third law confirmed by all experiments?
– Is the third law valid in quantum theory?
– Is the third law valid for small systems, and in particular, for single particles?

The exploration will show that for each question there are systems that do not follow
the naive third law stating that system entropy vanishes at vanishing temperature. Systems
never actually have vanishing entropy and there indeed is a ‘quantum of entropy’ in nature.
A first hint arose already long ago.

4. A Smallest Entropy Value?

Szilard was the first researcher to suggest, in 1929 [35], that the smallest system
entropy occurs in single-particle systems and plays a role in nature. Using simple thought
experiments while exploring the details of Maxwell’s demon, he deduced the value k ln 2
for the entropy change in the case that a free particle is forced to choose between two
possible enclosed volumes of the same size. The numerical factor ln 2 ≈ 0.69314 . . . is due
to Boltzmann’s expression for entropy S = k ln Ω in a situation where the particle chooses
between two equal volumes. In modern language, the factor ln 2 expresses that the entropy
in a system with two microstates is described by a single bit of information.

Szilard thus explained that there is a quantized entropy change, i.e., a finite entropy
step in nature, whenever a single particle changes from a situation with one possible state
to a situation with two possible states, yielding an entropy change of k ln 2. Exploring the
measurement process performed by Maxwell’s demon, he writes “größer dürfte die bei
der Messung entstehende Entropiemenge freilich immer sein, nicht aber kleiner”, or “the
amount of entropy arising in the measurement may, of course, always be greater [than this
fundamental amount], but not smaller”. His description needs several clarifications.

– Szilard does not discuss entropy values per particle in multi-particle systems. He leaves
open whether a smallest or largest entropy value or entropy change per particle exists
in nature.

– Szilard does not discuss the entropy of macroscopic systems. He leaves open whether
a smallest system entropy value exists in nature. Szilard also leaves open whether a
smallest value for the entropy change for a macroscopic system exists in nature.
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– Szilard discusses the case of a one-particle system with a small number of microstates. He
suggests a characteristic value for the entropy change for small numbers of microstates.
He does show—when discussing the first equation in his paper—that a smaller value
of entropy does not arise. In contrast, high numbers of microstates allow both smaller
and larger values of entropy change.

Generally speaking, Szilard highlights the relation between entropy steps and the
quantization of matter. Without particles, entropy steps would not occur, and the Boltzmann
constant k would not arise.

Not long ago, Szilard’s thought experiment was realized in the laboratory by
Koski et al. [36]. Also, the quantum thermodynamics experiments based on quantum
dots by Durrani et al. [37], Abualnaja et al. [38] and those based on nuclear magnetic
resonance by Vieira et al. [39] confirm Szilard’s results, including the value k ln 2.

In short, the paper by Szilard does not make clear statements on the importance or
existence of a quantum of entropy or a minimum entropy k ln 2. The following sections explore
whether and under which conditions Szilard’s value—or a similar value such as k itself—is
a useful concept for describing nature. This exploration can be divided into three cases.
First, any proposed quantum of entropy must be compared to the observed values of (1) the
entropy and the entropy change per particle in macroscopic systems. Then, a quantum of
entropy must be compared to the observed values of (2) the total entropy and the total
entropy change for large systems. Finally, a quantum of entropy must be compared to
the observed values of (3) the entropy and the entropy change for a single particle. This
step-by-step approach avoids making too general statements about a quantum of entropy
too quickly [40]. For each case, experiments and calculations provide insights.

5. The Entropy per Particle in Macroscopic Systems

The concept of entropy per particle has two possible meanings. The first, assumed here,
is the total entropy of a system divided by the number of particles. The second meaning is
the change in total system entropy when one particle is added. This second meaning is not
explored in this study.

In experiments with macroscopic matter systems at low temperatures, entropy values
per particle much lower than k ln 2 ≈ 0.69 k have been measured. For instance, while lead
has an entropy per atom of 7.79 k at room temperature, diamond has an entropy per atom
of 0.29 k, which is lower than the proposed lower limit for entropy. At a temperature of 1 K,
solid silver has an entropy per atom of 8.5·10−5 k [41,42].

Similarly, in Bose–Einstein condensates, entropy values per atom have been measured
to be as low as 0.001 k [43], with a total entropy of about 1000 k per million particles. It is
planned to achieve even lower values for the entropy per particle in future microgravity
experiments [44]. Fermion condensates show similarly small values for the entropy per
atom [45,46]. Also, superfluid helium-II can be cited as an example of a system with an
almost negligible entropy per particle [47,48]. As another example, 3He has, in the region
between 0.01 K and 1 K, an entropy of at least k ln 2 per atom, due to the nuclear spins;
however, at much lower temperatures, when the material solidifies and the spins interact,
the entropy is much lower [49].

Calculations of entropy in specific atomic systems confirm the experiments just cited.
They show that in solids, in contrast to gases, the entropy per particle can indeed be much
lower than k. The calculations are involved but confirm the observations. Ludloff [50–52]
used quantum statistics to deduce S(T = 0) = 0 for macroscopic bodies. Dandoloff and
Zeyher [53] determined that the entropy per particle approaches zero as T → 0. A similar
result was obtained by De Leo et al. [54].

