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Abstract: A series of flavanols were synthesized to assess their biological activity against human
non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed
that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to
5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control.
Moreover, compound 6l (4’-bromoflavonol) markedly induced apoptosis of A549 cells through the
mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed
as a candidate for treating or preventing lung cancer.

Keywords: anticancer agent; human non-small cell lung cancer cell; flavonol

1. Introduction

Flavonoids are naturally occurring polyphenolic compounds. More than 10,000 flavonoids
have been detected and categorized into subclasses [1]. They are isolated from a wide range
of plant families and species, and exhibit certain pharmacological activities such as antioxi-
dant [2], anti-inflammatory [3,4], antimicrobial [5,6], antiallergenic [7], anticancer [8,9] and
antiviral [10]. Flavonoids are natural antioxidants since they possess a reactive oxygen
species (ROS) that will damage the membranes and DNA in mammals [11]. The various
classes of flavonoids differ in the level of oxidation and pattern of substitution on the
C ring (Figure 1). The double bond between C2-C3 and the oxo group at C4 of C ring,
and the position of the B ring are crucial determinants for their anticancer activity [12].
Flavonoids act by multiple mechanisms but further studies on target selectivity and speci-
ficity of flavonoids are necessary to establish them as anticancer therapeutics [12]. The
most studied flavonols, a class of flavonoids, are quercetin, kaempferol, galangin, and
myricetin, widely present in fruits, vegetables, tea, cocoa, and red wine (Figure 2) [13].
In addition, previous research results indicate the inhibitory effects of flavonoids such
as apigenin and luteolin as well as the flavonol quercetin and its derivatives on various
leukemia cell lines [14]. These natural compounds can be prototypes for broad-spectrum
chemotherapy drugs [14]. Flavonoids have been reported to have an excellent safety profile
(no toxicity at up to 140 g/day), with no known significant adverse effects [15]. Pietta
et al. reported that the 3-OH group in the C ring is essential to generate a high radical-
scavenging activity [16]. Additionally, antioxidants help human beings reduce cancer
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risks [17]. Furthermore, this activity is enhanced when an additional hydroxyl group, such
as myricetin, is present on the B ring [16]. Research reports that quercetin (Figure 2) has
multiple pharmacological properties, including neuroprotective [18], anticancer [19–22],
and antiviral [23,24] properties.
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Natural and synthetic flavonoids have been developed as agents against non-small
lung cancer [19,25]. Previously, we reported the synthesis of halo-substituted chalcones
and azachalcones to inhibit the pro-inflammatory response [26]. Since flavonols can be
synthesized from chalcones, we aim to explore the potential of halo-substituted flavonols.
Therefore, in this study, we investigated the activity of sixteen synthesized flavonols against
human non-small lung cancer cells (A549).
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2. Results and Discussion
2.1. Chemistry

The synthetic strategy for the target molecules is presented in Scheme 1. The most com-
mon method for synthesizing chalcones is Claisen–Schmidt’s condensation [27]. Chalcone is
one of the precursors in the biosynthesis of flavonoids. The reaction of 2’-hydroxyacetophenone
(1) and 5-bromo-2-hydroxyacetophenone (2) with the corresponding aldehydes (3a–l) under
NaOH/EtOH condition afforded chalcones 4a–l (42–81%) and 5i–l (90–97%), respectively,
which were then subjected to the Algar–Flynn–Oyamada reaction (H2O2/NaOH) [28,29]
and afforded the target flavonols 6a–l (59–83%) and 7i–l (77–91%), respectively. The synthe-
sis of compounds 4–7 is facile, and their purification involves simple filtration, followed by
washing with ethanol or methanol to obtain pure target molecules.
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2.2. Pharmacology/Biology

The sixteen synthesized compounds were evaluated for their inhibitory activities
against the growth of human non-small cell lung cancer A549 cells. The results revealed
that compound 6l (with a 4’-bromo substitution) exhibited the most potent inhibitory
activity against the A549 cells (IC50 = 0.46 ± 0.02 µM), which was much better than that
of the positive control, 5-fluorouracil (5-FU) (IC50 = 4.98 ± 0.41 µM) (Table 1). Com-
pound 6k (with a 4’-chloro substitution, IC50 = 3.14 ± 0.29 µM) also showed better in-
hibitory activity than 5-FU. Moreover, compounds 6a (without substitution) and 6j (with a
4’-fluoro substitution) also exhibited effective inhibitions with IC50 values of 6.34 ± 0.89
and 6.13 ± 0.63 µM, respectively. Consequently, a halogen at C-4’ in the B ring may induce
cytotoxic effects against A549 cells [30,31].
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Table 1. Inhibitory effects of compounds against human non-small cell lung cancer cells (A549).

