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Abstract: The hydrolysis and biotransformation of lignocellulose, i.e., biorefinery, can provide human
beings with biofuels, bio-based chemicals, and materials, and is an important technology to solve
the fossil energy crisis and promote global sustainable development. Biorefinery involves steps such
as pretreatment, saccharification, and fermentation, and researchers have developed a variety of
biorefinery strategies to optimize the process and reduce process costs in recent years. Lignocellulosic
hydrolysates are platforms that connect the saccharification process and downstream fermentation.
The hydrolysate composition is closely related to biomass raw materials, the pretreatment process,
and the choice of biorefining strategies, and provides not only nutrients but also possible inhibitors for
downstream fermentation. In this review, we summarized the effects of each stage of lignocellulosic
biorefinery on nutrients and possible inhibitors, analyzed the huge differences in nutrient retention
and inhibitor generation among various biorefinery strategies, and emphasized that all steps in
lignocellulose biorefinery need to be considered comprehensively to achieve maximum nutrient
retention and optimal control of inhibitors at low cost, to provide a reference for the development of
biomass energy and chemicals.

Keywords: lignocellulose; cellulase; biorefinery; hydrolysate; fermentable sugar; fermentation
inhibitor; pretreatment; saccharification; cellulosome

1. Introduction

Lignocellulosic biomass (LCB), as one of the most abundant renewable resources in
the world, plays an increasingly important role in the circular economy and sustainable
development, thus attracting great attention in various research areas. These studies are
dedicated to developing techniques in the bioconversion process known as biorefinery
which converts lignocellulosic substrates into products such as biofuels, bioplastics, bio-
based chemicals, and bio-gases, to substitute non-renewable fossil-based fuels partially
or completely [1–4]. The biorefinery processes of lignocellulosic biomass can be classified
into two groups based on conversion approaches and intermediate products (platform
molecules). One is the thermochemical conversion process involving pyrolysis which con-
verts biomass into hydrogen and carbon monoxide (the syngas platform) and downstream
chemical conversion or biological fermentation which synthesizes various downstream
products [5]. The other is the biochemical or biological process that converts lignocellulosic
biomass into sugars (the sugar platform) for subsequent conversion. Many studies and

Molecules 2024, 29, 2275. https://doi.org/10.3390/molecules29102275 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29102275
https://doi.org/10.3390/molecules29102275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-0193-2793
https://orcid.org/0000-0003-4669-424X
https://orcid.org/0000-0002-0879-1316
https://orcid.org/0000-0002-5296-5328
https://doi.org/10.3390/molecules29102275
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29102275?type=check_update&version=2


Molecules 2024, 29, 2275 2 of 26

recent advances in thermochemical conversion processes have been reported and sum-
marized [6–9]. In this review article, we will mainly focus on the strategies related to
lignocellulosic biorefinery via the sugar platform.

Cellulose and hemicellulose are major polysaccharides in lignocellulose. In the pro-
cess via the sugar platform, these carbohydrate polymers are enzymatically hydrolyzed
and release fermentable sugars such as monosaccharides or oligosaccharides, generating
lignocellulosic hydrolysate (sugar solution), which can be further utilized by microbes [10].
Lignocellulosic biomass is a tightly interwoven matrix, and pretreatment is a required step
for breaking this highly complex structure with a recalcitrant nature by various chemical,
physical, physicochemical, and biological methods [11]. Then, the saccharification of cel-
lulose and hemicellulose polymers is achieved by enzymatic hydrolysis with cellulases
and hemicellulases [12,13]. In addition to cellulose and hemicellulose, lignin is also one
major component of lignocellulose, as a network phenolic polymer providing structural
reinforcement and resilience [14]. Moreover, other substances such as small amounts of
pectins, cutins, waxes, lipids, tannins, terpenes, alkaloids, and resins are also found in
lignocellulosic biomass, and they vary significantly with the species [15,16]. These struc-
tural constitutes can be retained in the lignocellulosic hydrolysate with varying degrees in
different biorefinery strategies and processes. Most pretreatment processes are accompa-
nied by complex physical and chemical changes, and all lignocellulosic compositions may
undergo chemical reactions and produce new compounds that are potentially present in the
lignocellulosic hydrolysate [17–19]. Therefore, the chemical composition of lignocellulosic
hydrolysate is often complex and heterogeneous (Figure 1).
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Lignocellulosic hydrolysate is typically used for further microbial fermentation to
produce the final biofuels and bio-based chemicals, but the relatively low price of the end
products makes it economically impractical to separate and purify fermentable sugars from
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lignocellulosic hydrolysate. Therefore, it is crucial that we understand the various chemical
compositions (including the nutrients and inhibitors) of the lignocellulosic hydrolysate
and their impact on the subsequent fermentation step in depth for the development of
economically feasible biorefinery strategies.

In the downstream fermentation process of biorefinery, the nutritional requirements
for fermenting microbes include carbon sources, nitrogen sources, trace elements, and other
essential nutrients. In most studies, lignocellulosic hydrolysates are used as carbon sources,
and whether hexoses (such as glucose) or pentoses (such as xylose) in the hydrolysates
can be fully utilized by microbes or not will be taken into account [20] and determine the
sugar conversion rate. In fact, due to the complex structural components of lignocellulosic
materials themselves and the complexity of the pretreatment and saccharification processes,
not only carbon sources but also many other complex components are contained in lignocel-
lulosic hydrolysates. For example, nitrogen sources are necessary for microbial growth and
often present in the lignocellulosic hydrolysate. The raw materials themselves, especially
those agricultural wastes, naturally contain certain amounts of nitrogen, such as proteins,
amino acids, and other nitrogen compounds [15,16,21]. These nitrogen compounds may
be retained during certain pretreatment and saccharification processes and, ultimately,
remain in lignocellulosic hydrolysates. Furthermore, if ammonia or nitrates are added
during the pretreatment or saccharification in some process designs, they may also remain
in the lignocellulosic hydrolysates with higher concentrations than the amount of nitrogen
possibly required for downstream fermentation [22,23]. Other minor but essential nutrients
such as phosphorus, calcium, magnesium, and iron also have significant impacts on growth
and production, and all their contents in the lignocellulosic hydrolysates depend on the raw
materials, pretreatment methods, and saccharification strategies [24]. Their amounts might
directly meet the needs of downstream fermentation production [25,26], be insufficient and
require supplementation, or be excessive and have inhibiting effects [27]. Additionally, in
some pretreatment and saccharification strategies, especially those whole-cell-based saccha-
rification processes, amino acids, organic acids, vitamins, and other biostimulants might
be produced. Although the content of these substances is low, they may have significant
impacts on the downstream fermentation process [28].