Also, the entropy of photon ensembles has been explored in detail. Given the observation
that light carries entropy, any experiment with light that shows photon behavior can be
used to deduce that individual photons carry entropy. However, the value of the quantum
of photon entropy needs to be determined.
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The entropy of the black body photon gas has been presented by many researchers,
for example in the references [2,26,55,56]. For example, Zimmermann explained that the
entropy S of a black body photon gas with N photons is strictly larger than kN because
the entropy is not only due to the (average) number of photons N but also due to their
momentum distribution. The result for the thermal photon gas is

S =
2π4

45 ζ(3)
kN ≈ 3.602 kN , (1)

ζ(3) being the Riemann zeta function. Thus, in a black body photon gas, like in a usual
matter gas, the entropy per particle is larger than k.

The situation changes in beams of light, where all photons have the same frequency
and similar directions [57]. Scully [58] estimated the entropy change of a laser with one
additional photon at the threshold and found that the change can easily be as low as 10−6 k.
However, as pointed out by Li et al. [59], the definition of single-photon entropy is involved
and not unique. At equilibrium, the entropy s of a single monochromatic photon with
frequency ω can be argued to be s = h̄ω/T. According to this relation, for visible light at
room temperature, one gets s ≈ 100 k. At the same time, the full entropy S of such a light
field can be calculated to be of the order of S = (1+ N) ln(1+ N)k−N ln Nk ≈ ln(N + 1)k.
As a result, the entropy s per photon in a monochromatic light beam with large N is
s ≈ k ln N/N, which is again much smaller than k.

In short, this section covered case (1) given at the end of the previous Section 4: in
macroscopic, multi-particle systems—i.e., in the thermodynamic limit—both for matter
and radiation, experiments show that there is no smallest value for the entropy per particle,
and no smallest value for the entropy change per particle. This result is as expected from ther-
modynamics: when the particle number increases, the entropy steps, or entropy changes,
decrease without any positive lower limit. In particular, they can be several orders of
magnitude smaller than k ln 2. Therefore, we now turn to total system entropy.

6. Quantum Theory and the Third Law

The case (2) listed at the end of Section 4 is the exploration of possible lower limits for
system entropy and for the change of system entropy for macroscopic systems. We begin by
reviewing the results of quantum theory about the third law of thermodynamics.

Already, Einstein noted the necessity of considering quantum theory to prove the
third law of thermodynamics [60,61]. Indeed, quantum theory appears to confirm that
the entropy of a condensed matter system vanishes at zero temperature, provided that
its ground state is unique, and thus not degenerate [50–52]. Moreover, Wehrl, in his
influential review, stated that the entropy of a pure quantum state is exactly zero [62].
These authors concluded that S(T = 0) = 0 for degeneracy g = 1. Dandoloff and Zeyher
argue that a perfect crystal in its ground state has only a single microstate and therefore has
vanishing entropy [53]. The same point was made using the modern approach of quantum
thermodynamics [63]. All these results were deduced in the thermodynamic limit.

The validity range of the third law has been explored by several authors. An example
is the discussion by Lawson [64]. He found no experimental deviation from the third law.
Pañoz and Pérez [65] compared the experimental results on entropy S to the Sackur-Tetrode
equation. Within the measurement uncertainties, very good agreement was observed,
provided that S(T = 0) = 0 is chosen. The study by Loukhovitski et al. [66] confirmed that
solid nanoparticles follow the third law.

Statistical calculations yield similar results. Scully calculated S(T = 0) = 0 for a
Bose–Einstein condensate [58]. Ben-Naim claimed that S(T = 0) = 0 in references [67,68].
The mathematical analysis by Belgiorno confirms the Planck version of the 3rd law,
limT→0+ S(T) = 0 [69,70]. According to Shastry et al. the third law is also valid in open
quantum systems [71]. Steane presented an alternative route to obtaining S(T = 0), with-
out the third law or quantum mechanics [13]. He also stated that S(T = 0) = 0 is observed
in many cases.
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In contrast to the mentioned authors, some theorists argue that the third law with its
expression S(T = 0) = 0 is a convention. This was stated by Klotz [31] and by Falk [72].
Griffiths went further and claimed that the entropy does not vanish even for ground state
non-degeneracy [73] because the microstates near the ground state also play a role in the
calculation of entropy. Aizenman and Lieb disagreed and argued that the validity of the
third law is decided completely in terms of ground-state degeneracies alone [74]. However,
they also stated that their argument is not completely tight.

In short, experiments and many calculations for the thermodynamic limit confirm the
third law of thermodynamics, with its zero entropy and zero entropy change (within the
measurement limits) at zero temperature. In contrast, quantum theory does not confirm
the third law for systems that do not realize the thermodynamic limit, and in particular,
for systems made of a single particle.

7. Entropy and Entropy Change in Single-Particle Systems

The central statement of this article is that minimum system entropy k ln 2 exists in
single-particle systems. Such a claim has to be tested in experiments, for the cases of
radiation, of matter, and of information.

Entropy and information are related. The physics of information was studied already
by Brillouin. In his influential book [75], he explored the idea that the photon is a quantum
of information that carries an entropy k. In 1983, Pendry showed that information flow is
entropy flow divided by k ln 2 [76], a relationship that was further clarified by Blencowe
and Vitelli [77]. Also, according to Ben-Naim, the Shannon measure of information is
connected to the entropy by applying a factor of k ln 2 [67].

