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Abstract: To address the challenges of reduced localization accuracy and incomplete map construction
demonstrated using classical semantic simultaneous localization and mapping (SLAM) algorithms
in dynamic environments, this study introduces a dynamic scene SLAM technique that builds
upon direct sparse odometry (DSO) and incorporates instance segmentation and video completion
algorithms. While prioritizing the algorithm’s real-time performance, we leverage the rapid matching
capabilities of Direct Sparse Odometry (DSO) to link identical dynamic objects in consecutive frames.
This association is achieved through merging semantic and geometric data, thereby enhancing the
matching accuracy during image tracking through the inclusion of semantic probability. Furthermore,
we incorporate a loop closure module based on video inpainting algorithms into our mapping thread.
This allows our algorithm to rely on the completed static background for loop closure detection,
further enhancing the localization accuracy of our algorithm. The efficacy of this approach is validated
using the TUM and KITTI public datasets and the unmanned platform experiment. Experimental
results show that, in various dynamic scenes, our method achieves an improvement exceeding 85%
in terms of localization accuracy compared with the DSO system.

Keywords: dynamic scene; simultaneous localization and mapping; direct method; instance segmen-
tation; video inpainting

1. Introduction

Simultaneous localization and mapping (SLAM) technology facilitates the acquisition
of location and environmental information through pose estimation and map construc-
tion [1]. In recent years, visual SLAM technology, as a subject of extensive research, has
advanced significantly [2]. Sophisticated visual SLAM algorithms have been developed
to achieve localization precision at the centimeter level and can be used to successfully
construct large-scale three-dimensional (3D) maps [3–8]. However, these advanced visual
SLAM algorithms operate predominantly under the strong assumption of rigid scenes,
which substantially limits their applicability to dynamic environments.

With the development of deep learning technologies, an increasing number of re-
searchers have integrated object detection and semantic segmentation algorithms with clas-
sical SLAM algorithms to enhance their robustness in dynamic scenarios. Dyna-SLAM [9]
combines semantic segmentation algorithms with geometric methods to identify and
remove dynamic objects from images. Dm-SLAM [10] utilizes instance segmentation
information and optical flow data to mitigate the effects of dynamic objects in a scene.
Detect-SLAM [11] employs object detection algorithms to identify dynamic feature points
and uses the motion probability to convey the motion information of these points. How-
ever, these algorithms were improved using feature-based SLAM systems. When most
of the selected feature points originate from dynamic objects, the localization accuracy of
the SLAM algorithm can decrease significantly because of the reduced number of usable
feature points. By contrast, a more flexible selection mechanism for photometric gradient
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points can prevent the selection of points from being overly concentrated. Moreover, the
frame-to-frame matching speed of the SLAM algorithms based on direct methods is higher.

Direct Sparse Odometry (DSO) is a visual odometry algorithm that estimates the
camera motion in a sparse and direct manner [6]. Unlike traditional feature-based methods,
which extract and match key-points across images, DSO operates directly on pixel intensi-
ties. This method significantly enhances the flexibility of map point selection, effectively
avoiding the decrease in positioning accuracy caused by an excessive number of feature
points from dynamic objects. While DSO primarily focuses on static scenes, the authors
also mentioned in his paper that direct methods have a greater advantage when dealing
with dynamic objects. During our practical applications, we have also observed that DSO
exhibits greater robustness compared to ORB-SLAM2 when dynamic objects are present in
the environment.

Although the DSO algorithm holds significant advantages over feature-based SLAM
algorithms when it comes to handling dynamic environments, its adoption for further
research and improvement is limited due to its low code readability and the challenging na-
ture of modifying its direct method-based optimization approach. In this work, we not only
integrate the DSO algorithm with semantic segmentation and video inpainting algorithms
but also restructure its algorithmic framework. We introduce a SLAM method tailored for
rigid dynamic scenes, named DSOMF. This method employs instance segmentation and
video inpainting algorithms to mitigate the impact of dynamic objects, thereby enhancing
the localization precision and mapping performance of the DSO algorithm. The principal
contributions of this study are as follows:

1. We refine the region segmentation approach within the DSO algorithm, accelerating
the motion recognition speed of the algorithm through dynamic region segmentation
and the direct selection of optical flow points.

2. We propose a method that utilizes inter-frame semantic information to identify and
remove dynamic objects. This approach effectively reduces the interference caused by
noise introduced by dynamic objects, enhancing the system’s robustness in dynamic
environments. Furthermore, we also improve the matching accuracy of pixel intensi-
ties points by adding semantic probability, so that our algorithm can make full use of
semantic information.

3. We synergize video inpainting algorithms with the map-building thread of the DSO
algorithm, compensating for static background gaps caused by the removal of moving
objects, thereby optimizing the map construction performance of the DSO algorithm
in dynamic environments.

4. We integrate a loop closure detection module, thus rendering the DSO algorithm
framework more comprehensive. Moreover, by associating loop closure detection with
video inpainting algorithms, we enhance the efficiency of this module in identifying
loop closures within dynamic environments.

In the following, we discuss the related studies in Section 2, providing a comprehen-
sive introduction to its methodology in Section 3, followed by a detailed elaboration on
motion object segmentation, semantic data association, motion object recognition, and static
background completion, and a comparative analysis of the positioning accuracy between
our algorithm and existing ones conducted using indoor and outdoor datasets in Section 4.
The real-scene experiments based on the unmanned aerial vehicle and unmanned vehicle
platforms is in Section 5 and we conclude the paper in Section 6.

