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Abstract: Computational drug-repositioning technology is an effective tool for speeding up drug
development. As biological data resources continue to grow, it becomes more important to find
effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable
data has become a more rational and efficient approach to drug repositioning. The disease–drug
correlation method (DDCM) proposed in this study is a novel approach that integrates data from
multiple sources and different levels to predict potential treatments for diseases, utilizing support-
vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms
and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective
similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores,
and undergoing a randomized perturbation and stepwise screening pipeline. Some potential thera-
peutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has
been well-validated in terms of the literature, function, drug target, and survival-essential genes. The
method’s feasibility was confirmed by comparing the predicted results with the classical method
and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional
approach to studying disease–drug correlations and presents a fresh perspective for understanding
the pathogenesis of diseases.

Keywords: drug repositioning; support-vector regression; hybrid matrix; potential therapeutic drugs

1. Introduction

Drug repositioning is an effective and promising strategy for identifying new ther-
apeutic indications for existing drugs. This approach has the potential to significantly
enhance the efficiency and productivity of traditional drug discovery and development,
ultimately leading to better health outcomes for patients [1]. Drug repositioning has proven
to be a valuable solution for the treatment of certain diseases. While the initial instances of
successful drug repositioning were largely serendipitous, there are now several examples
of effective repositioning, such as acetylsalicylic acid [2,3], thalidomide [4,5], sildenafil [6,7]
and dimethyl fumarate [8–10]. As the amount of available biomedical data continues to
expand, the benefits of using computational methods to identify potential drug candidates
for diseases of interest have become increasingly apparent [11,12]. In the realm of com-
putational drug repositioning, the primary methods include text mining [13–17], network
analysis [18–22], and machine learning [23–28]. The advantages of computational drug
repositioning have been demonstrated by numerous researchers through the development
of algorithms and experimental validation.

Text-mining advancements have facilitated the creation of association networks for
biomedical entities, like genes, drugs, and diseases [13]. For its capability of integrating
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multiple data sources, network analysis has been a research hot spot and has been uti-
lized in the field of drug repositioning [18]. Machine learning is ideal for computational
drug repositioning, as it can process large amounts of data and help identify associations
between biological data [23]. By improving the robustness and accuracy of models, ma-
chine learning can lead to more effective drug-repositioning strategies. Machine-learning
methods currently rely on drug- and disease-based searching to identify new drug–disease
interactions. This strategy has emerged as the main approach for discovering potential drug
candidates for diseases [29]. The construction of training and test sets is typically required
for machine-learning methods. This involves using known disease–drug relationships to
establish benchmarks for evaluating new drug candidates [30]. Both machine-learning
and network-analysis methods rely on known disease–drug relationships to construct
similarity matrices or networks. These are used to identify and evaluate potential drug
candidates [31]. Using existing prior information on known disease–drug correlations
when constructing similarity matrices or networks can impact the performance of machine
learning and similarity network analysis [30]. In binary classification models, disease–drug
relationships that are not present in existing data resources are included in the negative
training set. The absence of documented associations does not necessarily mean that the
association does not exist in biology. In fact, these yet-to-be-observed associations can be
vital pieces of information for discovering new drugs. Furthermore, disease-pathway and
drug-mechanism data are essential to understanding the reasons underlying the occurrence
and progression of diseases, as well as the mechanisms through which drugs can treat such
diseases [32].

As a supervised learning approach, machine learning can typically produce superior
results for drug repositioning. DDCM is a machine-learning strategy based on the support-
vector regression algorithm. Compared with other methods, DDCM considered more levels
of data types, which has certain advantages for model construction. DDCM represented
the similarity of related biological characteristics of drugs and diseases in the form of a
matrix in the construction process, which ensured biological significance in the training
process. The SVR-based DDCM approach covered the advantages of regression models.
Unlike traditional classifiers, DDCM could describe the correlation between diseases and
drugs in the form of continuous scores. This allowed DDCM to quantitatively characterize
the association between disease and drug, overcoming the limitation of the traditional
binary classification problem. For the diseases where no therapeutic relationship had been
observed, the appropriate correlation score could be given for drug pairs, which solved
the problem of negative set matching. This also allowed the DDCM method to maximize
the inclusion of drugs that differ significantly from the known therapeutic drugs for the
disease within the prediction. The prediction of potential therapeutic drugs for a disease
could also be further expanded by the introduction of slack variables in the support-vector
regression algorithm. Through a stepwise screening pipeline, the DDCM method could
effectively reduce the influence of random error on prediction, and this method has been
proven to be stable and flexible in multiple aspects.

2. Results
2.1. Potential Therapeutic Drugs for 59 Neoplasms

For these diseases in C04.588 branch of Medical Subject Headings (MeSH), the DDCM
approach was applied to predict the potential therapeutic drugs (Figure 1A,B).
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Figure 1. Workflow of the DDCM. (A) The process of forming a hybrid matrix and predicting dis-
ease–drug correlation scores in the DDCM approach. (B) The process of screening potential thera-
peutic drugs for a disease by means of a disease–drug correlation score in the DDCM approach. 

The distributions of disease–drug correlation scores were relatively mainly distrib-
uted around zero; there were slight differences between them. The higher the positive 
score, the greater the degree of correlation between the drug and the disease, and the more 
likely the drug was to be a potential therapeutic drug for the disease (Figure 2A). The 
disease–drug correlation scores changed with the number and combination of diseases 
involved in the calculation (File S4 1_c04.588_CorScore). Therefore, a stepwise screening 
pipeline was adopted to obtain stable drug candidates and potential therapeutic drugs. 
The distribution of drug–disease correlation scores was derived for 59 neoplasms under 
three randomized perturbation types and for 59 neoplasms before randomization. The 
distribution of disease–drug correlation scores showed different degrees of fluctuation in 
different types of randomizations (Figure 2B). And, the more diseases were removed from 
the randomized perturbation experiments, the more fluctuations in the final disease–drug 
correlation scores were obtained than those when no diseases were removed. The stability 
score for each drug fluctuated across different random perturbation types. Thus, the in-
tersection of the drugs obtained in each of the three random perturbation types was con-
sidered here (File S4 2_stability_scores_boxplot). Non-small-cell lung cancer (NSCLC) 
was an example. The stable drug candidates for non-small-cell lung cancer were screened 
by a stepwise screening pipeline. The stability scores of the 50 drugs to be screened in 
different states of random perturbation are shown (Figure 2C). The closer the stability 
score is to one, the more stable the drug is under such conditions. The stability scores in 
several random perturbation conditions were close to one, indicating that the volatility of 
the drug’s stability was low and more likely to be a potential therapeutic drug. The step-
wise screening pipeline screened drugs with high stability and a low degree of stability 
fluctuation in different random states, resulting in 25 potential therapeutic drugs for 
NSCLC. There were potential therapeutic drugs for neoplasms other than gallbladder can-
cer and inflammatory breast carcinoma. These diseases were each predicted to range from 
11–30 potential therapeutic drugs (Figure 2D). (File S2 Table S5). 