Above all, Pendry showed that the conductivity of especially narrow channels is
quantized. This has led to a large amount of experimental work. Many experiments during
the past decades detected—in analogy to quantized electric conductance in multiples of
2e2/h— quantized thermal conductance in multiples of π2k2T/3h (T being the temperature)
and quantized entropy conductance in multiples of π2kν/3 (ν being the carrier frequency).

Meschke et al. observed the quantization of heat conductance via photons [78]. This
implies that in their experiment entropy transport occurs via a sequence of single photons.
In their experiments, they confirmed the quantized conductivity deduced by Pendry. In
this way, Meschke et al. confirmed that in quantized entropy transport with photons,
each photon carries an entropy of the order k. The result confirms the results cited earlier
showing that single photons carry entropy. Photon entropy has also been studied in the
context of laser radiation, photosynthesis, and the laser cooling of matter. Kirwan [79], Van
Enk and Nienhuis [80] (“The [produced] entropy per photon is therefore [. . .] larger than
k”), and Chen et al. [81–83] argued in detail that a single photon, one that is not part of a
photon field, always carries a quantum of entropy of the order of k.

A selection of experimental observations of quantized entropy flow using phonons
can be found in references [84–90]. Quantized flow was also observed for electrons [91,92]
and anyons [93]. The numerical value of the quantum limit of heat flow via electrons was
confirmed experimentally in 2013 [87]. All these experiments confirmed that for a single
quantum channel, quantum effects provide a lower limit for entropy flow.

Also, in two-dimensional electron gases, quantized entropy per particle was predicted
and then observed [94,95].

Calculations of the quantized entropy conductance were discussed in detail by Márkus
and Gámbar [96] and Strunk [97]. Their analyses confirmed that for single channels, entropy
transport is quantized. In contrast, conductance is not quantized for ‘wide’ channels or
for channels with non-ballistic transport. However, these other cases do not invalidate the
general argument.

Theoretical single-particle thermodynamics does not appear to have explored the
topic of the smallest entropy of single particles. For example, Bender et al. deduced that
a heat engine for a single particle can be realized [98,99]. However, they deduced no
statement about the existence of a quantized entropy change, neither in favor of nor against
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it [100,101]. Also, the experimental realization [102] of a single-atom heat engine makes
no such statement. Some treatments of single-particle thermodynamics even explicitly
disagree with a smallest system entropy, such as Ali et al. [63], who stated that the entropy
of a single particle vanishes at zero temperature when it is coupled to a bath. We resolve
this issue in the next section.

In short, experiments confirm that, in closed single-particle systems, a smallest entropy
value exists and is observable. This is in full contrast to the case of the thermodynamic
limit. In the case of single photons, single phonons, and single electrons, a quantum of
entropy is observed:

B Single particles carry a finite entropy that is never lower than k ln 2.

This is an important experimental finding. A system entropy limit exists because radiation
and matter are made of particles. No closed system with a total entropy smaller than k ln 2 has
been observed. We note that the result places no limit on entropy changes or steps; these
can be arbitrarily large or infinitesimally small. This summary settles the case (3) given at
the end of Section 4, which asked about the entropy of single particles. Nevertheless, the
concept of minimum system entropy must be checked in more detail.

8. Minimum System Entropy and Observability

Summarizing, no experiment has ever found a deviation from the third law for macro-
scopic systems, and at the same time, no experiment has ever confirmed the third law
for single-particle systems. In other terms, in the thermodynamic limit, entropy and
entropy change are effectively continuous quantities. In contrast, for single particles, all
experiments—such as the experimental tests of Szilard’s experiment and of information
erasure listed above—and most calculations agree on a lower entropy limit. But not all.

One general argument is regularly provided against a non-vanishing lower limit for
the entropy of macroscopic systems. It is regularly stated that a quantum system in a
non-degenerate ground state does have vanishing total entropy: for such a ground state,
the expression S = k ln Ω, where Ω is the number of microstates, implies that Ω = 1 and
thus that the zero-point entropy vanishes exactly. It turns out that there are at least two
fundamental reasons why this popular argument is incorrect.

First, given the measurement uncertainties in the measurement of any (quasi-) con-
tinuous quantity, one cannot prove that the quantity has a zero value. This is especially
the case for a quantity such as entropy which is, by definition, always positive. Quantum
theory always yields non-zero measurement uncertainties, also for entropy and temper-
ature. These measurement uncertainties are related to Boltzmann’s constant k, as shown
later on. Measurement uncertainties imply that an exactly vanishing entropy value cannot
be confirmed in any experiment. (This is in contrast to positive invariants, such as the
speed of light, which can be confirmed within measurement errors.) Even at the lowest
temperatures, measurement errors allow only to deduce an upper limit for the entropy. It
is thus necessary to check the issue in actual experiments.

As all the experimental papers cited in this text show, for a closed system at equilib-
rium, no system entropy smaller than k ln 2 has ever been observed. This result is important
because many experiments have measurement uncertainties that are smaller than the min-
imum entropy value. As shown below, the impossibility of measuring smaller entropy
values for closed systems is expected also from the thermodynamic uncertainty relations.