Compounds IC50 (µM) a

6a 6.34 ± 0.89 **
6b 38.17 ± 4.21 *
6c 24.54 ± 3.13 *
6d 22.97 ± 2.73 *
6e 15.07 ± 0.93 **
6f 14.64 ± 1.48 *
6g 10.78 ± 0.97 **
6h 8.25 ± 0.77 **
6i >100
6j 6.13 ± 0.63 **
6k 3.14 ± 0.29 **
6l 0.46 ± 0.02 ***
7i 22.04 ± 3.29 *
7j 19.44 ± 1.82 *
7k 31.35 ± 6.64 *
7l 47.58 ± 7.11 *

5-FU b 4.98 ± 0.41 **

Results are presented as averages ± SD (n = 3). a Concentration necessary for 50% inhibition (IC50). b 5-Flurouracie
(5-FU) was used as a positive control; *** p < 0.001, ** p < 0.01, and * p < 0.05 compared with the control.

The effect of treating the A549 cells with compound 6l (20 µM) on the expression of
apoptosis-related proteins was investigated (Figure 3). The results revealed a decrease
in the expression level of the anti-apoptotic protein Bcl-2, while that of the pro-apoptotic
protein Bax increased. Caspase-3 activation is a hallmark of apoptosis. Thus, compound 6l
increases the expression level of cleaved caspase-3 (active caspase-3). The results showed
that compound 6l induced apoptosis in A549 cells through mitochondrial- and caspase-3-
dependant pathways.
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Asterisks indicate significant differences (* p < 0.05, ** p < 0.01, and *** p < 0.001) compared with the
control group.
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3. Experimental
3.1. General Procedures

All chemicals were purchased from either Acros or Alfa from Uniworld in Taiwan.
The 1H- and C13-NMR data were recorded on a Bruker 600 MHz Ultrashield instrument
(Bruker, Billerica, MA, USA). The chemicals were reported in parts per million (ppm)
relative to the residual solvent (1H for DMSO-d6: 2.49 ppm; 13C NMR for DMSO-d6:
39.7 ppm). The reaction progress was monitored by thin-layer chromatography (Analtech
Silica gel HLF UV254, Analtech Inc. Newark, DE, USA) and stained with either KMnO4
or p-anisaldehyde solutions. The melting points were determined by an open capillary
tube on an MP-2 apparatus. The molecular weights of compounds were determined by a
Thermo LCQ Fleet ion trap mass spectrometer.

3.2. Mass Determination

Using a micropipette, the sample (1 µL) was loaded onto a graphite paper cut into a
triangle (10 × 10 mm), washed with MeOH, and cleaned with Kimwipe paper. An ion trap
mass spectrometer (LCQ Duo, Finnigan, San Jose, CA, USA) equipped with a paper-spray
ionization (PSI) source was employed to determine the molecular weights of the samples.
A high voltage (3.5 kV) was applied for sample ionization. The MS spectra scans were
collected in the positive and negative ion modes in the m/z range of 100–400.

3.3. Chemistry
3.3.1. General Preparation of Chalcones

NaOH (50%, 3.0 equiv.) was added to a solution of acetophenone (1.0 equiv.) in EtOH
(0.2 M) and stirred at ambient temperature for 30 min. Subsequently, the corresponding
aldehyde (1.2 equiv.) was added to the mixture in EtOH (0.2 M) at ambient temperature.
The progress of the reaction was monitored by thin-layer chromatography (TLC) until the
aldehyde was consumed. The mixture was acidified with HCl (2N) and added distilled
water. The precipitate was filtered by suction filtration and washed with EtOH to obtain
chalcones 4a–l and 5i–l.