Nutrients and inhibitory compounds in lignocellulosic hydrolysates are highly depen-
dent on the composition of the raw material, and the methods, strategies, and technologies
used in specific pretreatment and saccharification processes [19,29–34]. The pretreatment
process aims to open the recalcitrant structure of lignocellulose and separate different com-
ponents as much as possible for subsequent performance [35]. There are many pretreatment
methods, including physical (grinding, microwave, ultrasonic, and pyrolysis), chemical
(acid, alkali, ozonolysis, organic solvents, and ionic liquids), physicochemical (hot water,
steam explosion, ammonia fiber explosion, wet oxidation, and carbon dioxide blasting), bi-
ological, and their combinations [36]. While the dense structure of lignocellulose is broken,
different pretreatment processes may involve some additional chemical reactions because
of the chemical reagents added, high temperature, and high pressure, and some byproducts
may be inhibitors for the subsequent saccharification or fermentation [37,38]. For exam-
ple, some lignin-derived phenolics may be released or converted into more toxic forms
during the pretreatment and saccharification, disrupting the integrity of the microbial cell
membranes, interacting with or changing the structure of the enzyme’s active sites, thereby
inhibiting the enzyme activities [39]. In addition, sugar degradation products (such as
furfural) produced during the pretreatment process may directly inhibit enzyme functions
and affect the efficiency of the saccharification process [32]. After pretreatment, biomass
materials often undergo the washing step for detoxification, but this will significantly
increase the cost of pretreatment and the burden of wastewater treatment, so strategies for
biomass pretreatment need to be considered comprehensively by combining subsequent
saccharification and fermentation processes.

The saccharification process is a key step in biorefinery for producing fermentable
sugars. Various saccharification strategies have been developed based on the techno-
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economic feasibility and difficulty level in implementation. Based on the source of the
enzymes used, current saccharification strategies can be divided into off-site and on-
site approaches [40]. In the off-site approach, separately produced cellulases are used
to convert pretreated lignocellulose into fermentable sugars by enzymatic hydrolysis,
such as simultaneous saccharification and fermentation (SSF) which is currently used
in the majority of pilot-scale demonstrations and industrial plants. Only enzymes with
buffers are usually added in the off-site saccharification approach, and monosaccharides
and oligosaccharides are produced, along with other nutrients and inhibitors generated
mainly from raw materials and pretreatment processes [41,42]. In the on-site approach, the
enzyme production is integrated with the saccharification process in one system, which can
significantly reduce the cost of enzyme production and separation, such as consolidated
bioprocessing (CBP) and consolidated bio-saccharification (CBS) [40]. Since enzymes are
produced directly by microorganisms for saccharification in the on-site approach, metabolic
products and partial cell lysates from the enzyme-producing microorganisms are often
contained in the resulting lignocellulosic hydrolysate. They can serve as nutrients or
inhibitors for downstream fermentation. For example, organic acids may be accumulated
by metabolic activities of microorganisms during enzyme production, lead to changes in the
pH of the medium, or have toxic effects on the microorganisms, thus affecting the growth
of microorganisms and the efficiency of the downstream biorefinery process [39,43–46].

In summary, lignocellulosic hydrolysates contain carbon sources and other nutrients,
as well as various inhibitors. The composition and concentration are closely dependent
on the lignocellulosic raw material types, pretreatment processes, and saccharification
strategies and processes. This article aims to explore the key stages in the biorefinery
process of lignocellulose, summarize how various factors in the biomass, pretreatment,
saccharification, and fermentation steps affect nutrient supply and inhibitor formation, and
offer new insights for designing lignocellulosic biorefinery processes and improving the
efficiency and yield in biorefinery.

2. Composition of Lignocellulose Feedstocks

Lignocellulosic biomass contains cellulose, hemicellulose, and lignin as the main com-
ponents. It also contains small amounts of inorganic elements like potassium, calcium,
and magnesium, and various organic compounds such as resins, fats, and waxes that
can be extracted with solvents [15,16]. Usually, cellulose and hemicellulose can be hy-
drolyzed to soluble sugars, which provide carbon and energy sources for microorganisms
and are the main nutrients from lignocellulose. Cellulose is a structural homopolymer
composed of linear chains constituted by repeating β-D-pyranose glucose units linked
by β-(1,4) glycosidic bonds [47]. The cellulose chains are bonded through non-covalent
interactions (van der Waals forces and hydrogen bonds), forming rigid and insoluble mi-
crofibrils [48]. Depending on the different orientations and different levels of crystallinity,
cellulose molecules form amorphous (low-crystallinity) and crystalline (high-crystallinity)
regions [49]. A higher crystallinity means that the molecular chains are arranged more
tightly and orderly within the crystalline regions, enhancing the material’s mechanical
hardness and chemical stability [50,51]. Such complicated structures render cellulose resis-
tant to biological and chemical degradation, making it a major barrier in the conversion
process of lignocellulosic biomass.

Hemicelluloses are branched and heterogenic polysaccharides composed of pentose
(D-xylose and L-arabinose) and hexose (D-glucose, D-mannose, and D-galactose) [52].
These monosaccharide units are linked by β-(1,4)-glycosidic bonds and β-(1,3)-glycosidic
bonds [53]. The amorphous, random structural properties and the lower physical strength
make hemicelluloses easier to be hydrolyzed than celluloses, but they can act as a physical
barrier for cellulases’ access to celluloses [38]. Therefore, the removal or separation of
hemicelluloses is often necessary for the pretreatment process.

Lignin is an amorphous and highly branched phenolic polymer primarily composed
of syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H) subunits. Lignin has hydrogen
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bonding with cellulose and hemicellulose and is also connected to hemicellulose via various
alkyl/aromatic ether linkages, forming lignin–carbohydrate complexes (LCCs). These LCCs
prevent enzymes from accessing cellulose during enzymatic hydrolysis [13,48] and cause
enzyme deactivation by irreversible enzyme adsorption [36]. Therefore, lignin-derived com-
pounds are major inhibitors of enzymatic reactions and microbial fermentation. Moreover,
lignin and its derivatives are difficult to be degraded and assimilated by microorganisms.
Therefore, it is often necessary to remove lignin and lignin-derived compounds to eliminate
their negative effects through pretreatment to obtain more fermentable sugars [53].

The constitution, structure, and distribution of lignocellulose in the cell wall vary signif-
icantly from different biomass sources, depending on the plant species, climate conditions,
growth stages, and processing methods [54]. For example, cultivars harvested in summer
often have a higher cellulose content than those harvested in autumn [55]. The composition
of hemicellulose also varies significantly among different plant species and even within
different parts of the same plants (such as the leaves, stalks, and roots) [56]. For example,
hemicelluloses in softwoods are constituted by glucomannans, arabinoglucuronoxylans
(xylans), arabinogalactans, xyloglucans, and other glucans, while, in hardwoods, hemicel-
luloses are primarily composed of xylans and glucomannans [57]. Generally, the content of
hemicellulose in hardwoods and herbages is usually higher than in softwoods [58]. The
composition of lignin also varies among plant types. Hardwood lignin primarily contains S
and G subunits, with relative amounts of 45–75% and 25–50%, respectively; softwood lignin
is mainly composed of G subunits accounting for about 95%; while the relative contents
of H/G/S subunits are about 5–35%, 35–80%, and 20–55%, respectively, for herbaceous
plants [37,59]. The total lignin contents are also different: softwoods have the highest lignin
content, while herbaceous plants have the lowest [60].