Figure 1. Workflow of the DDCM. (A) The process of forming a hybrid matrix and predicting disease–
drug correlation scores in the DDCM approach. (B) The process of screening potential therapeutic
drugs for a disease by means of a disease–drug correlation score in the DDCM approach.

The distributions of disease–drug correlation scores were relatively mainly distributed
around zero; there were slight differences between them. The higher the positive score,
the greater the degree of correlation between the drug and the disease, and the more
likely the drug was to be a potential therapeutic drug for the disease (Figure 2A). The
disease–drug correlation scores changed with the number and combination of diseases
involved in the calculation (File S4 1_c04.588_CorScore). Therefore, a stepwise screening
pipeline was adopted to obtain stable drug candidates and potential therapeutic drugs.
The distribution of drug–disease correlation scores was derived for 59 neoplasms under
three randomized perturbation types and for 59 neoplasms before randomization. The
distribution of disease–drug correlation scores showed different degrees of fluctuation
in different types of randomizations (Figure 2B). And, the more diseases were removed
from the randomized perturbation experiments, the more fluctuations in the final disease–
drug correlation scores were obtained than those when no diseases were removed. The
stability score for each drug fluctuated across different random perturbation types. Thus,
the intersection of the drugs obtained in each of the three random perturbation types was
considered here (File S4 2_stability_scores_boxplot). Non-small-cell lung cancer (NSCLC)
was an example. The stable drug candidates for non-small-cell lung cancer were screened by
a stepwise screening pipeline. The stability scores of the 50 drugs to be screened in different
states of random perturbation are shown (Figure 2C). The closer the stability score is to one,
the more stable the drug is under such conditions. The stability scores in several random
perturbation conditions were close to one, indicating that the volatility of the drug’s stability
was low and more likely to be a potential therapeutic drug. The stepwise screening pipeline
screened drugs with high stability and a low degree of stability fluctuation in different
random states, resulting in 25 potential therapeutic drugs for NSCLC. There were potential
therapeutic drugs for neoplasms other than gallbladder cancer and inflammatory breast
carcinoma. These diseases were each predicted to range from 11–30 potential therapeutic
drugs (Figure 2D). (File S2 Table S5).
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Figure 2. Potential therapeutic drugs for 59 neoplasms. (A) The distribution of disease–drug corre-
lation scores for different diseases (The figure shows the distribution of disease–drug correlation 
scores for five diseases, supratentorial cancer, pituitary cancer, non-small-cell lung carcinoma, cen-
tral nervous system cancer, and brain cancer). (B) The distribution of disease–drug correlation 
scores for the overall diseases in the C04.588 branch of MeSH before and after random perturbation. 
(C) Radar plot of stable drug candidates for NSCLC and the potential therapeutic drug screening 
criteria, where drugs with stability scores close to 1 multiple times were considered relatively stable. 
After the potential therapeutic screening criteria, a total of 25 potential therapeutic drugs for the 
final NSCLC were identified. (D) The number of potential therapeutic drugs for all diseases in the 
C04.588 branch. 
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words, whether a potential therapeutic drug for a disease has been investigated for the 
treatment of the disease, whether a potential therapeutic drug acts in combination with 
other drugs for the treatment of a disease, or whether the drug target of a drug has been 
shown to be a potential therapeutic target for the disease. For NSCLC, the literature vali-
dation rate of the screened potential therapeutic drugs reached 56.0% (14/25) (Supplemen-
tary Table S2). 

2.2.2. The Functional Aspect 
From the functional aspect, since the functional properties of drugs were such that 
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Figure 2. Potential therapeutic drugs for 59 neoplasms. (A) The distribution of disease–drug
correlation scores for different diseases (The figure shows the distribution of disease–drug correlation
scores for five diseases, supratentorial cancer, pituitary cancer, non-small-cell lung carcinoma, central
nervous system cancer, and brain cancer). (B) The distribution of disease–drug correlation scores for
the overall diseases in the C04.588 branch of MeSH before and after random perturbation. (C) Radar
plot of stable drug candidates for NSCLC and the potential therapeutic drug screening criteria, where
drugs with stability scores close to 1 multiple times were considered relatively stable. After the
potential therapeutic screening criteria, a total of 25 potential therapeutic drugs for the final NSCLC
were identified. (D) The number of potential therapeutic drugs for all diseases in the C04.588 branch.

2.2. Potential Therapeutic Capacity Analysis and Validation of Potential Therapeutic Drugs

The effectiveness of potential therapeutic drugs was evaluated in the literature aspect,
the functional aspect, the drug-target aspect, and the survival analysis aspect.

2.2.1. The Literature Aspect

From the literature aspect, text-mining techniques were leveraged by mining keywords,
whether a potential therapeutic drug for a disease has been investigated for the treatment
of the disease, whether a potential therapeutic drug acts in combination with other drugs
for the treatment of a disease, or whether the drug target of a drug has been shown to be a
potential therapeutic target for the disease. For NSCLC, the literature validation rate of the
screened potential therapeutic drugs reached 56.0% (14/25) (Supplementary Table S2).

2.2.2. The Functional Aspect

From the functional aspect, since the functional properties of drugs were such that
they exert their effects through target genes, we focused on the effects of drugs through
their target genes. In turn, known disease pathogenic genes can reveal pathogenesis. Thus,
functional enrichment was performed for drug-target genes of potential therapeutic drugs
and drug-target genes of known drugs for each disease.
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We focused on genes associated with non-small-cell lung cancer, including drug targets
for potential therapeutic drugs, drug targets for known drugs, and pathogenic genes. In an
attempt to reveal the therapeutic mechanism of potential therapeutic drugs, these genes
were mainly examined. This part of the gene was categorized into four groups (Group I
consisted of five genes: genes in the overlapping part of drug targets of potential therapeutic
drugs and drug targets of known drugs and pathogenic genes. Group II consisted of seven
genes: genes in the overlapping part of drug targets of potential therapeutic drugs and drug
targets of known drugs. Group III consisted of ten genes: genes in the overlapping part
of drug targets of potential therapeutic drugs and pathogenic genes. Group IV consisted
of thirty-six genes: drug targets of potential therapeutic drugs only) (Figure 3A). An
enrichment analysis was performed separately for potential therapeutic drugs and drug
targets of known therapeutic drugs for NSCLC (Figure 3B,C).

Functional enrichment was performed for each set of genes. Partial results of some
major genes in each group are shown (Figure 3D–G). (File S2 Table S7).

In Group I, where the mechanism of pathogenesis and the potential therapeutic
mechanism were similar to the known therapeutic mechanism, the literature validation
rate of potential therapeutic drugs was 50.0% (3/6). In Group II, where the mechanism
of treatment was similar to that of known therapeutic drugs, the literature validation rate
of potential therapeutic drugs was 66.7% (4/6). In Group III, where the mechanism of
pathogenesis and potential therapeutic mechanism were similar, the literature validation
rate of potential therapeutic drugs was 75.0% (3/4). In Group IV, where the potential
therapeutic mechanism was specific, the literature validation rate of potential therapeutic
drugs was 70.0% (7/10).