3.3.2. General Preparation of Flavonols

A solution of the corresponding 2-hydroxyacetophenone (1.0 equiv.) and NaOH (50%,
5.0 equiv.) in MeOH was added to H2O2 (35%). The mixture was stirred in an ice bath and
TLC monitored the progress of the reaction. At the end of the reaction, the mixture was
acidified with HCl (2N), and distilled water was added to allow a precipitate formation.
The precipitate was washed with cold MeOH to obtain flavonols 6i–l and 7i–l.

3.3.3. 3-Hydroxy-2-phenyl-4H-chromen-4-one (6a)

Yield: 63% (75% [32]). A yellow-white solid. Mp 175.8–177.6 ◦C (165−168 ◦C [32]). 1H
NMR (600 MHz, DMSO-d6) δ 9.57 (s, 1H), 8.18 (d, J = 7.8 Hz, 2H), 8.09 (dd, J = 7.8, 1.1 Hz,
1H), 7.78 (td, J = 8.4, 1.3 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.54 (t, J = 7.3 Hz, 1H), 7.54 (t,
J = 7.3 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 7.54 (t, J = 7.3 Hz, 1H). 13C NMR (150 MHz, DMSO-
d6) δ 173.3, 154.8, 145.5, 139.2, 134.0, 131.4, 130.2, 128.8, 127.9, 125.0, 124.9, 121.5, 118.6.
LCMass for C15H9O3 [M − H]+ 237.23. Found: 237.33. Purity: 96.7%.

3.3.4. 2-(2-Fluorophenyl)-3-hydroxy-4H-chromen-4-one (6b)

Yield: 77% (49% [32]). A pink solid. Mp 176.0−181.3 ◦C (181−182 ◦C [32]). 1H NMR
(600 MHz, DMSO-d6) δ 9.40 (s, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.77 (td, J = 8.5, 1.3 Hz, 1H),
7.74 (t, J = 7.4 Hz, 1H), 7.62 (d, J = 8.5 Hz, 1H), 7.59 (ddd, J = 12.8, 7.0, 1.3 Hz, 1H), 7.47 (t,
J = 7.4 Hz, 1H), 7.37 (dd, J = 6.9, 4.4 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H). 13C NMR (150 MHz,
DMSO-d6) δ 173.0, 159.4 (1J = 250.5 Hz), 155.2, 143.7, 139.7, 134.1, 132.8 (3J = 9.0 Hz), 131.4,
125.2, 125.0 (2J = 25.5 Hz), 124.7, 122.0, 119.2, 119.1, 118.6, 116.4 (2J = 21.0 Hz). LCMass for
C15H10FO3 [M + H]+ 257.24. Found: 257.17. Purity: 99.9%.
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3.3.5. 2-(2-Chlorophenyl)-3-hydroxy-4H-chromen-4-one (6c)

Yield: 70% (67% [32]). A yellow-white solid. Mp 187.1−188.1 ◦C (177−179 ◦C [32]).
1H NMR (600 MHz, DMSO-d6) δ 9.34 (s, 1H), 8.14 (dd, J = 8.0, 1.6 Hz, 1H), 7.78 (dd,
J = 8.3, 1.6 Hz, 1H), 7.67 (dd, J = 7.6, 1.6 Hz, 1H), 7.62 (t, J = 8.3 Hz, 2H), 7.55 (td, J = 8.0,
1.6 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H). 13C NMR (150 MHz, DMSO-d6)
d 173.0, 155.0, 146.2, 139.2, 133.9, 132.7, 132.0, 131.9, 130.0, 129.8, 127.3, 125.0, 124.8, 121.9,
118.4. LCMass for C15H10

35ClO3 [M + H]+ 273.21. Found: 273.17. Purity: 98.2%.