Although the components of lignocellulosic biomass are influenced by various factors,
their approximate contents in raw materials are relatively stable: 15–30%, 20–40%, and
35–50% for lignin, hemicellulose, and cellulose, respectively [54]. The compositions of some
common lignocellulosic biomass are listed in Table 1.

Table 1. Content of cellulose, hemicellulose, and lignin in common lignocellulosic biomass.

Biomass Cellulose (%) Hemicellulose (%) Lignin (%) Reference

Sugarcane bagasse 32–55 22–36 14–30 [61]

Sugarcane straw 29 28.8 32.2 [45]

Sorghum straw 26.93 32.57 10.16 [62]

Wheat straw 43.4 26.9 22.2 [63]

Barley straw 35.73–45.73 26.8–32.6 5.3–5.9 [64,65]

Aspen wood 50.7 16.6 13.3 [64]

Oak 43.2 21.9 35.4 [66]

Corn stover 38 23 20 [67]

Switchgrass 50 40 20 [67]

Pine chip 33–44.78 17.56–23.75 20.22–26.29 [68,69]

Spruce 24.7 10.2 35 [70]

These biochemical characteristics of lignocellulosic components help predict the yield
of fermentable sugars and understand the native recalcitrance of raw materials. Generally,
the higher the proportion of cellulose in raw materials was, the more glucose could be
released; the higher the percentage of lignin present was, the more difficult it was for
the biomass to be degraded [64]. Moreover, lignin and hemicellulose, along with their
degradation products, can suppress cellulose hydrolysis [17,18]. Therefore, a lignocellulosic
biomass with lower contents of lignin and hemicellulose is more suitable for biorefinery.
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The different types of lignocellulose can influence the variable amount of inhibitors [29].
For example, more acetylation normally happens in hardwoods than in softwoods [71].
Acetic acid is produced by acetyl-group hydrolysis and has significant inhibiting effects on
microbial fermentation. Moreover, acetylation on hemicellulose chains can cause surface
hydrophobicity changes, inhibit hydrolases, and contribute to biomass recalcitrance [72,73].
Therefore, the lower the acetylation degree in hemicellulose was, the higher the sugar yield
obtained. Due to significant variations of three components in different lignocellulose
biomasses, similar pretreatment methods may generate different amounts of inhibitors
with diverse inhibiting effects [37]. Major inhibitors derived from lignin are phenolic
compounds such as 4-hydroxybenzoic acid, vanillin, catechol, ferulic acid, and syringic
acid [19]. Inhibitors derived from hemicellulose include furfural and formic acid as the
degradation products of xylose and arabinose. Inhibitors derived from cellulose include
5-hydroxy methylfurfural (5-HMF), formic acid, and levulinic acid [74]. Although the con-
centration of inhibitors may not be high, their inhibiting effects can be significant [45], and
the inhibitory effects of the same inhibitors from different biomass types may be discrepant.
For example, the concentration of phenolic compounds released from beechwood ranges
between 2–21.6 mg/g after steam explosion pretreatment, and the conversion of cellulose
to glucose is reduced by 5–26% [75]. In contrast, the concentration of the phenolic from
maple is 5.65 mg/g after liquid hot water (LHW) pretreatment, and the hydrolysis rate is
reduced by 50% [76].

In summary, the contents and structural characteristics of cellulose, hemicellulose, and
lignin vary among various lignocellulosic materials. This physical and chemical nature of
biomass materials affects saccharification yields and inhibitor generation in pretreatment,
thereby determining biorefinery strategy selection.

3. Pretreatment Process and Its Effects on Nutrients and Inhibitors

Lignocellulose pretreatment is a crucial step for biorefineries, aiming to increase the
share of the amorphous region in celluloses, promote hemicellulose degradation, and
remove lignins, to enhance the susceptibility of the lignocellulosic biomass to enzymatic
degradation [35]. Pretreatment methods are diverse, including acid treatment, alkaline
treatment, ionic liquid treatment, deep eutectic solvent (DES) treatment, steam explosion,
hydrothermal treatment, physical treatment, and biological treatment, as well as their
combinations. When selecting a pretreatment method, it is important to consider the
biomass type, the anticipated end products, and the economic benefits [77]. For instance,
acid pretreatment is more effective in hemicellulose removal, while alkaline pretreatment
is more efficient in delignification [78]. During the delignification and decomposition
of hemicellulose, some pretreatment byproducts with fermentation-negative effects are
generated due to severe conditions [79]. Qualitative and quantitative assessments of these
byproducts are important for determining the suitability of each raw material pretreatment
method, including whether hydrolysate detoxification is necessary or not for effective
subsequent fermentation.

3.1. Alkaline Pretreatment

The following mechanisms for changing the structure and composition of biomass are
mainly involved in alkaline pretreatment: first, exposing more celluloses and hemicelluloses
by breaking down ether bonds and carbon–carbon bonds between aromatic rings and
dissolving lignins; and, second, improving the accessibility of cellulose fibers to enzymes
by cellulose swell, surface area increase, and crystallinity reduction. Besides lignin, alkaline
pretreatment can partially dissolve hemicelluloses, although it is not as efficient as acid
pretreatment, helping more celluloses be exposed to enzymatic hydrolysis and improving
the overall conversion efficiency [80,81]. At last, alkaline pretreatment can cleave the ester
linkages in lignocelluloses, including bonds between lignin and hemicelluloses, as well
as acetyl and other ester groups in hemicelluloses, thus further reducing the degree of
polymerization in lignocellulose [82].
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Alkaline pretreatment dissolves only a small amount of cellulose and hemicellulose,
so nearly the maximum amount of saccharides can be recovered in subsequent steps [30].
It is reported that over 85% of xylan can be extracted from corn stalks under low-alkali-
concentration conditions [83]. Common alkaline reagents include NaOH, Ca(OH)2, KOH,
and ammonia. A high proportion of demethylated phenolics can be produced by alkaline
pretreatment using NaOH [77]. Alkaline pretreatment is very effective for lignin removal
from softwoods and grasses, and more holocellulose can be kept compared to acid treat-
ment [30]. Overall, alkaline pretreatment can retain more nutrients with the formation of
relatively fewer new inhibitors.

However, some issues need to be addressed about alkaline pretreatment, such as
the difficult chemical recovery [84], and equipment corrosion which may result in a short
lifespan and high maintenance costs. Moreover, compared to other pretreatment meth-
ods, alkaline pretreatment may require a longer time to break down the lignin structure,
influencing production efficiency [85]. Conditions of high temperature and high pres-
sure also lead to the energy consumption being increased. After alkaline pretreatment,
the lignin-rich black liquor generally requires solid–liquid separation before subsequent
saccharification and utilization [86]. Inhibitors in the sugar solution, besides unwashed
components of black liquor, mainly include lignin fragments deposited on celluloses and
LCC (lignin–carbohydrate complexes) released from the fragmented cellulose [87,88]. The
effective utilization of the separated lignin is the key to the economic viability of the entire
biorefinery process.