The results of the enrichment analysis showed that, for the drug targets of potential
therapeutic drugs for NSCLC, all groups of genes were enriched in peptidyl–tyrosine
phosphorylation (GO:0018108), peptidyl–tyrosine modification (GO:0018212), positive
regulation of kinase activity (GO:0033674), and other such GO terms. The enrichment of
drug-target genes for known drugs in NSCLC can be seen in the enrichment of some genes
to these GO terms as well. It was known that Groups III and IV do not overlap with the
drug-target genes of known drugs. Genes in Group IV do not overlap with the pathogenic
genes, which were similarly enriched in a common functional class with the drug targets
of known drugs, suggesting that these potential therapeutic drugs, although targeting
different genes than known drugs, may perform the same or similar functions through
different biological pathways.

Klarisa Rikova et al. characterize tyrosine kinase signaling across 41 non-small-cell
lung cancer (NSCLC) cell lines and over 150 NSCLC tumors. Profiles of phosphotyrosine
signaling are generated and analyzed to identify known oncogenic kinases, such as EGFR
and c-Met, as well as novel ALK and ROS fusion proteins. By focusing on activated cell
circuitry, the approach provides insight into cancer biology not available at the chromoso-
mal and transcriptional levels and can be applied broadly across all human cancers [33].
The lymph node metastasis of NSCLC exclusive somatic mutation (LME-SMs) genes was
enriched in peptidyl–tyrosine phosphorylation, peptidyl–tyrosine modification, protein
tyrosine kinase activity, and transmembrane receptor protein kinase [34]. Santos GdC et al.
have proven that tyrosine kinase inhibitors (TKIs) are especially effective in patients whose
tumors harbor activating mutations in the tyrosine kinase domain of the EGFR gene. More
recent trials have suggested that, for advanced NSCLC patients with EGFR mutant tumors,
initial therapy with a TKI instead of chemotherapy may be the best choice of treatment [35].
And since the drug-target genes of these groups were enriched with the drug-target genes
of known drugs on these GO terms, it can be inferred that the potential therapeutic drugs
can be therapeutic drugs for NSCLC from the functional aspect. As a whole, the drug
targets predicted for potential therapeutic drugs for NSCLC can play a corresponding role
in the functional aspect. In terms of each drug individually, the corresponding drugs were
also useful for the treatment of NSCLC from different perspectives.
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of known therapeutic drugs for NSCLC. (D–G) Partial Gene Ontology (GO) enrichment of drug-
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targets, Ori: known drug targets, and Pat: pathogenic genes of NSCLC). (B) Drug-target enrichment
analysis of potential therapeutic drugs for NSCLC. (C) Drug-target enrichment analysis of known
therapeutic drugs for NSCLC. (D–G) Partial Gene Ontology (GO) enrichment of drug-target sub-
groups for potential therapeutic drugs in NSCLC. (Some genes were not enriched on GO terms)
(D) Group I. (E) Group II. (F) Group III. (G) Group IV. (GO terms enriched for all four groups of drug
target genes were marked with red boxes.)

In the results of drug-target enrichment analysis for Groups II, III, and IV, we can
find that these drug targets were enriched to the function of protein autophosphorylation
(GO:0046777) in addition to the common three functional classes, indicating that potential
therapeutic drugs and known therapeutic drugs also play a role in the treatment of disease
through the pathogenic mechanism of the disease. Jing-Qiang Huang et al. suggested
that the SRPK1/GSK3β axis promotes gefitinib resistance by activating the Wnt pathway
in the form of autophosphorylation and may serve as a potential therapeutic target for
overcoming gefitinib resistance in NSCLC [36].

For the additional enrichment of Groups II and IV to the common function positive
regulation of collagen metabolic process (GO:0010714), potential therapeutic drugs and
known therapeutic drugs have a similar therapeutic pattern. It is possible that the thera-
peutic effect was exerted by affecting this biological pathway. Hao Chang et al. suggested
that the overexpression of collagen XVIII was associated with NSCLC progression and a
poor outcome. Thus, collagen XVIII expression may serve as a useful prognostic marker in
patients with NSCLC [37].

For Groups III and IV jointly enriched beyond the three GO terms, we identified
positive regulation of phosphatidylinositol 3-kinase activity (GO:0043552), potential thera-
peutic drugs that exert a therapeutic effect on the pathogenic mechanism of the disease,
and this therapeutic effect is unique relative to known therapeutic drugs. Panpan Zhang
et al. proved when phosphatidylinositol 3-kinase/protein kinase B signaling was inhibited
by corresponding inhibitors, PD-L1 expression was downregulated, and apoptosis was
upregulated in the cisplatin-treated cancer cells. These results suggest that the upregula-
tion of PD-L1 promotes a resistance response in lung cancer cells that might be through
activation of the phosphatidylinositol 3-kinase/protein kinase B pathway and suppression
of tumor-infiltrating lymphocytes [38].

In addition, for Group IV genes (BTK/LYN), the enriched GO term toll-like receptor
signaling pathway (GO:0002224) was shown to be associated with NSCLC. Toll-like re-
ceptors (TLR) recognize pathogen molecules and danger-associated signals that stimulate
inflammatory processes. TLRs have been studied mainly in antigen-presenting cells, where
they exert important immune regulatory functions, but they were also expressed by epithe-
lial tumor cells, where they have been implicated in tumor progression. Saradiya Chatterjee
et al. proved that, in patients with non-small-cell lung cancer, expression analyses re-
vealed that high TLR7 expression was strongly associated with resistance to neoadjuvant
chemotherapy and poor clinical outcomes [39]. BTK was targeted by DB01254, and LYN
was targeted by DB01254 and DB08901, suggesting that both drugs may exert the phar-
macological effects of drugs from the perspective of inhibiting the high expression of
toll-like receptors.

2.2.3. The Drug-Target Aspect

For the known drug-target genes and drug targets of potential therapeutic drugs for
non-small-cell lung cancer, according to KEGG Mapper, most of their drug targets are
involved in cancer-related pathways, both for known therapeutic drugs and potential
therapeutic drugs. And, the drug targets of potential therapeutic drugs (including four
groups of genes) are mainly involved in the PI3K-Akt signaling pathway and the Jak-STAT
signaling pathway of the cancer pathway (Figure 4).
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which the drug-target genes of potential therapeutic drugs are predominantly involved).