A second reason speaks against the existence of a system with only one microstate,
and thus with vanishing entropy. Every physical system has a basic property: it is observable.
Any observation is an interaction. For example, observing a car implies scattering photons
from it. As another example, observing a mass can mean placing it on a scale. Every obser-
vation and every measurement requires an interaction with the measurement apparatus.
The interaction implies that the system being observed can have several microstates. (The
existence of interaction-free measurements does not change the argument.) In particular,
the basic property of observability implies that every physical system can have at least
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two states: it is being observed and it is not. These two states are different microstates that
correspond to the same macrostate. In fact, the case of two microstates must be seen as the
bare minimum. In practice, a system can often be observed by different observers, so that it
can have even more ground microstates. In other words, the case with state multiplicity
Ω = 1 is impossible for an observable system.

B Observability implies a smallest entropy value of k ln 2 for every system.

A striking way to put this result is the following: only an unobservable system can have
zero entropy. The argument just given resembles a well-known statement by DeWitt [103].
He stated that every system is either there or not, and that, therefore, any system must have
at least an entropy k ln 2. To the best of our knowledge, the argument based on observability
is not found in the literature.

Only a system that is never observed and never interacts with the environment could have
vanishing entropy. However, no such system exists, because these conditions contradict the
concept of ‘system’. The conditions even contradict the concept of objectivity: Unobservable
or non-interacting systems are not part of the natural sciences. (Again, the existence of
interaction-free measurements does not change the argument.) To complete the argument,
it should be noted that the ‘universe’ itself is not a system in the sense used here.

Physical systems have a minimum entropy given by k ln 2. However, the number
of publications mentioning the minimum system entropy value in nature is surprisingly
small. Natori and Sano [104], Ladyman et al. [105] or Norton [106], who explore the
entropy of computation, prefer to state that the limit applies to entropy change. However,
as mentioned above, this result is questionable, particularly when the number of microstates
Ω is large and changes by only a small value. In other words, observability does not seem to
allow deducing the smallest value for entropy change. This impossibility is also an expected
consequence of the third law of thermodynamics.

Minimum system entropy does not depend on the definition of entropy. Experimentally,
entropy is a uniquely defined concept. In theoretical physics one can explore Boltzmann
entropy, Shannon entropy, von Neumann entropy, Tsallis entropy [107,108], and Renyi
entropy [109]. While most of these types of entropy seem to be bounded by k ln 2 for
systems of one particle, the present work makes this statement first of all for experimentally
observed entropy values [14].

There still remain many ways to measure entropy values smaller than k ln 2. In par-
ticular, open systems and entangled systems can lead to much smaller entropy values. The
minimum system entropy is only valid for closed systems at equilibrium.

In short, experiments and fundamental arguments confirm

B System entropy is limited by S > k ln 2.

The result is valid generally, for single-particle and for macroscopic thermodynamic
systems. (Closure and equilibrium are assumed.) In particular, the minimum system
entropy follows from the possibility of observing any physical system. The limit on system
entropy is valid by definition and is independent of the substance and of the number and
type of degrees of freedom of the system. It seems that this argument is not found in
the literature so far. Despite this result, several arguments against the minimum system
entropy must be discussed.

9. Two-Level-Systems and Entropy Calculations for Similar Idealized Systems

The minimum system entropy limit is rarely mentioned in books and publications.
The reason is that the minimum system entropy contradicts many simple arguments and
calculations. The simplest counter-argument, mentioned above, is the mentioned prejudice
that systems have a single ground state. But there are more such arguments.

Any two-level system at finite temperature, with a small energy difference between
the two levels, yields an entropy value smaller than k ln 2. But if the two-level system
really consists only of a single particle, the interaction with the thermodynamic system
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that produces the two levels cannot be neglected. If one does neglect it, small or even
vanishing entropy becomes possible, leading to calculation results that are in contrast to
the real world.

Many experiments have been performed for matter systems with only two possible
states. This topic became popular in 1961 when Landauer stated that the entropy required to
erase one bit of information is at least k ln 2 [110]. Extracting entropy or erasing information
from a macroscopic system requires energy. For a memory with one bit, and thus two states
at the same energy, the required energy is defined by the entropy k ln 2 and the temperature
of the system. Numerous experiments with glass beads in a double-well potential and
with many other systems have confirmed this entropy value within the experimental
uncertainties. The entropy value has also been confirmed for optical and for magnetic
storage systems. An overview is provided in the book [111]; specific experiments are
presented in references [112–114].

Do the astonishing experiments confirming Landauer’s ideas also confirm the min-
imum system entropy? No, they do not. The experiments do confirm that a system with
two microstates has an entropy k ln 2. But they do not confirm minimum system entropy.
In fact, Landauer even states, for the case that the initial state corresponds to a logical
“1” or a logical “0”: “The well-defined initial state corresponds, by the usual statistical
mechanical definition of entropy, S = k log W, to zero entropy”. Landauer thus states that
a zero entropy state is possible when a system is in a well-defined and non-degenerate
ground state. However, this statement is an idealization.

Any actual two-level system used in computing, whether in a transistor, in a magnetic
film, or in any other memory, needs matter to generate the two energy levels. Therefore,
even if the bit in memory is realized by a single particle, that particle is not a closed system,
but an open one, even if the particle is not disturbed. And the minimum system entropy
statement does not apply to open systems. Indeed, the system forming the memory does
not have zero entropy.

Another example that shows how idealizations can be misleading is the case of a single
quantum particle in a box. A single atom in a box has a single, non-degenerate ground state.
Such an atom is regularly seen as a system with a single microstate, therefore with zero
entropy, and thus apparently violating the minimum system entropy. But again, the system
creating the box is neglected. The assumption that the particle is a closed system is not
fulfilled. And again, the system does not have zero entropy.