3.2. Acid Pretreatment

Acid hydrolysis is one of the most common pretreatment methods, mainly relying on
inorganic acids (such as sulfuric acid, phosphoric acid, or nitric acid) or organic acids (such
as formic acid, maleic acid, or oxalic acid) [61,68,89,90]. Initially, acid molecules cause the
breakdown of the glucosidic bonds between cellulose and hemicelluloses, and hydrolyze
hemicelluloses partially or completely into monosaccharides or smaller oligosaccharides.
Meanwhile, acid pretreatment affects hydrogen bonds between celluloses and hemicellu-
loses. By altering these hydrogen bonds, acid pretreatment can reduce the crystallinity of
celluloses, making them more accessible for enzymatic hydrolysis [82].

However, acidic environments can promote sugar degradation to generate a large
number of inhibitors, such as furfural, 5-HMF, and phenolic compounds, affecting subse-
quent fermentation [91]. In addition to the common inhibitors above, there are other newly
discovered substances, such as quinone compounds derived from phenolic compounds,
severely inhibiting the growth and fermentability of various typical biorefinery fermen-
tation strains [92]. Typically, the more severe the acid pretreatment is, the more phenolic
compounds are generated, especially those with carbonyl groups, as well as acetic acid,
furfural, and 5-HMF in the hydrolysate. The concentration of glucose and some oligosac-
charides will also decrease due to excessive byproduct conversion when the pretreatment
strength is too high [39]. Traditional detoxification methods such as water washing and bio-
logical detoxification can remove these inhibitors, but a large amount of fermentable sugars
derived from pretreated lignocellulosic biomass are also lost simultaneously. Therefore,
biorefinery processes that use acid pretreatment tend to develop methods by improving
the inhibitor tolerance of strains for biodetoxification or constructing pathways for quinone
biodegradation [93].

In addition, researchers are exploring other alternative acids with less toxicity and
easier removal for biomass pretreatment. For example, trifluoroacetic acid (TFA) can obtain
soluble sugars such as xylose from hemicelluloses with celluloses undegraded. Due to the
easy recyclability of TFA, an additional detoxification stage is not necessary [68]. Levulinic
acid (Lev) is another eco-friendly organic acid for pretreatment and can also prevent the
lignins from re-polymerization [94]. More than 50% (w/w) solids are discharged in the dry
acid pretreatment system [95] and all inhibitors are retained in the pretreated solids without
any wastewater generated. The pretreated solids can be introduced to fungus cultures
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for biodetoxification, followed by simultaneous saccharification and co-fermentation for
ethanol or lactic acid fermentation [96–98], significantly reducing wastewater generation
during the detoxification process.

3.3. Hydrothermal Pretreatment

Hydrothermal pretreatment primarily utilizes H3O+ ions ionized from water under
increased temperature and pressure. These autoionization products act as catalysts during
pretreatment. Acetyl groups on xylan chains are cleaved and form acetic acid in the solution
to trigger hemicellulose depolymerization, leaving most celluloses and lignins remaining
in the pretreated solids [99]. Compared to other chemical pretreatments, hydrothermal
pretreatment has the advantage of being eco-friendly and using pressurized hot water as the
only solvent [100]. However, like acid pretreatment, it releases or generates several soluble
inhibitors such as acetic acid, 5-HMF, and phenolics, along with some sugar degradation
byproducts such as furfural and oligosaccharides [54]. These compounds significantly
impact the enzymatic hydrolysis efficiency, especially phenolics, whose inhibitory effects
cannot be completely relieved even with an increased enzyme load [45]. Studies have
shown that 5-HMF and furfural can undergo polymerization or condensation to form
pseudo-lignin [101]. These structures tend to deposit as droplets on the surface of the
pretreated biomass, reduce the effective contact area for cellulase, and inhibit cellulase
activity [102]. Additional steps are required for lignin removal [103], and alkali and
ammonium sulfite are currently commonly used to assist in hydrothermal pretreatment for
delignification [104–108]. On the other hand, the low separation efficiency of hemicellulose
is reported to be a main technical challenge for hydrothermal pretreatment, and various
methods and technologies have been studied to improve hemicellulose separation efficiency,
such as pH pre-control [109] and metal ion catalysis [110].

3.4. High-Pressure Explosion Pretreatment

Steam explosion (SE) is a widely used physicochemical pretreatment method. It treats
biomass with high-temperature and high-pressure steam, then rapidly decompresses to
break down the lignin–hemicellulose barrier and effectively facilitate subsequent hydroly-
sis. During the SE pretreatment process, with the temperature increasing, hemicellulose
degradation may result from autohydrolysis reactions and inhibitors like furfural and
5-HMF can be generated in side reactions [111–113]. Lignin also partially depolymerizes
and melts at high temperatures, similar to that during hydrothermal pretreatment, but
these dissolved components may be recondensed or transformed afterward [114].

Compared to SE, nitrogen explosion decompression (NED) offers a different pretreat-
ment approach and is particularly suitable for biomass hydrolysis under mild treatment
conditions. It operates at lower temperatures, applies a gentler treatment for biomass, and
minimizes the generation of inhibitors. It achieves biomass explosion effects through dis-
solved nitrogen expanding rapidly, breaks down the lignin–hemicellulose matrix to some
extent, and promotes hemicellulose dissolution [65]. NED is characterized by its potential
environmental friendliness and lower operation temperatures. As an emerging technology,
further evaluation is still required for its technological maturity, cost-effectiveness, and
adaptability to various biomasses. Additionally, although fewer inhibitors are produced in
NED, detailed generation mechanisms and control strategies are still required in further
research to ensure the efficiency and reliability of NED in practical applications.

3.5. Solvent Pretreament

Organic solvent pretreatment often uses methanol, ethanol, acetone, and organic
acids, and removes lignins and some hemicelluloses through solubilization. Compared
to other chemical pretreatments, its advantage lies in the ability to recover relatively pure
lignin [115]. Sometimes, organic acids, inorganic acids, or alkalis are added as catalysts to
lower the operating temperature or increase delignification [116]. This method requires
balancing the relationship between the cost and inhibitor generation. Low-boiling-point
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alcohols are easily recovered but require a high-pressure pretreatment process; acetone,
although better at recovering saccharides, has a higher overall cost and is not feasible
for large-scale production [117]. Organic acid pretreatment can be carried out under
atmospheric pressure but may lead to cellulose acetylation and inhibitory components
accumulation in the system. Although most organic reagents used in pretreatment can be
recovered by distillation, it is challenging to ensure that they do not remain on the pretreated
solids and flow into the downstream sugar solution during large-scale applications.

Compared to organic solvents, deep eutectic solvents (DESs) are stable, biodegradable,
and recyclable green solvents [118]. They are composed of different molar ratios of a hydro-
gen bond acceptor (such as choline chloride) and a hydrogen bond donor (like lactic acid,
urea, ethylene glycol, etc.) [119,120]. The DES pretreatment can increase both the digestibil-
ity and solubility of lignocellulose and reduce its resistance to enzymatic digestion; it can
also selectively break ether bonds to separate lignins and celluloses, thus deconstructing
plant cell walls effectively [121]. Additionally, DESs can suppress the re-polymerization of
depolymerized lignin and reduce the lignin molecular weight [122]. The DES pretreatment
is considered a green and cost-effective process, typically with characteristics of non-toxicity
and recyclability [123]. Despite the large number of laboratory studies emerging in recent
years, the efficiency, stability, recyclability, and biocompatibility of DES are still the major
challenges in large-scale pretreatment under industrial conditions [124,125].