Except for Group I, which was available for all aspects of genes, when a drug targets
genes in Groups II, III, and IV, the drug should have a similar therapeutic mechanism to
known drugs and be associated with the pathogenic mechanism of the disease. And in some
aspects, it has its own unique therapeutic mechanism. For example, ponatinib (DB08901) is
a kinase inhibitor used to treat patients with various types of chronic myeloid leukemia
(Drugbank: ponatinib). These signaling pathways play an important role in the develop-
ment of cancer. Ren M et al. demonstrated that pharmacological inhibition of FGFR1 kinase
activity with ponatinib may be effective for the treatment of lung cancer patients whose
tumors overexpress FGFR1 [40]. Ponatinib targets FGFR2 and exerts the same therapeutic
effect as known drugs for NSCLC. FGFR2 and other FGFR kinase family gene alterations
have been found in both lung squamous cell carcinoma and lung adenocarcinoma [41].
Also, ponatinib targets genes in parts that overlap with pathogenic genes such as KDR. The
clinical outcomes of patients with advanced NSCLC receiving first-line bevacizumab plus
chemotherapy regimens might be impacted by polymorphism V297 L through mediating
the mRNA expression of KDR [42]. In addition, ponatinib targets potential therapeutic
drug-specific targets such as ABL1. Mutations in ABL1 identified in primary NSCLC tumors
and a lung cancer cell line increase downstream pathway activation compared to wild-type
ABL1 [43].

When a drug targets genes in Groups III and IV, the drug should have its own unique
therapeutic mechanism for the pathogenic mechanism of the disease. For example, dasa-
tinib (DB01254) is an oral dual BCR/ABL and SRC family tyrosine kinase inhibitor ap-
proved for use in patients with chronic myelogenous leukemia (DrugBank: dasatinib). It
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inhibited migration and invasion, induced cell-cycle arrest, and partial apoptosis in NSCLC
cell lines. Dasatinib is a drug with multiple targets (these target genes are mainly located in
Groups III and IV), which works by inhibiting the metastasis of epithelial cells and affecting
related signaling pathways to treat non-small-cell lung cancer. It was demonstrated that
this drug will be a unique therapeutic idea for potential therapeutic drugs in NSCLC.
Molecular alterations of YES1, a member of the SRC, can be found in a significant subset of
patients with lung cancer. Moreover, high YES1 protein expression was an independent
predictor for poor prognosis in patients with lung cancer [44]. Phase I/II studies have
shown that dasatinib in combination with erlotinib is safe and feasible for the treatment of
NSCLC [45,46]. Some other targets targeted by dasatinib, such as PDGFRB [47] and MAPK,
have been validated in the literature accordingly.

Romidepsin (DB06176) is a histone deacetylase (HDAC) inhibitor used to treat cu-
taneous T-cell lymphoma (DrugBank: romidepsin). The drug targets of the drug were
mainly in Group IV and Group II. Theoretically, the therapeutic mechanism of the drug
has similarities to known drugs as well as its own unique aspects. The drug has some
similarities with the known drugs for NSCLC in terms of the mechanism of cure. There
were also some individual therapeutic mechanisms (e.g., branching morphogenesis of an
epithelial tube, cell–substrate adhesion, etc.). Karthik S et al. proved that romidepsin and
bortezomib cooperatively inhibit A549 NSCLC cell proliferation by altering the histone
acetylation status and the expression of cell-cycle regulators and MMPs. Romidepsin along
with bortezomib might be an effective treatment approach for A549 NSCLC cells [48]. This
drug also has an impact on improving the chemosensitivity of NSCLC by targeting the
ABCC1 gene [49,50].

In addition to this, if a drug targets only Group IV, the potential therapeutic drug may
have an impact on the treatment of the disease from a unique therapeutic mechanism. Alis-
ertib (DB05220) is a novel aurora A kinase inhibitor under investigation for the treatment
of various forms of cancer (DrugBank: alisertib). Alisertib is an oral aurora kinase inhibitor
that has been shown to induce cell-cycle arrest and apoptosis in preclinical studies. It is
currently under investigation for a wide variety of malignancies, including hematologic
and solid tumors [51]. Wang et al. found that an AURKA inhibitor, alisertib, treatment
restored the susceptibility of resistant cells to EGFR-TKIs and partially reversed the EMT
process, thereby reducing migration and invasion in EGFR-TKI-resistant cells. This study
provides evidence that targeting the AURKA signaling pathway by alisertib may be a
novel approach for overcoming EGFR-TKI resistance and for the treatment of metastatic
EGFR-TKIs in NSCLC patients [52].

Among the potential therapeutic drugs for NSCLC, there are some drugs that are
temporarily unproven in the literature.

Flucytosine (DB01099) is an antifungal indicated only to treat severe infections through-
out the body caused by susceptible strains of Candida or Cryptococcus (DrugBank: flucyto-
sine). Flucytosine targets the DNMT1 gene in Group I. DNMT1 is mainly enriched to the
GO:0033002 functional class, namely muscle-cell proliferation, and Jia et al. demonstrated
that NSCLC-derived exosomes promote cell proliferation and inhibit cell apoptosis in
both normal lung fibroblasts and NSCLC cells by delivering ASMA. High expression of
DNMT1 protein in serum may increase the pathogenesis of non-small-cell lung cancer and
may play an important role in the early development of lung cancer. Genes in Group I
were mainly enriched to some cancer-related signaling pathways, immune responses, and
cell-differentiation-related functions. Some of the literature has confirmed the association
of these functional classes with non-small-cell lung cancer [53].

Terazosin (DB01162) is an alpha-1 adrenergic antagonist used in the treatment of
symptomatic benign prostatic hyperplasia and the management of hypertension (DrugBank:
terazosin). Terazosin targets TGFB1 in Group III and ADRA1A, ADRA1B, ADRA1D, KCNH2,
KCNH6, and KCNH7 in Group IV. For TGFB1, Ki-Eun Hwang confirmed that TGF-β1
induces EMT, which leads to lung cancer cell migration and invasion. It is possible to treat
non-small-cell lung cancer by inhibiting this aspect of the TGFB1 gene [54].
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Colchicine (DB01394) is an alkaloid used in the symptomatic relief of pain in attacks of
gout and to treat the inflammatory symptoms of Familial Mediterranean Fever (DrugBank:
colchicine). Colchicine targets the TUBB gene in Group I. Knockdown of TUBB sensitizes
cells to MTAs, while overexpression confers resistance. A high expression of TUBB is
correlated with worse survival of lung adenocarcinoma [55]. The TUBB gene is primarily
enriched for immune-related neutrophil activity. Proinflammatory cytokines are centrally
involved in tumor progression and survival in non-small-cell lung cancer, and both the
presence of infiltrating neutrophils and bacterial infection in the lung may indicate a poor
prognosis. Interaction between bacterial pathogens, neutrophils, and tumor cells might
amplify the release of proinflammatory cytokines, which may promote tumor growth
in vivo [56].

2.2.4. The Survival-Essential Gene Aspect

Furthermore, survival analysis is widely used in clinical and epidemiological research.
Its use in the contemporary medical literature is widespread [57]. The Cancer Dependency
Map (DepMap; https://depmap.org/portal/; 21Q4 Public+Score, Chronos, released on
3 November 2021) utilizes RNA interference (RNAi) and Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR-Cas9) technologies to screen for the necessity of var-
ious genes for tumors. DepMap analyzes hundreds of cancer cell-line models to obtain
information on the genome of individual cell lines and their sensitivity to genetic and small
molecule perturbations. Multiple analyses and studies of tumor cells were attempted to
identify the genetic and pharmacological dependence of tumors as well as predict their
biomarkers. Based on the potential therapeutic drugs, we performed the identification of
survival-essential genes for each group of genes for these neoplasms. For NSCLC, several
subgroups of drug targets for potential therapeutic drugs can be achieved by a CRISPR
knockout screen, which represents the impact of knocked-out genes on the survival of
cancer cell lines [58]. Typically, the cut-off value will be set to −0.5 for gene-effect scores,
indicating a significant depletion of cell lines [59].