In short, entropy values smaller than the system entropy limit can occur easily in calcu-
lations, especially when closure is assumed without careful checking. Such calculations
do not invalidate the minimum system entropy k ln 2. However, there are more apparent
counter-arguments.

10. The Minimum Entropy vs. the Extensivity of Entropy

A minimum entropy value can also appear paradoxical because a minimum value
seems to contradict the extensivity of entropy. In everyday life, the entropy of a kilogram of
water is twice the entropy of half a kilogram. Now, the minimum entropy also applies to a
single atom. Therefore, an everyday system, composed of many atoms, should have an
entropy value given by the minimum entropy multiplied by the number of atoms.

However, the experiments discussed above show that this is not the case: the entropy
per particle can be much lower than k ln 2. In fact, this observation shows that entropy is
not extensive in the general case.

This paradox was already known to Gibbs, as Jaynes explains [115]. Jaynes says
that Gibbs understood that ‘when two systems interact, only the entropy of the whole is
meaningful. Today we would say the interaction induces correlations in their states which
makes the entropy of the whole less than the sum of entropies of the parts’.

The work by Tsallis [107,116] makes the same point. In his papers on the non-
extensivity of entropy, Tsallis shows that the extensivity of entropy requires certain con-
ditions on the states of the subsystems: the subsystems must not be correlated. These
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conditions are not fulfilled when single particles are composed to form a solid. In other
words, entropy is extensive only when the subsystems are separable. A common case for
which this is valid is the thermodynamic limit.

In short, the extensivity of entropy is only valid for non-correlated sub-systems. There-
fore, the entropy per particle can be smaller than the smallest system entropy. The extensivity
of entropy does not contradict the existence of a lowest total system entropy k ln 2.

11. What Is the Minimum Entropy Value?

At a temperature T, the energy E per degree of freedom has the typical value E = kT/2.
The value k/2, which is smaller than k ln 2, also appears in certain uncertainty relations,
as shown below. Could the smaller value be the correct quantum of entropy?

The ratio E/T is an entropy. Using the expression S = k ln Ω, the entropy value k/2
corresponds to Ω =

√
e, where e = 2.71828 . . . is Euler’s constant. The result confirms that

the entropy value k/2 is not a system entropy, which would require an integer number of
states Ω, but an entropy change or (a part of) an entropy per particle. However, as argued
above, these observables are not bounded from below. Nevertheless, k/2 is an entropy
change that occurs frequently in physical systems.

We note that a falsification of the minimum system entropy is straightforward: it is
sufficient to measure a smaller value than k ln 2 for system entropy. However, given the
tight relation between k and the particle structure of matter and radiation, it is unlikely that
this will ever happen. So far, all experiments confirmed the quantum of entropy.

In fact, an observable entropy value below k ln 2 has been predicted in Majorana zero
modes. An example is reference [117]. However, such values below the entropy limit do
not appear for (closed) systems, but only for interacting and open ‘systems’.

In short, it appears that there is no experimental or theoretical argument for a smallest
or minimum (system) entropy smaller than k ln 2. We can now explore the next question
posed at the beginning.

12. Is Total System Entropy Quantized?

When Planck explored black body radiation, he discovered, introduced, and named
both the quantum of action h̄ and the Boltzmann constant k. Continuing our exploration,
we can ask whether total system entropy is quantized, i.e., whether its value, even when
macroscopic, is an integer multiple of a quantum of entropy.

The idea of the quantization of total entropy is suggested by analogy with thermal
energy. Thermal energy can be considered as a multiple of kT/2. However, for total entropy,
the expression S = k ln Ω implies the lack of entropy steps. Also experimentally, entropy
steps of the order of k in macroscopic systems have not been detected. Indeed, neither
theoretical nor experimental claims about the issue are found in the literature.

The closest claim to quantization has been made for materials with a small amount
of disorder at low temperatures. In this case, observable entropy steps have been pre-
dicted [118]. However, so far, no experiment confirmed the prediction.

The idea of the quantization of total entropy can also arise from an analogy with black
holes, where total entropy is indeed quantized, as a result of the quantization of the area
in multiples of the Planck area. However, no such argument arises for three-dimensional
systems at everyday scales in flat space.

In short, the total entropy of three-dimensional systems composed of a macroscopic
number of particles is not quantized in a practical sense. In experiments, the smallest
entropy value only arises in systems consisting of one particle. Macroscopic systems in
everyday life have effectively continuous entropy values. However, one type of system
behaves differently.
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13. Black Hole Horizons

In the domain of quantum gravity, the entropy of gravitational horizons—as they arise
in black holes—is quantized. Many scholars have explored the quantization of black hole
entropy, usually starting from the Bekenstein-Hawking entropy

S = k
A

4Gh̄/c3 . (2)

Many authors have argued that in black holes, entropy is quantized in multiples of a
smallest value, in the same way that the area of horizons A is quantized in multiples of
the Planck area Gh̄/c3. One reason for the quantization of black hole entropy is that black
holes, in contrast to everyday thermodynamic systems, are effectively two-dimensional.