Ionic liquids (ILs) are also known as “green solvents” with the typical constitution
of organic cations and organic or inorganic anions. In the lignocellulose biochemical pro-
cessing, ILs improve the convertibility of biomass and increase the efficiency of enzymatic
hydrolysis and fermentation by disrupting non-covalent interactions between lignocellu-
lose components, such as hydrogen bonds between polysaccharide chains, and ether/ester
bonds between lignin and carbohydrates [126,127]. Although the formation of inhibitors
is diminished, the residual small amounts of ILs still have potential toxicity to enzymes
and fermenting microbes [37]. Therefore, it is necessary to use excess water or antisol-
vent washing after ionic liquid pretreatment to remove ionic liquids, lignin, and other
derivatives [126].

Generally, the economic viability of solvent-based pretreatment is determined by the
solvent recovery. Most inhibitors in the subsequent enzymatic sugar solution may be
from the solvent itself after efficient solvent recovery. The residue solvent affects not only
operating costs but also the qualities of the produced sugar solution and other downstream
products.

3.6. Other Pretreatment Techniques

Physical pretreatment techniques primarily use external mechanical or electrical forces,
such as milling, ball milling, extrusion, ultrasonication, and microwave irradiation [128,129].
The mechanical pretreatments disrupt the intrinsic structure of biomass, thereby increasing
the surface area, reducing crystallinity, and improving efficiency. However, mechanical
forces cannot break down the chemical structures of lignins and have little effect on the
degradation of hemicellulose and lignin. Ultrasonication pretreatment is based on the
cavitation effect during radiation with ultrasonic energy, which produces both physical
forces and chemical effects on the biomass structure. Microwave irradiation provides rapid
and uniform heating effects on the lignocellulose, thus generating structural changes in
biomass. However, both ultrasonication and microwave irradiation pretreatments have a
high energy demand and are difficult to scale up for high-volume applications. Physical
pretreatment is often used in conjunction with other pretreatment methods [128,130,131],
but new sources of inhibitors are also introduced. Biological pretreatment is mainly carried
out by microorganisms utilizing biomass for growth directly or by enzyme mixtures
added. No inhibitors form and less energy is consumed during biological pretreatment [82].
However, compared to chemical pretreatment, it takes longer and has limited effects on
facilitating subsequent saccharification.
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Although numerous pretreatment methods have been developed, none of them can
perfectly achieve the separation of the three major components of lignocellulose. Other
compounds, such as extractives and ash, are largely lost during pretreatment. The choice
of pretreatment process primarily affects the carbon sources for downstream bioconversion
and inhibitor formation. Besides the total process cost, there are two more factors highly
recommended for pretreatment evaluation: accelerating polysaccharides hydrolysis or
not, and reducing side reactions or not for more main carbon sources remaining and
fewer inhibitors generated. Generally, more control over inhibitor generation is required
during acid pretreatment, while chemical reagent recovery and lignin utilization need to be
addressed in the methods based on alkalis and solvents that focus on delignification.

The possible inhibitors from different pretreatments are summarized in Table 2.

Table 2. Summary of nutrient retention and inhibitor formation under various pretreatment methods.

Pretreatment Method Nutrient Retention Inhibitor Production Reference

Alkaline pretreatment
Removal of lignin,
partial hemicellulose;
less sugar dissolution

Formic acid; acetic acid;
hydroxy acid; phenols [37,77]

Acid pretreatment

Partial or complete
removal of
hemicellulose; more
sugar dissolution

Furfural; 5-HMF;
phenols; quinones;
acetic acid

[91,92]

Steam explosion

Significant dissolution
of hemicellulose, minor
dissolution of cellulose;
less degradation of
sugar

Furfural; 5-HMF;
formic acid; acetic acid [36,111–113]

Nitrogen explosion Hemicellulose
dissolution [65]

Liquid hot water

More hemicellulose
dissolved; higher sugar
recovery; less cellulose
loss

Furfural; 5-HMF; acetic
acid; phenols;
pseudo-lignin

[2,36,54]

Organic solvent
Removal of part of the
hemicellulose,
dissolution of lignin

Furfural; 5-HMF [132]

Deep eutectic solvents
Removal of
hemicellulose and
lignin

Furfural; 5-HMF;
levulinic acid [123]

Ionic liquid

High lignin extraction
rate, partial
degradation of
hemicellulose, possibly
reduced cellulose
crystallinity

Furfural; 5-HMF; weak
acid [37,126,133,134]

Physical pretreatment
Reduced cellulose
crystallinity, less sugar
degradation

Furfural; phenols [36,133,135]

Biological pretreatment

High lignin
degradation, low
cellulose degradation,
reduced sugar

Furfural; 5-HMF;
organic acids [36,133]

4. Saccharification Process

Saccharification is a key step in the biotransformation process of lignocellulose, aiming
at breaking down complex polysaccharides of cellulose and hemicellulose into fermentable
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oligosaccharides and monosaccharides through enzymatic hydrolysis [12]. These oligosac-
charides and monosaccharides are primary nutrients for subsequent microbial fermentation,
providing carbon sources and energy for the production of ethanol, biofuels, or other chem-
icals [40,136]. The saccharification process is mainly catalyzed by various enzymes, and the
efficiency and yield of saccharification are two of the most critical factors for determining
the utilization rate of lignocellulosic polysaccharides. The saccharification process involves
the synergistic action of multiple enzymes, primarily glycoside hydrolases (GHs) including
cellulases and hemicellulases [57,137,138]. The cellulase system primarily includes the
following three types of enzymes: endoglucanases (EGs), which break down the crys-
talline structure of cellulose microfibrils to release individual polysaccharide chains and
reduce the polymerization degree [57]; exoglucanases, or cellobiohydrolases (CBHs), that
cut cellulose from the free ends of polysaccharides, mainly releasing cellobiose; and β-
glucosidases, which can further hydrolyze cellobiose and other oligosaccharides to produce
individual glucose molecules. These enzymes work together to break down celluloses
into glucose units [12]. Unlike celluloses, the structure of hemicelluloses is very complex
and requires a wider variety of enzymes for complete degradation, mainly including
xylanases, arabinoxylanases, mannanases, β-xylosidases, and esterases [12,138]. These
enzymes work synergistically and degrade polysaccharides specifically according to the
chemical composition and different linkages in hemicelluloses, releasing sugar monomers
such as xyloses and mannoses [13]. The efficiency of these enzymes is influenced by various
factors, including the various biomass sources, the chemical composition after biomass pre-
treatment, the source of enzymes, the ratios of different enzymes, and the enzyme catalytic
activities [13,139,140]. In addition to glycoside hydrolases, recent studies discovered that
adding auxiliary enzymes such as lytic polysaccharide monooxygenases (LPMOs) during
the cellulose hydrolysis process can significantly improve hydrolysis efficiency and reduce
the enzyme loadings required for saccharification [141–144].