The gene effects of 94 NSCLC cell lines derived from the genome-wide CRISPR
knockout screens were stored in the DepMap database. Each group of genes was screened
for survival-essential genes by this method. A total of 58 genes were involved in the
identification, of which 17 were essential for survival (Figure 5) (File S3). Targeting these
genes, which were essential for survival, could have the effect of treating neoplasms
Further, we screened for drugs corresponding to these survival-essential genes (Table 1).
We determined that these drugs that target survival-essential genes were more likely to
have an impact on the survival of cancer cell lines and were more likely to be therapeutic
drugs for NSCLC.

Among the potential therapeutic drugs corresponding to these survival-essential genes,
the literature validation rate was 70.0% (7/10). Among them, the literature validation rate
of potential therapeutic drugs in Group I was 50.0% (2/4), in Group II was 50.0% (2/4), in
Group III was 100.0% (3/3), and in Group IV was 100.0% (4/4).

Table 1. The drugs corresponding to the survival-essential genes in each group.

Group Survival-Essential Genes Drugs

I TOP2A, DNMT1, AHR DB01177/DB01179/DB01099/DB00338
II TUBB, FGFR2, HDAC2 DB01179/DB01394/DB08901/DB06176
III SRC, PDGFRA, HSP90AA1, CSK DB01254/DB08901/DB02424

IV PPAT, STAT5B, AURKA, MAPK14,
HSP90B1, HDAC4, HSPA8 DB01254/DB05220/DB02424/DB06176

https://depmap.org/portal/
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Podofilox (DB01179) is a topical agent used for the treatment of external genital warts
and perianal warts. TOP2A and TUBB targeted by podofilox were located in Groups I
and II, respectively, and these two genes were identified as survival-essential genes in
94 cell lines and 88 cell lines, respectively. The description of podofilox in DrugBank is
that it may have antineoplastic properties, as do some of its congeners and derivatives.
(DrugBank: podofilox). Guo et al. proved that podophyllotoxins (podofilox), including
epipodophyllotoxin derivatives, can act on a diverse array of drug targets in cancer cells
and, thus, possess potent activity against various forms of cancer cell lines, including drug-
resistant forms [60]. Likewise, flucytosine (DB01099) targets DNMT1 in Group I, which was
considered to be a survival-essential gene in 80 cell lines. It has been combined with newer
azole antifungal agents. It also plays an important role in a new approach to the treatment
of cancer [61]. Colchicine (DB01394) targets TUBB in Group II, which was considered a
survival-essential gene in 88 cell lines. It was concluded that an untapped potential exists
for exploiting the colchicine scaffold as a pharmacophore, with the possibility of increasing
its affinity for tubulin isotypes overexpressed in cancer and decreasing it for normal cells,
thereby widening the therapeutic window [62].
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Based on the performance of the drug targets of these drugs in knockout screens
for survival-essential genes, as well as descriptions in DrugBank and various studies
suggesting that although these drugs have not been directly demonstrated in the literature
to have therapeutic effects in NSCLC, their pharmacological effects make them promising
potential therapeutic drugs for NSCLC.

From a survival perspective, we can conclude that the genes targeted by certain
unproven drugs (DB01099, DB01179, DB01394, etc.) in the literature may be survival-related
genes. Thus, these unproven drugs prove their importance not only from a functional point
of view but also from the point of view of targeting genes essential for survival, suggesting
that such drugs may be potential therapeutic drugs.

2.3. Drug Research of Similar Neoplasms in MeSH Branches

Usually, similar diseases tend to have the same susceptible genes or therapeutic tar-
gets [63,64] and similar drugs combined with similar drug targets [65]. MeSH provides a
consistent way to find content with different terms but the same concepts. MeSH organizes
its descriptors into a hierarchy. Diseases under the same branch have a higher similarity. To
further confirm the validity of the DDCM approach, one of the sub-branches of neoplasms
was chosen. These four diseases were central nervous system cancer, brain cancer, supraten-
torial cancer, and pituitary cancer in the same branch based on the stepwise relationship
of the MeSH branch (Figure 6A). All four diseases have some overlap in terms of known
therapeutic drugs and potential therapeutic drugs. Some of these potential therapeutic drugs
were even confirmed in certain aspects. The co-drugs analysis of the MeSH sub-branch has
also demonstrated the validity of the DDCM approach from the other side.

Considering the genetic aspect, the overlap among the drug-target genes of the screened
potential therapeutic drugs, the target genes of the known drugs, and the pathogenic genes
of the diseases was examined for the four diseases. It could be found that the degree of
overlap between the screened potential therapeutic drugs and the drug targets of the known
drugs for these four similar diseases was relatively large, while the degree of overlap with
the pathogenic genes was smaller (Figure 6B(a–d)). This indicated that the therapeutic
mechanisms of both screened potential therapeutic drugs and known therapeutic drugs
were similar, while they were different from the pathogenic mechanisms of the diseases. In
addition, the drug targets of the known therapeutic drugs, the drug targets of the screened
potential therapeutic drugs, and the pathogenic genes of the four diseases overlap to some
extent (Figure 6C–E), indicating that the four diseases were similar in their respective
therapeutic and pathogenic mechanisms. This was further illustrated by the similarity of
the four diseases, since they were taken from the same branch of MeSH. Combined with the
previous results, similar diseases have drugs in common, so potential therapeutic drugs for
these diseases and known therapeutic drugs should each have some degree of overlap.

The analysis of known therapeutic drugs and potential therapeutic drugs for these dis-
eases showed that there was indeed some degree of overlap between the known therapeutic
drugs for these diseases. Also, by predicting potential therapeutic drugs for these diseases,
common therapeutic drugs could be found between these four cancers (Figure 6F,G).