The value of the quantum of entropy for black hole horizons remains a matter of
debate. This value has been argued to be k ln 2, as was concluded in 1975 by DeWitt [103],
then by Mukhanov [119], and by García-Bellido [120]. As mentioned, DeWitt also argued
that k ln 2 is the maximum entropy that an elementary particle can carry, because the least
information one can have about it is whether it exists or not, which is 1 bit. Feng et al. [121]
came to the same conclusion by referencing Bekenstein [122].

In contrast, Hod [123,124] argued for an entropy quantum k ln 3, and explained that
Bekenstein also favored this value. Instead, Kothawala et al. [125], Skákala [126,127],
Maggiore [128], Liu et al. [129], Ren et al. [130], Yu and Qi [131] and Bakshi et al. [132]
argued for a horizon entropy quantum of 2πk. Corishi et al. [133,134] proposed 2γ0 k ln 3,
where the Barbero-Immirzi parameter γ0 is unspecified, Sakalli et al. [135] and Rah-
man [136–138] deduced more complex expressions. Liao and Shou-Yong [139] deduced
2πk/3, and Jiang [140] and Aldrovandi and Pereira [141] deduced the value k. The list is
not exhaustive but gives an impression of the situation.

A different approach was used by Mirza et al. [142], who showed that in black holes,
the emission of entropy is limited by a value of the order of k divided by the Planck time.
Given that the Planck time is the shortest time that can be measured or observed in nature,
the entropy emission limit again implies the existence of a quantum of entropy of the order
of the Boltzmann constant k. However, no precise numerical factor has been deduced from
the entropy emission limit.

The numerical prefactor in the entropy quantum in all these papers varies because,
owing to the impossibility of measuring black hole entropy in experiments, a choice must
be made: the number of microstates per area must be clarified. In popular accounts,
the horizon area is assumed to store one bit per Planck area Gh̄/c3; however, this choice
does not agree with the expression by Bekenstein and Hawking. The situation simplifies
drastically if one assumes an average of e = 2.718 . . . microstates for each area 4Gh̄/c3. In
this case, the quantum of entropy for black holes is simply k. The number of microstates
per horizon area can only be settled with a theory of quantum gravity. (One such approach
is presented in reference [143]).

In quantum gravity, also curved space far away from black holes is known to contain
entropy and flows of entropy [144,145]. In contrast, infinite, flat, and empty space does not
contain entropy. However, exploring the entropy of curved space yields the same issues
and results as exploring the entropy of black holes: the entropy of curved space cannot be
measured experimentally and the calculations yield the same discussions as those for black
hole horizons.

In short, quantum gravity research finds that the full entropy of black hole horizons is
quantized in integer multiples of O(1)k, which is also the smallest possible gravitational
entropy. Horizons, which are essentially two-dimensional structures, differ from three-
dimensional systems such as materials or photon gases, where macroscopic system entropy
is effectively continuous and not quantized. It must be stressed that there are no exper-
iments on the entropy of black holes. There is no way to experimentally check whether
black hole entropy is quantized and, if so, what the exact value of the entropy quantum is.
Even in so-called analog black holes, such as acoustic black holes or superfluid 4He analogs,
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to our knowledge, quantized entropy has not yet been measured, even though such an
effect has been predicted [146,147]. Likewise, to the best of our knowledge, no discussion
on the achievable measurement precision of black hole entropy has been published.

14. Against a ‘Quantum of Entropy’

In old Italian, the term ‘quanto’ denotes a small amount. Galileo introduced the term
into physics. Planck then took over the term, and quantum physics was named. In fact,
several arguments can be made against the use of the expression ‘quantum of entropy’.
First, this expression is used only rarely, in a few texts on thermodynamics [1–6].

Secondly, the concept of a quantum of entropy is confusing. A quantum is usually
considered as the smallest possible value. However, in the case of entropy, a smallest value
only exists for system entropy, but not for entropy steps or entropy changes, which can be
much smaller.

Third, system entropy is not quantized in multiples of k in any practical system—except
possibly for black holes. Speaking of a quantum without quantization generates uneasiness.
On the other hand, energy levels in atoms have quantized energy values, and these values
can be extremely close. And like the possible energy levels in quantum systems, the possible
entropy values in thermal systems also depend on the system details. In practice, entropy
quanta are not countable in most cases—except for the cases of quantized conduction. The
mentioned criticisms are also made by Blöss in his work [148].

Thus, one might prefer the expression ‘minimum system entropy’ to that of ‘quantum
of entropy’. Indeed, one could consider the expression ‘quantum of entropy’ an example of
modern hype. In this text, both expressions are used.

In short, the term ‘quantum of entropy’ is unusual, but no hard argument appears to
exist against the use of the term. If one prefers, one can use the expressions ‘minimum
system entropy’ or ‘lower system entropy limit’ instead. In physics, an expression such
as ‘quantum of entropy’ is loaded with many associations. Its use only makes sense in the
case that it also expresses a deeper, underlying principle of nature. In many domains of
physics and chemistry, descriptions of natural processes using limit principles have been
fruitful [149]. Therefore, in the remaining sections, we check in detail whether the quantum
of entropy is an actual principle of thermodynamics, i.e., whether the quantum of entropy
can be used to derive thermodynamics.