Current enzyme systems for biomass saccharification primarily include free enzyme
systems and cellulosome systems (Figure 2). Most lignocellulose-degrading bacteria and
fungi in nature can secrete a variety of cellulases and hemicellulases. Some fungi, such as
Trichoderma reesei and Penicillium oxalicum, possess a high cellulase secretion system and
have been modified to become main production strains of cellulases for industrial-scale
use [145–147]. Due to the complex structure of lignocellulose, currently, no microbial
enzyme can independently decompose all components for industrial application, so many
studies are focusing on designing optimal enzyme mixtures to hydrolyze the pretreated
biomass effectively [13]. Most industrial demonstration plants for biomass saccharification
currently use processes based on free enzyme formulation [148–151]. Despite the crucial role
and multiple advantages of these free enzymes, such as the specific activity, mild reaction
conditions, and environmental friendliness, the high enzyme usage in the saccharification
process, even with recent significant improvements in enzyme production, still represents
a substantial cost in the biorefinery process. This enzyme cost is one of the main factors
hindering the economic viability of biorefinery processes [152,153].
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In addition to free enzymes produced by fungi and bacteria [154], there exists in na-
ture a large multi-enzyme complex produced by anaerobic microorganisms for degrading
lignocellulose, known as cellulosome, composed of non-catalytic proteins (scaffoldins) and
a variety of glycoside hydrolases [155,156]. The cellulosome is one of the most efficient lig-
nocellulose degradation systems known in nature, with a far higher degradation efficiency
than that of free cellulase systems [154,157–159]. The cellulosome assembles various types
of cellulases and hemicellulases into a large complex through non-covalent interactions be-
tween scaffoldins and enzymes [160,161], creating synergistic and proximity effects among
enzymes. Cellulosome also binds to substrates through carbohydrate-binding modules
(CBMs), forming synergistic enzyme-substrate interactions. Furthermore, the cellulosome
attaches to the bacterial cell wall through cell-wall-binding modules on scaffoldins, creating
synergistic interactions between the enzymes and cells [154,158,162]. These multi-level
synergistic actions collectively enhance the efficiency of lignocellulose degradation. The
modules within the cellulosome are connected by flexible linkers, allowing the cellulosome
to undergo conformational changes according to the substrate, thus degrading the substrate
better [162]. Additionally, bacteria express genes of cellulosomal components dynamically
based on the type of substrate and adapt to the different substrate compositions [162–166].
Compared to free cellulases, cellulosomes not only exhibit a stronger tolerance to chemical
inhibitors such as formate, lactate, and furfural present in the hydrolysate but also show a
higher ethanol tolerance and thermostability [157].

The biocatalytic saccharification process can be inhibited by various factors, and the
most common one is product inhibition, which is that the accumulation of product sugars
inhibits enzyme activity. For instance, cellobiose and cello-oligosaccharide inhibit the activ-
ity of various cellulases, and β-glucosidases are susceptible to glucose inhibition [167,168].
Typically, the cellobiose inhibition of cellulases is more severe than the glucose inhibition
of β-glucosidases. To relieve feedback inhibition and promote cellulose saccharification,
strategies often applied are the direct supplementation of exogenous β-glucosidases with
a high glucose tolerance or using recombinant strains secreting these enzymes [169,170].
Cellobiose and xylan also inhibit cellobiohydrolases and cellulases, respectively. Notably,
studies have found that, under certain conditions, xylose at low concentrations can stim-
ulate β-glucosidases with doubled hydrolytic activity, while the binding of cellobiose to
the active site of the enzyme may be interfered by high xylose concentrations [171]. This
phenomenon implies the need for precise control over the effects of different components
on enzyme activity for saccharification condition optimization and efficiency improvement.
In the cellulosome system, it was found that soluble lignin and arabinoxylan released
during lignocellulose hydrolysis can interact with key exoglucanases [137,172]. In biore-
finery strategies that integrate the saccharification process with downstream fermentation
(such as simultaneous saccharification and fermentation or consolidated bioprocessing),
the products of downstream fermentation, such as bioethanol, can significantly inhibit
cellulase activity as their concentration increases, sometimes even leading to enzyme
deactivation [173].

Since the saccharification process is the core step to generate nutrients for down-
stream fermentation in lignocellulose biorefining, various current lignocellulose biocon-
version strategies have been developed based on biocatalyst production methods and
their integration with upstream and downstream processes, including off-site and on-site
saccharification [40]. Off-site saccharification strategies are among the earliest proposed
biorefining technologies, and separate hydrolysis and fermentation (SHF) and simultane-
ous saccharification and fermentation (SSF) are the most commonly applied, both of which
use free cellulases from fungi as biocatalysts. Considering the joint utilization of pentose
and hexose downstream, separate hydrolysis co-fermentation (SHCF) and simultaneous
saccharification co-fermentation (SSCF) strategies have been further developed [174]. On-
site saccharification strategies are new approaches developed for their low operating cost,
especially the enzyme production cost by avoiding enzyme production and separation
and integrating the enzyme production and saccharification steps into one single step,
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mainly including consolidated bioprocessing (CBP) and consolidated bio-saccharification
(CBS) [40]. On-site saccharification requires a single enzyme-producing strain to produce
all enzymes needed for saccharification, thus demanding a higher capacity of the strain for
lignocellulose degradation. In addition, the tolerance of the strain is also required to be
higher because of the multi-step integration.

The lignocellulosic hydrolysates produced by on-site and off-site strategies are quite
different for downstream fermentation. In off-site saccharification, free enzymes are used as
catalysts for the saccharification process, so the nutrients and inhibitors in the hydrolysates
mostly come from the lignocellulosic substrates themselves and pretreatment processes,
while, in on-site saccharification, the hydrolysates are also a fermentation medium for
enzyme-producing strains [40]; therefore, besides the nutrients and inhibitors from the
substrates and pretreatment processes, metabolic products from the strains are also con-
tained in hydrolysates, and both nutrients and potential inhibitors may be included for
downstream fermentation [3]. The differences among lignocellulose hydrolysis in various
saccharification approaches will be further discussed in the next section.

5. Lignocellulose Hydrolysate in Different Biorefinery Strategies

The production cost of biofuels or fermentable sugars as intermediate platform prod-
ucts from biorefinery requires competitiveness with fossil fuels or starch-based sugars
on the market. Therefore, reducing the operational cost of biorefining is the primary
concern for strategy development. To overcome the techno-economic challenges of biorefin-
ery, several different strategies have been developed, including separated hydrolysis and
fermentation (SHF), simultaneous saccharification and fermentation (SSF), consolidated
bioprocessing (CBP), and consolidated bio-saccharification (CBS) [139]. These strategies,
by separating or combining different steps of biorefinery, result in variations of obtained
lignocellulosic hydrolysates (Figure 3). Such differences further affect the performance
of downstream fermentation, which is a critical factor that needs to be considered in the
designs of downstream fermentation products and processes.