Among the screened potential therapeutic drugs for the four diseases, plicamycin
(DB06810) was one of the screened potential therapeutic drugs common to central nervous
system cancer, brain cancer, supratentorial cancer, and pituitary cancer. Plicamycin is an
antineoplastic antibiotic produced by Streptomyces plicatus (DrugBank: Plicamycin); 6-O-
benzylguanine (DB11919) was predicted to be the potential therapeutic drug for brain cancer,
central nervous system cancer, and supratentorial cancer [66]. Many current experimental
studies have demonstrated the usefulness of the drug in the treatment of brain cancer, central
nervous system cancer, and other conditions [67–70]. The co-drug analysis of potential
therapeutic drugs for diseases of the same MeSH branch not only strengthened the conclusion
of co-drugs for similar diseases but also highlighted the validity of the method laterally.
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under the C04.588 branch of MeSH. (B) (a–d) The Venn diagrams indicate the degree of overlap of
the screened potential therapeutic drug targets, drug targets of known drugs, and disease pathogenic
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genes for brain cancer, central nervous system cancer, pituitary cancer, and supratentorial cancer,
respectively ([A] Drug-target genes of potential therapeutic drugs predicted by the DDCM approach.
[B] Drug-target genes of known drugs for a disease. [C] Pathogenic genes for a disease.). (C–E) The
overlap of drug targets of known therapeutic drugs, drug targets of potential therapeutic drugs,
and pathogenic genes for each of the four diseases, respectively. (F) Overlap of known therapeutic
drugs for the four diseases. (G) Overlap of the number of potential therapeutic drugs predicted by
the DDCM method for the four diseases. (H) Four genes traced from four disease perspectives to
predict potential therapeutic drug profiles. The blue circle indicates the gene and the yellow diamond
indicates the drug. BC, CC, PC, and SC denote the four diseases (brain cancer, central nervous system
cancer, pituitary cancer, and supratentorial cancer) of the retrospective approach, respectively.

It was observed that four genes, AHR, ABCC1, ABCC2, and NR1I2, were the targets
of the screened potential therapeutic drugs for all four diseases with a higher degree
of overlap compared to the known drug targets. From these four drug-target genes,
potential therapeutic drugs were traced from different disease perspectives (Figure 6H).
Among the four genes, we mainly focused on the AHR gene. Emerging evidence suggests
the promoting role of the AHR in the initiation, promotion, progression, invasion, and
metastasis of cancer cells [71]. AHR activates the expression of multiple phase I and II
xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene) involved in
cell-cycle regulation. Beta-Naphthoflavone (DB06732), which targets AHR, has been shown
to regulate cell differentiation in the central nervous system [72].

3. Discussion

The computational drug-repositioning approach is a successful and promising tech-
nique to efficiently discover potential novel therapeutic drugs for diseases and new in-
dications for existing drugs. The potential therapeutic drugs obtained can expand the
therapeutic drugs available for the disease and expand the more multifaceted indications
of known drugs. We constructed an SVR-based DDCM strategy to predict potential thera-
peutic drugs for the diseases. The approach was successfully applied in the prediction of
potential therapeutic drugs for 59 diseases in the MeSH neoplastic branch. The number
of potential therapeutic drugs ranges from 11 to 30. Some well-proven drugs emerged by
analyzing the feasibility of potential therapeutic drugs in terms of the literature, function,
drug targets, and survival-essential genes, respectively. And we also found similar drugs
for diseases in the subbranches of the MESH branch.

In the strategy, SVR calculated continuous correlation scores between diseases and
drugs through learning and fitting. The distribution of disease–drug correlation scores
predicted by the SVR algorithm was roughly distributed on both sides of zero, but the
overall distribution was different from each other. It was believed that in the process
of constructing the hybrid matrix, the similarity between diseases and diseases, and the
similarity between drugs and drugs was calculated by the design vector, and the number of
disease pathogenic genes for each disease or drug-target genes for each drug was different.
So, the calculated correlation scores were somewhat different. Thus, we considered the
disease–drug correlation scores for each disease separately and conducted subsequent
screening operations to derive potential therapeutic drugs instead of performing a cross-
sectional comparison to take a percentage threshold as a screening condition for drug
candidates. For each disease, after a step of stratified screening, the relevant drug obtained
has a higher and more stable correlation with the disease, and we believe that drugs at this
point already have the possibility to be used as potential therapeutic drugs for the disease.

Compared with traditional machine-learning methods, such as support-vector ma-
chine (SVM), K-nearest neighbor (KNN), and random walk (RW), DDCM methods have
certain advantages in terms of performance (AUC = 9.96 × 10−1) (Supplementary Table S4).
Similar to the results of Gottlieb et al. [27] in predicting potential therapeutic drugs for colon
cancer, the PREDICT method of Gottlieb et al. and the DDCM approach simultaneously
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predicted tioguanine (DB00352), fludarabine (DB01073), dasatinib (DB01254), colchicine
(DB01394). As well as predicting the potential therapeutic drugs for testicular cancer and
comparing the PREDICT method, we found that the commonly predicted drugs were
colchicine (DB01394), idarubicin (DB01177), etc. This also proved that the predicted results
of our method were convincing to some extent; these drugs might have the potential to
treat the corresponding diseases to some extent.

We confirmed the generalizability of the DDCM approach by predicting potential
therapeutic drugs for diseases in other branches of the MeSH. In the prediction of potential
therapeutic drugs for 49 vascular diseases, the number of drugs predicted ranged from 14 to
26. We likewise found drugs that were well-validated (File S1 Document S1, Supplementary
Figures S1–S7, Supplementary Table S3, File S2 Table S6). An analysis of genes associated
with cerebrovascular disease revealed that the genes associated with cerebrovascular
disease were divided into several gene families, and these drug-targeted gene families have
been demonstrated in the literature to be associated with the treatment of cerebrovascular
disease. A typical example was tranylcypromine, which can modulate monoaminergic
transmission. It suggests that this drug is a promising lead compound for the further
development of drugs to be used in therapy for cerebrovascular and neurological diseases.
Similarly, in vascular disease, we analyzed potential therapeutic drugs for a particular
branch of the disease and found common potential and known therapeutic drugs between
the branches. The prediction of vascular diseases further validated the feasibility and
generalizability of the DDCM.

4. Material and Methods

To screen potential drug candidates for the treatment of specific diseases, we developed
the DDCM approach. A hybrid matrix of disease–drug correlative relationships was
constructed by assessing the similarity of multiple levels for diseases and drugs. For a
specific disease, the support-vector regression algorithm was used to calculate the disease–
drug correlation score and to further screen the potential therapeutic drugs with stable
predictions for that disease by setting stability criteria and potential therapeutic criteria.
The effectiveness of potential therapeutic drugs was assessed at the levels of the literature,
function, drug target, and survival-essential genes.

4.1. Data Retrieval

Drug-target gene data from the DrugBank database (https://go.drugbank.com/;
version 5.1.8, released on 3 January 2021) [66] were selected. Meanwhile, drug-pathway data
were obtained from the Comparative Toxicogenomics Database (CTD, http://ctdbase.org/;
released on 5 August 2021) [73] and integrated with drug-related pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG, https://www.genome.jp/kegg/; version
98.1, released on 1 May 2021) [74]. The drug names in this study were unified with the
drug IDs from the downloaded DrugBank to obtain a list of drug names.

Disease–drug correlation data were obtained from the CTD and DrugBank databases,
and disease–drug relationship pairs predicted by bioinformatics methods were removed.
Next, pathogenetic genes were obtained based on the integration of Online Mendelian
Inheritance in Man (OMIM, https://omim.org/; released on 28 May 2021) [75], Disease
Ontology (DO, https://disease-ontology.org/; released on 11 September 2018) [76], and
CTD databases from previous studies, where data described as pathogenic genes in the
above databases were integrated into the collection of pathogenic genes we used. On the
other hand, integrations were obtained for the pathways associated with these diseases in
the CTD and KEGG databases. The disease names were aligned with the disease DOIDs in
the DO database.