3.3.6. 2-(2-Bromophenyl)-3-hydroxy-4H-chromen-4-one (6d)

Yield: 76%. A yellow-white solid. Mp 184.4−186.3 ◦C. 1H NMR (600 MHz, DMSO-d6)
δ 9.31 (s, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.81−7.77 (m, 2H), 7.65 (d, J = 7.8 Hz, 1H), 7.63 (d,
J = 8.4 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.48 (t, J = 8.4 Hz, 1H), 7.47 (dd, J = 7.8, 1.2 Hz, 1H).
13C NMR (150 MHz, DMSO-d6) δ 173.1, 154.9, 147.5, 139.0, 133.9, 132.9, 132.1, 132.0, 127.8,
124.9 (x2), 124.8, 122.6, 122.0, 118.4. LCMass for C15H10

79BrO3 [M + H]+ 317.16. Found:
317.08. Purity: 99.9%.

3.3.7. 3-Hydroxy-2-(3-methoxyphenyl)-4H-chromen-4-one (6e)

Yield: 72% (39.2% [33]). A white solid. Mp 132.5−134.0 ◦C (133.0–135.0 ◦C [33]). 1H
NMR (600 MHz, DMSO-d6) δ 9.59 (s, 1H), 8.09 (dd, J = 7.9, 1.1 Hz, 1H), 7.78 (td, J = 7.6,
1.6 Hz, 2H), 7.74 (t, J = 7.9 Hz, 1H), 7.44 (d, J = 7.0 Hz, 1H), 7.07 (dd, J = 8.2, 2.5 Hz, 1H),
3.81 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 173.3, 159.4, 154.8, 145.2, 139.4, 134.0, 132.7,
129.9, 125.0, 124.9, 121.4, 120.3, 118.7, 115.5, 113.6, 55.5. LCMass for C16H13O4 [M + H]+

269.27. Found: 269.25. Purity: 97.8%.

3.3.8. 2-(3-Fluorophenyl)-3-hydroxy-4H-chromen-4-one (6f)

Yield: 62% (50% [32]). A yellow-white solid. Mp 172.3−176.4 ◦C (171−173 ◦C [32]).
1H NMR (600 MHz, DMSO-d6) δ 9.86 (s, 1H), 8.09 (d, J = 7.9 Hz, 1H), 8.06 (d, J = 7.9 Hz,
1H), 7.99 (d, J = 11.0 Hz, 1H), 7.79 (td, J = 8.0, 1.0 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.60 (dd,
J = 14.4, 7.8 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.32 (td, J = 9.0, 3.0 Hz, 1H). 13C NMR (150 MHz,
DMSO-d6) δ 173.2, 162.0 (1J = 240.0 Hz), 154.5, 143.6, 139.5, 134.0, 133.4 (3J = 7.5 Hz), 130.7
(3J = 9.0 Hz), 124.8 (x2), 123.7, 121.2, 118.5, 116.7 (2J = 21.0), 114.2 (2J = 24.0 Hz). LCMass for
C15H10FO3 [M + H]+ 257.24. Found: 257.17. Purity: 97.5%.

3.3.9. 2-(3-Chlorophenyl)-3-hydroxy-4H-chromen-4-one (6g)

Yield: 69% (29% [32]). A yellow-white solid. Mp 156.8−160.9 ◦C (157−159 ◦C [32]).
1H NMR (600 MHz, DMSO-d6) δ 9.88 (s, 1H), 8.21 (s, 1H), 8.13 (d, J = 7.8 Hz, 1H), 8.07 (d,
J = 8.0 Hz, 1H), 7.77 (t, J = 8.0 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.56 (t, J = 7.9 Hz, 1H), 7.52
(d, J = 7.3 Hz, 1H), 7.44 (t, J = 7.3 Hz, 1H). 13C NMR (150 MHz, DMSO-d6) δ 173.4, 154.8,
143.7, 139.8, 134.3, 133.6, 133.5, 130.7, 129.8, 127.3, 126.3, 125.0, 124.9, 121.4, 118.7. LCMass
for C15H10

35ClO3 [M + H]+ 273.21. Found: 273.08. Purity: 99.9%.