SHF is a strategy in which each step—pretreatment, enzyme production, sacchari-
fication, and fermentation—is carried out separately. The advantage of SHF is that the
saccharification and fermentation processes can be conducted under their optimal condi-
tions respectively, thus achieving higher yields [175]. However, the main disadvantage is
that each step is performed separately, so a high overall process cost is generated owing
to specific operational costs for each step, and additional costs are also introduced by
the connections between steps. The lignocellulosic hydrolysate produced by SHF, due to
the precise control over each step, typically contains high concentrations of fermentable
sugars [176,177]. The inhibitors for fermentation primarily originate from raw materials
and the pretreatment process, allowing the generation of nutrients and inhibitors to be
better controlled. High sugar yields can be achieved in SHF, with most of the pentoses
from hemicellulose retained in the fermentable sugars after saccharification. Therefore, the
main consideration for downstream fermentation in SHF is the joint utilization of pentoses
and hexoses for the polysaccharide nutrients in lignocelluloses to be fully converted and
utilized [42]. The strategy that enables the joint utilization of pentoses and hexoses in SHF
is also known as separate hydrolysis co-fermentation (SHCF) [178].

SSF integrates saccharification and fermentation simultaneously in a single bioreactor,
reducing operating costs while avoiding the accumulation of high concentrations of sugars
in the hydrolysate and related inhibitory effects. However, the optimal conditions for
saccharification and fermentation are usually different, especially those of temperature and
pH. The optimum temperature for enzymatic hydrolysis is usually higher than that for
fermentation, thus typically leading to reduced overall efficiency. Meanwhile, metabolites
generated during the fermentation process may inhibit enzyme activities in the saccharifica-
tion process [31]. To address these issues, many works of research are focusing on enzyme
optimization and fermentative microorganism screening to ensure both of them can work
efficiently under the same conditions [179–183]. Co-cultures of multiple microorganism
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strains are also often applied in SSF [184–186]. This strategy is advantageous for more
a complex metabolite production and is beneficial for strain growth and fermentation
processes due to the synergistic interactions between different strains [28]. However, some
studies have also shown that the co-culture strategy in SSF may lead to reduced yields
due to various reasons (such as nutrient competition and the accumulation of metabolic
products) [27].
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In SSF, due to the fermentation step integrated, small molecule sugars produced from
the hydrolysis of celluloses and hemicelluloses are directly utilized by fermentation strains;
thus, lignocellulosic hydrolysates cannot be generated with high sugar concentrations.
However, like SHF, SSF also faces issues of inhibitor production during the pretreatment
process and joint utilization of pentoses and hexoses. Regarding inhibitors, some studies
focus on improving pretreatment methods or using inhibitor-resistant or inhibitor-utilizing
strains [187]. Other processes such as simultaneous saccharification and co-fermentation
(SSCF) have been developed based on the SSF to achieve effective xylose utilization and less
product inhibition [10,188,189]. The approach known as fed-batch delayed SSF (fed-batch
dSSF) has also been developed: dSSF (also known as PSSF, pre-hydrolysis SSF [190]) is
performed in the first bioreactor by using cellulases for pre-saccharification and followed
by simultaneous saccharification and fermentation, while, in the second bioreactor, a



Molecules 2024, 29, 2275 15 of 26

cultivation medium was used only for enzymatic hydrolysis. When glucose is depleted in
the first bioreactor, the medium is fed from the second bioreactor. This process is primarily
designed to avoid early carbon deficiency in SSF and to enhance the hydrolysis rate of
cellulase into glucose by integrating a pre-saccharification step at the optimum temperature
for cellulose decomposition [41].

Consolidated bioprocessing (CBP) integrates the enzyme production, saccharification,
and fermentation steps into a single system, thus significantly reducing the costs of en-
zymes and the overall process. The core of CBP is to develop microorganisms with the
capability of degrading lignocellulose and conducting downstream fermentation simulta-
neously [191]. Similar to SSF, hydrolysates with high sugar concentrations do not exist in
CBP, but issues about inhibitors produced from substrates and the pretreatment process,
as well as inhibitory effects of fermentation products on microorganisms and enzymes,
have to be faced in CBP. The whole CBP process is carried out by living microbial cells, and
the derived inhibitors from pretreatment and raw materials may interfere with the host
cell membrane integrity, protein synthesis, cell growth, and target product production [32].
In the CBP system, since all steps occur in the same bioreactor, the efficient consumption
of the sugar mixture or the biomass hydrolysate is particularly critical. For instance, the
hydrolysis of hemicelluloses produces xyloses, arabinoses, galactoses, and rhamnoses,
but many host microorganisms in CBP cannot consume these sugars, leading to a carbon
catabolite repression [192]. In such cases, CBP hosts are required to be modified by genetic
engineering or metabolic engineering [32,193,194]. Another approach is the co-culture
strategy by introducing other strains to metabolize these sugars and fully utilizing various
carbohydrates in the lignocellulosic hydrolysates, thus improving the hydrolysis efficiency
of upstream strains [191,195,196]. However, this approach has its challenges, as the growth
conditions in the co-culture system should meet the requirements for all different microor-
ganisms (such as pH, oxygen, and temperature) and the growth of one species does not
have toxic or inhibitory effects on others [197]. In lignocellulose biorefinery, most cellulases
exhibit optimal enzymatic activity at higher temperatures; thus, downstream strains are
required to adapt to such a high-temperature environment for growth and fermentation.
Cellulosomes of Clostridium thermocellum exhibit a higher efficiency in degrading woody
and herbaceous cellulose materials than commercial fungal cellulases [198], although their
fermenting property is unsatisfactory. However, the co-culture of Clostridium thermocellum
DSM1313 and Thermoanaerobacterium thermosaccharolyticum MJ1 can produce more hydro-
gen [196,199]. This is due to relieving the inhibition of DSM1313, improving substrate
degradation, and enhancing electron transfer activity. Additionally, besides substrate uti-
lization, the co-culture system can also improve the low tolerance of organic acids (such
as acetic acid, formic acid, and lactic acid) and ethanol produced during fermentation
with Clostridium thermocellum [33,34]. Overall, more complex modifications of strains are
required in the CBP strategy to make full use of hydrolysis products and tolerate various
inhibitors produced during pretreatment and fermentation.