15. Zimmermann’s Principle of the Entropy Limit

Starting in the year 2000, Zimmermann explored the concept of the quantum of entropy
in a series of five papers entitled ‘Particle Entropies and Entropy Quanta’ [1–5]. The series
builds on his earlier work [150–152]. In the first paper, Zimmermann explained that one
can describe, in a many-particle system, each particle as the carrier of a part of the entropy
of the system. In the second paper, Zimmermann derived all the properties of the photon
gas from the assumption of a quantum of entropy. In the third paper, he derived the
properties of the van der Waals gas from the concept of single-particle entropy. In the last
two papers, Zimmermann explored the ideal gas and the indeterminacy relation between
entropy production and time.

In short, Zimmermann argued that statistical thermodynamics—in particular for ideal
gases, real gases, and photon gases—can be deduced from the expression

∆S = O(1) k (3)

for single particles. In all the cases he studied, the numerical factor is greater than 1.
Zimmermann thus argued that the Boltzmann constant goes beyond a conversion factor
between temperature and energy. All of Zimmermann’s work suggests that there is a
principle of the entropy limit.
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16. Thermodynamics from the Quantum of Entropy

Thermodynamics, as traditionally taught, is based on a few fundamental ideas: the
existence of thermodynamic state variables, as well as the zeroth, first, second, and third
law [29,31,153–157]. Boyling makes this point particularly clear [158]. The foundations of
statistical physics confirm this structure.

Statistical physics can be seen as based on the principle of least action, on quantum the-
ory, and on the properties of entropy. The point is clearly made by Landau & Lifshitz [159]
and by Kubo [160]. Simply stated, the principle of least action implies, using Noether’s
theorem, energy conservation. The quantum of action implies the particle structure of
matter and radiation, and thus implies, together with their dynamics, the existence of
temperature and other state variables. Thus, the zeroth and first laws of thermodynamics
are consequences of the principle of least action and of the quantum of action.

The existence of a quantum of entropy expresses the particle nature of matter and
radiation, and the relation between energy, entropy, and temperature. This relation is part
of the first law [161]; it is also part of the zeroth law, i.e., of the existence and definition
of temperature.

The second and third laws of thermodynamics concern the state variable entropy
directly. The concept of entropy is best defined and thought of as disordered energy [155] or
as the mixing of states [162]. The quantum of entropy includes and implies the definition of
entropy. Simultaneously, the quantum of entropy includes the particle structure of matter
and radiation. Using the arguments summarized in references [155,162], the quantum of
entropy implies the second law.

The third law of thermodynamics states and implies that at low temperatures, most
degrees of freedom of a condensed matter system are frozen. Thus, the third law follows
from quantum theory [50–52]. In the third law, the quantum of entropy plays an indirect
role, defining the measurement unit of entropy.

The arguments confirm that entropy is a fundamental quantity. In particular, entropy
is more fundamental and more intuitive than the concept of heat [163–165]. Entropy is so
fundamental that it would merit its own unit of measurement [166].

In short, even though the topic is not treated exhaustively here, it appears that the
minimum system entropy k ln 2 or the quantum of entropy k is at the basis of all four laws
of thermodynamics. When the state variables, least action, and the quantum of action are
included at the foundations, all of thermodynamics is recovered [143]. The entropy limit is
indeed a fundamental principle of thermodynamics. In fact, there are additional reasons to
speak about the principle of the entropy limit.

17. Indeterminacy Relations

Statistical physics is closely related to quantum theory. The relation became clear
already in the early twentieth century, when the first indeterminacy relations for thermody-
namic quantities were deduced. For example, Bohr showed that temperature T and energy
U obey

∆(1/T) ∆U > k/2. (4)

This indeterminacy relation was discussed in detail by Heisenberg and other scholars [167–169].
In 1992, de Sabbata and Sivaram [170] deduced the indeterminacy relation

∆T ∆t > h̄/k . (5)

This relation was tested and found to agree with experiments by Gillies and Allison [171,172].
In 2004, Kovtun, Son, and Starinets showed that the ratio between shear viscosity η and
entropy volume density s follow [173,174]

η

s
> h̄/4πk . (6)
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In 2011, Zimmermann showed [175] that in quantum thermodynamics, entropy production
P and time t obey

∆P ∆t > k/2. (7)

A similar relation was deduced by Falasco and Esposito [176] and verified experimentally
by Yan et al. [177]. Many additional indeterminacy relations exist; a comprehensive list is
given by Hohm [174]. All these indeterminacy relations suggest that entropy resembles
action, with a multiple O(1) k of the Boltzmann constant playing a role similar to that
of h̄. For example, Parker et al. [178,179] use similar versions of the entropic uncertainty
relations and the quantum of entropy to calculate the configurations of alpha particles and
details of cosmological systems.

Maslov [180] has extended the analogy between quantum theory and thermodynamics
by defining quantum operators for internal energy, for free energy, and for entropy. In
analogy to quantum theory, the measured values of these quantities are the eigenvalues of
these operators.

In short, the quantum of entropy plays a similar role in thermodynamics as the quan-
tum of action in quantum theory. In both cases, the minimum measurable value arises,
with a factor O(1), also in indeterminacy relations. This property again underlines that k is
not only a conversion factor but that it has a fundamental significance in thermodynamics.

18. Entropy Production

The explorations of entropy production in non-equilibrium systems has become an
important field of enquiry. Since Jarzynski’s work [181,182] it has become possible to deduce
upper limits for entropy production and to verify them experimentally [176,177,183–185].
In the context of this study, entropy production is a form of entropy change. In macroscopic
systems, the entropy change is not bounded from below and can be as small as desired.
The uncertainty relation (7) does not limit it, if the time involved is made sufficiently
large. Also, experiments by Koski et al. in open systems measured extremely small entropy
changes [186]. In one-particle closed systems, no exceptions to the smallest system entropy
are found.