3.3.10. 2-(3-Bromophenyl)-3-hydroxy-4H-chromen-4-one (6h)

Yield: 60% (53.5% [33]). A yellow-white solid. Mp 167.3−172.0 ◦C (162−164 ◦C [33]).
1H NMR (600 MHz, DMSO-d6) δ 9.90 (s, 1H), 8.39 (s, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.11 (d,
J = 7.8 Hz, 1H), 7.80 (t, J = 6.6 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.53
(t, J = 7.8 Hz, 1H), 7.47 (t, J = 6.6 Hz, 1H). 13C NMR (150 MHz, DMSO-d6) δ 173.1, 154.6,
143.3, 139.7, 134.0, 133.6, 132.5, 130.8, 129.9, 126.4, 124.8, 124.7, 121.9, 121.3, 118.6. LCMass
for C15H10

79BrO3 [M + H]+ 317.16. Found: 317.08. Purity: 99.9%.

3.3.11. 3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one (6i)

Yield: 78% (74.6% [33]). A yellow-white solid. Mp 240.9−244.8 ◦C (234−236 ◦C [33]).
1H NMR (600 MHz, DMSO-d6) δ 9.41 (s, 1H), 8.19 (d, J = 9.0 Hz, 2H), 8.09 (d, J = 7.8 Hz,
1H), 7.77 (td, J = 7.2, 1.2 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.12 (d,
J = 9.0 Hz, 2H), 3.83 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 172.7, 160.5, 154.4, 145.7, 138.1,
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133.6, 129.5 (x2), 124.7, 124.6, 123.5, 121.3, 118.3, 114.1 (x2), 55.4. LCMass for C16H13O4
[M + H]+ 269.27. Found: 269.17. Purity: 95.5%.

3.3.12. 2-(4-Fluorophenyl)-3-hydroxy-4H-chromen-4-one (6j)

Yield: 59% (44% [32]). A white solid. Mp 155.5−155.8 ◦C (151−152 ◦C [32]). 1H NMR
(600 MHz, DMSO-d6) δ 9.64 (s, 1H), 8.24 (dd, J = 8.5, 8.5 Hz, 2H), 8.08 (d, J = 7.9 Hz, 1H),
7.78 (t, J = 7.4 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 8.5 Hz, 2H).
13C NMR (150 MHz, DMSO-d6) δ 173.2, 162.8 (1J = 247.5 Hz), 154.7, 144.7, 139.0, 134.0, 130.3
(3J = 9.0 Hz), 127.9, 125.0, 124.9, 121.4, 118.6, 115.8 (2J = 22.5 Hz). LCMass for C15H10FO3
[M + H]+ 257.24. Found: 257.17. Purity: 92.2%.

3.3.13. 2-(4-Chlorophenyl)-3-hydroxy-4H-chromen-4-one (6k)

Yield: 83% (58% [32]). A white solid. Mp 155.5−155.8 ◦C (202−204 ◦C [32]). 1H
NMR (600 MHz, DMSO-d6) δ 9.78 (s, 1H), 8.21 (d, J = 8.6 Hz, 2H), 8.08 (dd, J = 7.4, 1.1 Hz,
1H), 7.78 (td, J = 8.4, 1.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.6 Hz, 2H), 7.45 (t,
J = 7.4 Hz, 1H). 13C NMR (150 MHz, DMSO-d6) δ 173.3, 154.7, 144.3, 139.5, 134.7, 134.1,
130.3, 129.6, 128.9, 125.0, 124.9, 121.4, 118.6. LCMass for C15H10

35ClO3 [M + H]+ 273.21.
Found: 273.08. Purity: 99.2%.

3.3.14. 2-(4-Bromophenyl)-3-hydroxy-4H-chromen-4-one (6l)

Yield: 78 % (58% [32]). A yellow-white solid. Mp 205.0−209.5 ◦C (163−167 ◦C [32]).
1H NMR (600 MHz, DMSO-d6) δ 9.78 (s, 1H), 8.14 (d, J = 8.6 Hz, 2H), 8.09 (dd, J = 8.0,
1.4 Hz, 1H), 7.79 (td, J = 8.5, 1.4 Hz, 1H), 7.74 (d, J = 8.6 Hz, 2H), 7.73 (d, J = 8.0 Hz, 1H), 7.46
(t, J = 7.3 Hz, 1H). 13C NMR (150 MHz, DMSO-d6) δ 173.3, 154.7, 144.3, 139.5, 134.2, 131.8,
130.7, 129.7, 125.0, 124.9, 123.6, 121.4, 118.6. LCMass for C15H10

79BrO3 [M + H]+ 317.16.
Found: 317.00. Purity: 99.9%.