Consolidated bio-saccharification (CBS) is a strategy that separates the fermentation
step in CBP while keeping the enzyme production and saccharification process completed
by a single strain [40]. The key advantage of the CBS strategy is that it integrates enzyme
production with saccharification to minimize the production cost of cellulases, overcoming
the major bottleneck in lignocellulosic biorefinery. Furthermore, it also separates the cel-
lulose hydrolysis process from the downstream microbial fermentation process, avoiding
the compromise of different reaction conditions required in both processes. Since the
fermentation process is separated, the CBS strategy, like the SHF strategy, can produce
hydrolysates containing high concentrations of fermentable sugars, while cellulases may
suffer from the feedback inhibition of monosaccharides or oligosaccharides in the hy-
drolysates. Therefore, as in the SHF strategy, the product feedback inhibition by cellobiose
and cello-oligosaccharide can be released by the addition of β-glucosidases (BGLs) with
both a high enzymatic activity and high glucose tolerance in the CBS strategy [170]. How-
ever, whole-cell catalysts are used for the saccharification process in the CBS strategy, which
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is different from the SHF strategy, so the resulted lignocellulosic hydrolysates are also the
fermentation broth of the CBS strain, containing more complex components than those of
the SHF strategy. These components mainly come from the fermentation medium and bac-
terial metabolites, so most of them may act as nutrients for downstream fermentation and
may be beneficial for the downstream fermentation process. For example, Liu et al. [26] suc-
cessfully achieved the fermentation of pullulan using condensed CBS sugar liquor without
any nutrient supplementation. Similarly, lactic acids were produced by directly inoculating
lactic acid bacteria (LAB) strains into the CBS hydrolysates to initiate the fermentation
process [3]. On the other hand, since the strains used in CBS are anaerobic Clostridium
thermocellum [200], certain amounts of metabolic intermediates such as lactic acid and acetic
acid are produced, which may inhibit some anaerobic fermentation processes for bioenergy
production, such as acetone–butanol–ethanol (ABE) fermentation [157,201]. Therefore, lig-
nocellulosic hydrolysates in the CBS strategy require further analysis of their components,
integration with downstream fermentation processes, nutrients needed for downstream
fermentation, and potential inhibitors, thereby optimizing the whole CBS process and
downstream fermentation processes for the best-matched optimal process.

In this section, we have analyzed the advantages and limitations of various biorefining
strategies in terms of nutrient retention and inhibitor control. Overall, SHF allows enzyme
production, saccharification, and fermentation under optimal conditions, which can signifi-
cantly preserve the nutrients from lignocellulose (sugar yield) and independently optimize
each step for minimizing inhibitor accumulation or residues. However, the operational
cost is high, making techno-economic viability the primary challenge. The SSF strategy
effectively integrates the saccharification and fermentation processes, reducing process
costs, but it also faces challenges such as high enzyme costs and difficulties in matching
saccharification with fermentation. The CBP strategy, theoretically, can achieve lower costs
but has extremely high requirements for microbial strains, and there is still a long way
to go to develop technologically and economically viable CBP strains. The CBS strategy
combines the low-cost advantage of CBP with the high yield of SHF, but the produced
saccharification liquid has complex components, and it is necessary to develop compatible
downstream strains.

The overall consideration of the biorefinery strategy and process to maximize nutrient
retention and control inhibitors at a low cost is critical for the techno-economic assessment
(TEA) and the life cycle assessment (LCA) of different biorefinery scenarios [202–205].
Due to the long research history and the establishment of many demonstration pilot
plants of off-site biorefinery approaches, there are many TEA and LCA analyses of SHF
and SSF strategies, as well as the specific steps of them such as feedstocks and pretreat-
ments [204,206–213]. The TEA and LCA analyses of on-site approaches are relatively less,
but limited studies have shown that the CBP strategy has significant advantages in feasibil-
ity and sustainability compared with SHF/SSF strategies [214–216]. As we analyzed in this
paper, both nutrients and inhibitors will run through the entire biorefinery process, so any
improvements to a single step will require a further TEA and LCA analysis of the entire
biorefinery, which needs to be greatly strengthened in future research.

6. Conclusions and Perspective

This article provides an in-depth analysis of how different steps in lignocellulose
biotransformation affect the nutrients and inhibitors in lignocellulosic hydrolysates, high-
lighting the differences in raw material selection, pretreatment methods, and biorefinery
strategies in terms of nutrient production and inhibitor control. We found that, although
each strategy has its unique advantages, it also faces various challenges such as cost, effi-
ciency, inhibitory product generation, and difficulties in strain development. A vast amount
of research focuses on nutrient retention (increasing fermentable sugar yields or conversion
rate), the control or removal of inhibitors, and strain development for specific strategies,
but there are only limited studies that considered the overall compatibility of steps in the
entire lignocellulosic bioconversion process. Our analysis shows that both nutrients and
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inhibitors can be produced throughout all biorefinery stages, and, at the same time, each
subsequent step is closely related to the nutrient retention and inhibitor generation in the
previous step. To achieve the techno-economic viability of lignocellulosic biorefining, it
is necessary to consider all steps comprehensively, design the most suitable biorefining
strategy based on the characteristics of the raw materials and final target products, and
optimize the whole process to maximize nutrient retention and conversion and minimize
inhibitor generation.

Therefore, we propose that future research on lignocellulosic biorefinery should focus
more on matching the overall biorefinery strategy and process, especially the compat-
ibility of the pretreatment, enzyme production, and fermentation strain development,
to maximize nutrient retention and control inhibitors at a lower cost. For example, pre-
treatment technologies should be developed based on the requirements of downstream
saccharification and fermentation processes. It is necessary to analyze the role of residual
chemicals or byproducts during pretreatment more meticulously and thoroughly because
they can be inhibitors for subsequent saccharification and fermentation, act as activators
for enzyme activity, or provide nutrients for fermentation. For instance, nitrogen sources
required for the growth of downstream fermentation microorganisms often need to be
added additionally. The ammonium salts, such as ammonia or ammonium sulfite, from
nitrogen-containing pretreatment processes, may move into the microbial conversion stage
with residual lignin, but their stimulative or inhibitory effects on fermentation still require
further studies. Most previous research on nutrient retention, inhibitor control, or removal
focused on off-site strategies (SHF and SSF), while very limited studies target more recent
on-site strategies (CBP and CBS). Clostridium thermocellum is currently used in on-site strate-
gies, whose core of the saccharification process is their secreted cellulosomes. However,
research about the effects of various sugars, residues, and byproducts from pretreatment
on the activity and stability of Clostridium thermocellum with their cellulosomes is still
very few and should be focused on in the future. For the CBS strategy first developed
in our lab, we are committed to the investigation of the overall compatibility of steps in
the entire lignocellulosic bioconversion process. For example, the composition of the pro-
duced saccharification liquid is complex, and it should be developed in collaboration with
downstream processes. The medium used in the CBS process for enzyme production and
saccharification contains various nutrients required by Clostridium thermocellum growing,
and most of them can remain in the final saccharification liquid in various forms, along
with some products generated from Clostridium thermocellum metabolism. More detailed
studies need to be carried out about the suitability between these components and down-
stream fermentation strains, which are ongoing in our lab for the CBS strategy. Moreover,
the salts in the CBS hydrolysates come from not only the medium but also ash in the
substrate dissolved during pretreatment and saccharification. These salts have potentially
significant effects on downstream fermentation equipment and processes. The choice of
medium in an on-site saccharification strategy not only determines the production status
of the enzyme-producing microorganisms but also affects crucial carbon source supply.
Moreover, the inhibitory effects of metabolites and the changes in nutrient components
during the enzyme production process of the on-site saccharification strategy also require
an overall assessment of their impacts on the performance of production strains. More
TEA and LCA studies for different biorefinery approaches, particularly the more recent
on-site strategies (CBP and CBS), with improved nutrient retention and inhibitor control
are needed to validate their feasibility and sustainability.
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