Likewise, the quantum of entropy does not contradict the limit on entropy change of
quantum gravity, which, as mentioned above, is of the order of the quantum of entropy k
divided by the Planck time [142].

In short, entropy production limits do not contradict the quantum of entropy k. In fact,
the entropy production limits underline its importance: the quantum of entropy appears in
all the relevant inequalities.

19. Similarities and Differences between Action and Entropy

The similarities between action and entropy are striking. In nature, there exists a
quantum of action h̄ and a quantum of entropy k. Quantum theory, including aspects such
as indeterminacy relations and entanglement, is based on the quantum of action. All the
effects of quantum theory depend on the quantum of action. Thermodynamics, including
the second law, is based on the quantum of entropy. All the effects of thermodynamics
depend on the quantum of entropy.

The quantum of entropy plays a role in statistical thermodynamics because the quan-
tum of entropy determines the average energy per degree of freedom. The quantum of
entropy is used to define a measurement unit for temperature in the SI system. The quan-
tum of entropy enters in all calculations of the thermodynamic properties of materials. This
confirms that the entropy limit is a fundamental principle of thermodynamics.

Both action and entropy are extensive quantities. Furthermore, both the quantum of
action and the quantum of entropy are related to the discrete structure of physical systems.
Both the quantum of action and the quantum of entropy distinguish classical physics from
quantum physics. There is a well-known continuum limit of thermodynamics—generally
consistent with the thermodynamic limit—in which k → 0 [187]. It leads to classical
thermodynamics. Like the limit h̄→ 0, the limit k→ 0 also prevents the calculation of any
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specific material property. All material properties are due to the quantum of action and to
the quantum of entropy. The quantum of action and the quantum of entropy make similar
statements: if either quantum did not exist, particles, thermal effects, and quantum effects
would not exist.

The differences between action and entropy are also important [188]. Action and
entropy resemble each other because they are both due to microscopic processes, but they
differ in their relation to change in a system. Action describes change occurring in nature as
a product of energy and time; a large amount of action implies a large amount of change.
And despite the existence of a quantum of action, nature minimizes action in any process
in an isolated system. In contrast, entropy describes the distribution of energy and change,
in particular the distribution between macroscopic and microscopic change. A large amount
of entropy implies a large amount of microscopic disorder. Entropy is the cost of change.
And despite the existence of a quantum of entropy, nature maximizes entropy in processes
in any isolated system.

Parker, Jeynes et al. explored the similarities and differences between action quanta and
entropy quanta in detail. They also compared in detail action per time, i.e., energy, and en-
tropy per time, or entropy production [178,179]. An important difference is that the quan-
tum of action implies that action and action change are quantized, as observed [189–206].
In contrast, this is not the case for entropy.

In short, the quantum of action h̄ implies particles and describes their motion; the
quantum of entropy k results from particles and describes their statistics. To include black
holes, it can be said:

B The Boltzmann constant k expresses that everything that moves is made of
discrete constituents.

In other words, the minimum system entropy, sometimes called the quantum of
entropy, is a fundamental property of nature. The minimum system entropy is a limit of
nature like the speed limit, the action limit, and the other limits of nature [143].

20. Conclusions: A Consistent Presentation of the Quantum of Entropy

The present study explored the existence of entropy quanta and of a minimum system
entropy. In accordance with the third law of thermodynamics, it was shown that in
thermodynamic systems consisting of a large number of particles, there is no smallest
entropy value per particle and no smallest entropy change. However, there is a minimum
system entropy value, which can also be called a quantum of entropy, that is based on the
Boltzmann constant k:

B The minimum entropy limit S > k ln 2 holds for every closed physical system.

The statement agrees with all experiments. Equality is only achieved for systems
consisting of a single particle. The lower limit on entropy is only in apparent contrast to the
usual formulation of the third law of thermodynamics, to the often inappropriately claimed
extensivity of entropy, and to all other apparent counter-arguments.

We also showed that any observable physical system must have at least two states.
Therefore the minimum system entropy k ln 2 holds for every physical system.

Both for condensed matter and for light beams, experiments, and theory confirm
that total entropy values are not integer multiples of the Boltzmann constant k or of a
similar value. In contrast, in black holes, entropy is expected to be quantized in integer
multiples of O(1)k. The reason is that the underlying constituents of black hole horizons
are discrete and that in two dimensions, larger numbers of these constituents do not result
in smaller entropy steps—in contrast to everyday, three-dimensional systems. In simple
words, the quantum of entropy holds for single particles, whereas countable quanta of
entropy only arise in black holes.

Finally, all the laws of thermodynamics can be deduced from the state variables and
the minimum system entropy. The quantum of entropy also explains the indeterminacy
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relations between thermodynamic variables. Thus, the Boltzmann constant k is more than a
simple conversion factor: it is a fundamental property of nature expressing that everything
that moves is composed of discrete components.

In conclusion, in the same way that the speed limit c is a principle of special relativity
and the quantum of action h̄ is a principle of quantum theory, the system entropy limit
k ln 2 is also a principle of thermodynamics.
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