3.3.15. 6-Bromo-3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one (7i)

Yield: 84%. A yellow solid. Mp 197.9−204.9 ◦C. 1H NMR (600 MHz, DMSO-d6) δ 9.60
(s, 1H), 8.16 (d, J = 8.9 Hz, 2H), 8.12 (d, J = 2.5 Hz, 1H), 7.88 (dd, J = 9.0, 2.5 Hz, 1H), 7.70
(d, J = 9.0 Hz, 1H), 7.09 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ
171.7, 160.9, 153.5, 146.6, 138.5, 136.3, 129.8, 126.9, 123.4, 123.1, 117.1, 114.3, 55.6. LCMass
for C16H11

79BrO4 [M + H]+ 347.19. Found: 347.17. Purity: 97.6%.

3.3.16. 6-Bromo-2-(4-fluorophenyl)-3-hydroxy-4H-chromen-4-one (7j)

Yield: 77% (70% [34]). A yellow solid. Mp 212.5−215.9 ◦C (188-190 ◦C [34]). 1H NMR
(600 MHz, DMSO-d6) δ 9.81 (s, 1H), 8.20 (dd, J= 8.9, 5.6 Hz, 2H), 8.09 (d, J = 2.4 Hz, 1H),
7.86 (dd, J = 8.9, 2.4 Hz, 1H), 7.67 (d, J = 8.9 Hz, 1H), 7.34 (t, J = 8.9 Hz, 2H). 13C NMR
(150 MHz, DMSO-d6) δ 172.0, 162.9 (1J = 248.1 Hz), 153.5, 145.2, 139.1, 136.4, 130.4 (3J = 8.4 Hz),
127.6, 126.9, 123.0, 121.3, 117.1, 115.8 (2J = 21.6 Hz). LCMass for C15H7BrFO3 [M − H]+

333.13. Found: 333.17. Purity: 99.9%.

3.3.17. 6-Bromo-2-(4-chlorophenyl)-3-hydroxy-4H-chromen-4-one (7k)

Yield: 89% (85% [34]). A yellow solid. Mp 217.5−220.5 ◦C (172−173 ◦C [34]). 1H NMR
(600 MHz, DMSO-d6) δ 9.98 (s, 1H), 8.20 (d, J = 8.8 Hz, 2H), 8.13 (d, J = 2.5 Hz, 1H), 7.91 (dd,
J = 8.8, 2.5 Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 8.8 Hz, 2H). 13C NMR (150 MHz,
DMSO-d6) δ 171.9, 153.4, 144.7, 139.4, 136.4, 134.7, 129.8, 129.4, 128.7, 126.7, 122.8, 121.2,
117.0. LCMass for C15H9BrClO3 [M + H]+ 351.12. Found: 351.08. Purity: 99.9%.

3.3.18. 6-Bromo-2-(4-bromophenyl)-3-hydroxy-4H-chromen-4-one (7l)

Yield: 91% (77% [34]). A yellow-white solid. Mp 248.5−249.6 ◦C (233−235 ◦C [34]).
1H NMR (600 MHz, DMSO-d6) δ 10.02 (s, 1H), 8.15 (s, 1H), 8.14 (d, J = 8.7 Hz, 2H), 7.93 (dd,
J = 9.0, 2.5 Hz, 1H), 7.75 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 9.0 Hz, 1H). 13C NMR (150 MHz,
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DMSO-d6) δ 172.0, 153.5, 144.8, 139.6, 136.5, 131.7, 130.3, 129.7, 126.9, 123.7, 123.0, 121.3,
117.1. LCMass for C15H8Br2O3 [M + H]+ 395.07. Found: 395.00. Purity: 99.9%.