The data types and data sizes in the dataset are given in Supplementary Table S1.

https://go.drugbank.com/
http://ctdbase.org/
https://www.genome.jp/kegg/
https://omim.org/
https://disease-ontology.org/
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4.2. Strategies for Evaluating the Degree of Disease–Drug Correlation

An important step in the DDCM approach is the computation of drug–disease correla-
tions, which was accomplished by separately computing the similarity between each drug
and disease.

4.2.1. Construction of Hybrid Matrix for Input SVR

Here, a hybrid matrix containing both disease and drug similarity information was
obtained by using the adjusted cosine similarity (ACS) method to calculate drug similarity
and disease similarity. The hybrid matrix by the operation of matrix splicing with the
obtained drug similarity and disease-similarity information was gained. The support-vector
regression algorithm (SVR algorithm) was then used to measure the degree of correlation
between a disease and drugs.

1. Construction of Disease-Similarity Matrix and Drug Similarity Matrix

To construct the hybrid matrix for input to the SVR algorithm, the drug similarity
and disease similarity were calculated separately as the basis. The correlations between
diseases and drugs were calculated separately using the ACS.

For each disease, a feature list could be constructed whose length was the number of
all genes. Each position in the list corresponds to a gene, and the position corresponding
to the pathogenic gene for the disease was marked as 1, and the rest of the positions
were marked as 0. The ACS of the gene signature lists corresponding to the two dis-
eases was regarded as the similarity of the pathogenic genes of the two diseases. Simi-
larly, the similarity of the disease-pathway data was calculated using the ACS. The mean
value of similarity at both the pathway and gene levels was used as the final similar-
ity for two diseases (File S4 3_ACS_can_Dism_gene, 4_ACS_can_Dism_pathway, File S5
3_ACS_vas_Dism_gene, 4_ACS_vas_Dism_pathway).

Dig =
{

Dig1, Dig2, Dig3, . . . , Diga, . . . , Digk

}
, ∀a ∈ (1, k), ∀Diga ∈ {0, 1}

Dip =
{

Dip1, Dip2, Dip3, . . . , Dipb, . . . , Diph

}
, ∀b ∈ (1, h), ∀Dipb ∈ {0, 1}

(1)

where Dig and Dip represent the vectors of disease genes and disease pathways, respec-
tively, and k and h represent the lengths of the two vectors, respectively.

To avert the similarity measures obtained based on different distance scale functions
may produce different data distribution patterns, the next step was considered to be
to jointly construct a disease similarity and drug similarity based on two levels based
on disease similarity and drug similarity. To ensure that the data from the similarity
of the two levels in the hybrid matrix can be compared together, the ACS was again
chosen to measure the similarity of the drugs. Similarly, the calculation method of the
disease-similarity matrix in the previous section was chosen to calculate the similarity of
the two levels of data of the drug-target genes and drug-related pathways, respectively.
The mean value of similarity at both the pathway and gene levels was used as the final
similarity for two drugs (File S4 5_ACS_can_Drsm_gene, 6_ACS_can_Drsm_pathway,
File S5 5_ACS_vas_Drsm_gene, 6_ACS_vas_Drsm_pathway).

Drg =
{

Drg1, Drg2, Drg3, . . . , Drgc, . . . , Drgc
}

, ∀c ∈ (1, r), ∀Drgc ∈ {0, 1}
Drp =

{
Drp1, Drp2, Drp3, . . . , Drpd, . . . , Drpt

}
, ∀d ∈ (1, t), ∀Drpd ∈ {0, 1} (2)

where Drg and Drp represent the vector of the drug-target gene and drug pathway, respec-
tively, and r and t represent the length of the two vectors, respectively.

The ACS measure was an improved form of vector-based similarity. ACS can handle
the relationship that has not been found yet. The influence of the relationship that has not
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been found on the results can be minimized by operating on the mean value. And overall,
the ACS scales well. The ACS formula is as follows:

R =
∑N

i=1 (Ai − α)(Bi − β)√
∑N

i=1 (Ai − α)2
√

∑N
i=1 (Bi − β)

2
(3)

where R is the ACS score between two diseases/drugs, Ai is the number of corresponding
positions of the gene/pathway vector of one disease/drug, α is the mean value of all
genes/pathways vectors of the gene/pathway list for one drug/disease, Bi is the number
of corresponding positions of the gene/pathway vector of the other disease/drug, β is
the mean value of all genes/pathways vectors of the gene/pathway list for the other
disease/drug, and N is the total length of the gene/pathway vector of the disease/drug.

2. Construction of Hybrid Matrix

On the basis of the above-mentioned homogeneity information, in this paper, the
drug-similarity matrix and the disease-similarity matrix were innovatively spliced into a
heterogeneous hybrid matrix in a specific way. The rows of the matrix represent disease–
drug relationship pairs, which were known drugs with their indications. Columns represent
drug and disease, respectively. In the column representing the drug, each position in the
matrix indicates the similarity of the drug in the disease–drug relationship pair represented
by that row to the drug represented by that column. In the column representing the disease,
each position in the matrix indicates the similarity of the disease in the disease–drug
relationship pair to the disease represented by this column. Finally, a multi-level disease–
drug correlation hybrid matrix was formed with the number of disease–drug relationship
pairs as the number of rows and the sum of the number of drugs and diseases as the
number of columns.

4.2.2. Acquisition of Drug–Disease Correlation Score

The use of support-vector regression (SVR) is the same principle as SVM for classifica-
tion, with a few small differences. Supervised machine-learning models with associated
learning algorithms that can analyze data for classification and regression analysis are
called support-vector regression. Here, x is the drug–drug correlation score and disease–
disease correlation score in the correlation hybrid matrix mentioned in the matrix above.
y(y ∈ R) is the disease–drug correlation scores of a drug for each disease, and l is the
sample size. Then the linear support-vector regression algorithm can be expressed in the
following form:

y = ⟨ω, x⟩+ φ, ω, x ∈ Re, φ ∈ R (4)

Based on the known disease–drug correlation relationships we obtained, the ω and
φ of the parties in the regression equation were acquired by the learning fit of the SVR
algorithm to the scores of each row in the hybrid matrix. From this, we know that, in the
prediction, for the unknown pairs of relationships, the following formula is available:

f (x) = ⟨ω, x⟩+ φ, ω, x ∈ Re, φ ∈ R (5)

where f (x) is the objective function that needs to be from the train set, ⟨·, ·⟩ is the dot
product operation in the Re space, and ω is the weight. The problem of solving f (x)
through training can be transformed into a solution; then, the linear SVR formula can be
transformed into: {

min 1
2∥ω∥2

s.t.|⟨ω, x⟩+ φ − yi| ≤ ε, i = 1, 2, . . . , l
(6)

That is, the difference between the predicted value (⟨ω, x⟩+ φi) and the actual value
yi is smaller than the constant ε (effect of constant change).

In the actual prediction process, it is often difficult to directly determine the appropriate
ε to ensure that most of the data can be within the interval, and SVR expects all training data
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to be within the interval. So, the slack variable ξ is added, so that the interval requirement
of the function changes, that is, allowing some samples to be outside the interval. After
introducing the slack variables, all sample data meet the conditions:

|yi − (ωxi + φ) ≤ ε + ξ|, ∀i (7)

This is the restriction after reflecting into a slack variable, so it is also called soft-
interval SVR. For any sample xi, if it is inside or on the edge of the isolation zone, ξ is 0.
Above the isolation zone, ξ > 0, ξ∗ = 0, and below the isolation zone, then ξ∗ > 0, ξ = 0.
After introducing the slack variable, the original formula can be written as:

min
ω,b,ξi ,ξ̂i

1
2∥ω∥2 + C

δ

∑
i=1

(ξi, ξ̂i)

s.t.
f (xi)− yi ≤ ε + ξi,
yi − f (xi) ≤ ε + ξi,
ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . , δ.

(8)

Here ε = 0.1, as the loss function, is an empirical value that is considered to define the
minimum distance to the sample point furthest from the hyperplane.

The hybrid matrix is input into the support-vector regression machine, while the
corresponding labels were given, 1 for known disease–drug relationship pairs and 0 for
non-known disease–drug relationship pairs. After inputting the matrix, the SVR learns
and fits a regression line, so that pairs of drug and disease relationships that satisfy the
constraints of the SVR machine get predicted results and their relative degree of correlation.

In summary, after setting the parameters, the corresponding regression equations were
finally obtained by fitting each row of the constructed hybrid matrix. For these diseases, the
corresponding prediction models can be obtained by training on known data and adjusting
the parameters. The prediction model scores the relationship between the disease and some
of the drugs to be predicted separately. This score is the so-called disease–drug correlation
score, which is also known as f (xi) in the equation.

4.3. Screening of Potential Therapeutic Drugs

For a disease, a list of drugs was predicted by a support-vector regression algorithm
after inputting the hybrid matrix into the SVR. Each drug has a correlation score with the
corresponding disease. The drugs were filtered in a stepwise manner to obtain potential
therapeutic drugs for the disease. The correlation scores between the drugs and a disease
were calculated through random perturbation. Drug candidates for the disease were
screened based on the rank of disease–drug correlation scores before and after randomized
perturbation experiments, respectively. The stability score was used to measure the stability
of the drug with respect to its correlation with the disease. Potential therapeutic drugs were
obtained by setting up potential therapeutic criteria to screen for stable drug candidates
(Supplementary Figure S8).

4.3.1. Drug Candidates

For a disease, the disease–drug correlation scores were calculated by SVR, and the score
distribution ranged from negative to positive, with a greater positive direction indicating a
stronger degree of correlation with the drug for that disease. The distribution of disease–
drug correlation scores was similar for each disease.

For different diseases, the distributions of disease–drug correlation scores for the
drugs were different. So, in the first step, we selected the drugs that ranked in the top
50 (de-redundant: the highest correlation score for a particular drug corresponding to a
disease was taken) correlation scores as drug candidates (DrC) for a disease. Drugs ranked
after the 50th were subsequently discarded.
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4.3.2. Stable Drug Candidates

Considering the differences in the composition of the drugs in the training set could
affect the screening of drug candidates. For a given disease, correlation scores and the
obtained top 50 candidate drugs changed accordingly. Therefore, a random perturbation
experiment was performed. Setting stability criteria to screen drugs. Drug candidates with
high stability were identified as stable drug candidates.

Three types of random perturbation processes were carried out. Training sets for
multiple diseases were constructed by randomly removing data for 1, 2, and 5 different
diseases. We considered the top 50 drugs in the training set of these randomization
operations as drug candidates for different randomization conditions.

The frequency of the top 50 drugs was counted, and finally, the stability scores of these
drugs that emerged during randomization were used to assess the stability of the drugs
and obtain stable drug candidates.

For each disease, the given stability quantitative index was the stability score for a
candidate drug:

Sj = 1 −

√
∑M

i=1 (si − s)2

M − 1
(9)

where Sj is the stability score for a candidate drug, j indicates the type of randomization
(j = 1 or 2 or 5), M is the number of times of randomization for a certain random type.
s denotes the frequency of occurrence of the drug in the top 50 drugs of the list of disease–
drug correlations obtained in a particular randomization of a certain randomization type.
s denotes the average of the frequency of occurrence of the top 50 drugs in the list of
disease–drug correlations obtained for the drug in all randomization times obtained for a
certain randomization type. The larger the Sj, the more stable the frequency of the drug in
the predicted results in this random perturbation.

The stability criteria were specified, and the intersection of drugs that pass the stability
interval under several random perturbations with the drug candidates before they undergo
perturbations is called the set of stable drug candidates DrSj , whose set is denoted by SDrC.

DrSj =
{

Top95%Sj
}

SDrC = DrS1 ∩ DrS2 ∩ DrS5 ∩ DrC
(10)

4.3.3. Potential Therapeutic Drugs Identification

Considering that the stability scores of stable drug candidates fluctuate to some extent,
further, the potential therapeutic criteria were set to screen the final potential therapeutic
drugs.

For each disease, the stability scores are in different types of random processes. It can
be derived from this:

SSDrCk = 1 −

√
∑M′

i=1 (si − s)2

M′ − 1
(11)

where SSDrCk is the total stability score of a drug in the set of stable drug candidates, and
M′ = 3M + 1 and M′ denotes the sum of all random counts under different random types
and the number of predictions before perturbation. k denotes a drug in the set of stable drug
candidates. The larger the SSDrCk , the more stable the drug appears in various conditions,
and the more likely it is to be a potential therapeutic drug for the disease.

Similarly, after calculating the total stability score of a drug, the potential therapeutic
interval is defined. Stable drug candidates whose total stability score of SDrCk in the top
95 percent were considered potential therapeutic drugs.

A collection of drugs that meet the potential therapeutic criteria is called the potential
therapeutic drug set (PtDr).

PtDr =
{

Top95%SSDrCk

}
(12)
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5. Conclusions

In this study, we presented a novel computational strategy for drug repositioning to
identify potential therapeutic drugs for a disease. The approach was successfully applied
to the prediction of potential therapeutic drugs for diseases in the MESH branch. And
some potential therapeutic drugs have been well-validated from different levels. Compared
with traditional machine-learning methods, the DDCM strategy was able to demonstrate
drug–disease correlations with continuous scores, predicting potential therapeutic drugs
for the disease on a larger scale. However, by collecting large amounts of data to conduct
experiments, we found that the operational efficiency of the DDCM may be affected. In
the future, we will consider more aspects of drug or disease similarity to improve the
confidence of our algorithm. Moreover, we can also use the drug as the subject to predict
which different diseases the drug can treat, thus expanding the scope of application of our
strategy. In short, DDCM provides a new perspective for the study of drug repositioning,
and it can be regarded as a useful guide for drug repositioning and drug discovery.
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