3.4. Pharmacological/Biological Assays
3.4.1. Cell Culture

Prof. Y. Su kindly provided human non-small lung cancer cells (A549 cells) from the
National Yang Ming Chiao Tung University, Taipei, Taiwan. The cells were stored in liquid
nitrogen (−196 ◦C). After the cells were thawed, they were incubated at 37 ◦C in CO2
(5%) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing fetal bovine
serum (10%, FBS), penicillin (100 U/mL), streptomycin (100 µg/mL), L-glutamine (2 µM),
and sodium pyruvate (1 mM). The cells were passaged twice weekly, and the experiment
was completed within 30 generations to minimize experimental errors [31,35].

3.4.2. In Vitro Cytotoxicity Assay

Cell viability was evaluated using the MTT assay [35,36] to further assess cytotoxicity.
The compound stock solution was stored in dimethyl sulfoxide (DMSO) at a concentration
of 100 mM at −20 ◦C and thawed immediately before use. Briefly, the cells were incubated
in 96-well culture plates (3 × 103 cells in 200 µL per well). After 24 h, cells were treated
with different concentrations (3.125, 6.25, 12.5, 25, 50, and 100 µM) of all 16 synthesized
compounds, and 5-FU was used as the positive control. After 72 h, the attached cells were
treated with an MTT reagent (0.5 mg/mL to 100 µL of each well) and incubated at 37 ◦C for
3 h. This reagent was then removed, DMSO (100 µL) was added to each well to dissolve
the formazan metabolite, and the amount of formazan was quantified by measuring the
absorbance at 570 nm using an ELISA plate reader (TECAN Spark, Tecan Group Ltd.,
Männedorf, Switzerland) (µ Quant). The optical density of formazan formed in the control
(untreated) cells was 100% viability.

3.4.3. Western Blotting Analysis

Western blotting was performed according to a previously described method [35,36].
Briefly, the cells were seeded in 6-well culture plates. After reaching 85–90% confluence,
cells were treated with 6l (0.25, 0.5, 1, and 2 µM) and 5-FU (5 µM) followed by incubation
for 48 h. The cells were then collected and lysed using a radioimmunoprecipitation assay
(RIPA) buffer. Lysates of the total protein were separated on sodium dodecyl sulfate
polyacrylamide gels (12.5%) and transferred to polyvinylidene difluoride membranes. The
membranes were blocked with a bovine serum albumin (2%, BSA) solution and incubated
with anti-Bax, anti-Bcl-2 (Cell Signaling Inc., Danvers, MA, USA), anti-caspase-3, and
anti-β-actin (GeneTex Inc., Irvine, CA, USA) primary antibodies at 4 ◦C overnight. Each
membrane was washed three times with Tris-buffered saline containing Tween 20 (0.1%,
TBST) and incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies
at room temperature for 2 h. Finally, the membranes were developed using an enhanced
chemiluminescence (ECL) detection kit and visualized using an ImageQuant LAS 4000
Mini bio-molecular imager (GE Healthcare, Marlborough, MA, USA). Band densities were
quantified using ImageJ software 1.53a (BioTechniques, New York, NY, USA).

3.4.4. Statistical Analysis

All results are presented as mean ± SEM. Statistical analysis was executed using
Student’s t-test. A probability of 0.05 or less was considered to be statistically significant.
Microsoft Excel 2019 was used for the statistical and graphical assessment. All experiments
were executed at least 3 times.

4. Conclusions

In conclusion, among the sixteen synthesized flavonoids, 2-(4-bromophenyl)-3-hydroxy-
4H-chromen-4-one (6l) exhibited the highest cytotoxic activity against A549 cells. Further-
more, compounds 6a, 6j, and 6k exhibited activities comparable to 5-FU. The structure–
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activity relationship studies revealed that the halogenation at C’-4 in the B ring enhanced
the cytotoxic effects against A549 cells. The Western blot analysis confirmed that compound
6l induced apoptosis in A549 cells via mitochondrial- and caspase-3-dependant pathways
(Figure 4). The present study suggests that bioactive synthetic compounds 6a, 6j, 6k, and
6l (especially 6l), are potential cytotoxic agents and could be promising candidates for
developing novel anticancer drugs.
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7k. Figure S31: 1H NMR (600 MHz, DMSO-d6) for compound 7l. Figure S32: 13C NMR (150 MHz,
DMSO-d6) for compound 7l.
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