2. Related Works

In recent years, SLAM algorithms for dynamic environments have received consider-
able attention from the research community, thus resulting in the proposal of a multitude
of dynamic environment SLAM algorithms. Based on the different approaches for man-
aging dynamic objects in the environment, the solutions reported in the literature can be
categorized into two types, which are detailed in the next subsections.
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2.1. Eliminating Dynamic Objects

In one of the SLAM algorithm types, dynamic objects in images are typically classi-
fied as outliers for removal. Facilitated using machine learning algorithms, the primary
approach of such SLAM algorithms is to use semantic segmentation or object detection to
identify objects in images that can potentially move. Subsequently, the motion states of
these potentially movable objects are assessed using geometric methods [12–14]. Finally,
the dynamic features of the moving objects are eliminated using an improved RANSAC
algorithm [15–17]. Detect-SLAM [11] combines ORB-SLAM2 with the SSD object detection
algorithm, where motion probabilities are used to convey the dynamic information of
feature points and remove dynamic points that reach a certain threshold. DS-SLAM [18]
employs the SgeNet semantic segmentation algorithm to delineate dynamic object regions
and delete all feature points within an area if dynamic features are detected. Moreover,
DS-SLAM builds an octree map using semantic information and filters unstable voxels
using a logarithmic scoring method. RDS-SLAM [19] utilizes a Bayesian filter to identify
and remove dynamic objects and has been used to design a novel semantic segmentation
thread execution to reduce the effect of semantic segmentation algorithms on the real-time
performance of the SLAM system. Alcantarilla et al. [20] employed scene flows to remove
dynamic objects from an environment. Although these SLAM methods discard dynamic
objects in images, thereby enhancing the system robustness and estimation accuracy, they
also reduce the ability of the SLAM system to capture static environmental information.
Consequently, some SLAM algorithms that target dynamic scenes complete an incomplete
static background after removing dynamic objects. Dyna-SLAM [9] removes dynamic
objects using a combination of semantic segmentation and geometric methods and then
applies multi-view geometry information to color and complete the missing background.

2.2. Constructing Dynamic Objects

In another type of SLAM method, the SLAM algorithm is primarily integrated with
moving object tracking (MOT) algorithms. Thorpe et al. [21] performed SLAM and MOT in
separate threads, where the MOT thread was isolated to detect and track dynamic objects,
thus ensuring the real-time performance of the SLAM system. Reddy et al. [22] not only
combined MOT with structure from motion to construct maps that included both the struc-
ture of static objects and the trajectories of dynamic objects but also introduced semantic
constraints to achieve more precise results of 3D reconstruction. Owing to advancements
in technologies such as 3D object detection, researchers have begun using simple geometric
shapes to represent dynamic objects, thus facilitating their incorporation into static maps.
Salas-Moreno et al. [23] first proposed an object-specific SLAM algorithm incorporating
both object and camera poses into backend optimization. Subsequently, Tateno et al. [24]
combined SLAM with 3D object detection incrementally and in the real-time segmentation
of a 3D scene during map reconstruction, thus enhancing the robustness of the object-
recognition system. Node-SLAM [25] introduced multiple classes of learning objects and
a new probabilistic and differential rendering engine to derive complete object shapes
from one or more RGB-D inputs. Hosseinzadeh et al. [26] was the first to use ellipsoids to
envelope dynamic objects for the parametric representation of their size and pose. Building
upon this concept, researchers proposed quadric-SLAM [27], where the geometric parame-
ters of dynamic objects were integrated into the factor graph of the SLAM system for joint
optimization. Additionally, researchers introduced Dyna-SLAM II [28], where dynamic
objects were enveloped using 3D object detection frameworks and proposed a formula for
estimating the size and pose of dynamic objects, thus allowing the system to simultaneously
estimate the camera pose, map, and trajectory of moving objects.

Taking into account the two approaches outlined above, while the concept of construct-
ing dynamic objects is more advanced, the current target tracking and 3D object detection
technologies both require significant computational resources. Furthermore, existing SLAM
algorithms do not accurately calculate the speed of dynamic objects. Therefore, we still
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adopt the approach of excluding dynamic objects to maximize the positioning accuracy of
our SLAM system in dynamic environments.

3. Algorithm Design

In this section, we first introduce the overall algorithmic framework of the proposed
SLAM system, followed by a detailed discussion of the methods introduced herein. This
study addresses the problem of localization and mapping in dynamic environments and
proposes an algorithm framework based on DSO, as illustrated in Figure 1. Within this
framework, the regions highlighted in blue represent programs that have been added or
modified, whereas those in green indicate the original programs.
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Figure 1. Algorithm framework.

Firstly, we employed an instance segmentation network, i.e., mask R-CNN [29], to ex-
tract all prior instances of dynamic objects. Subsequently, we utilized an enhanced PARSAC
algorithm [30] for the motion recognition of dynamic object instances and for eliminating
photometric gradient points within the dynamic object regions. Once elimination was
completed, photometric gradient points were supplemented from static regions to increase
the number of trackable points for the algorithm. After selecting the keyframes, we applied
the flow-guided video completion (FGVC) algorithm [31] to replenish the static background
occluded by dynamic objects in the keyframes. Finally, we re-supplemented photometric
gradient points from the replenished portions of the keyframes and input them into the
mapping thread for loop closing. The image processing procedure is depicted in Figure 2
below, with the tracking thread enclosed in blue and the mapping thread in orange.
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3.1. Segmentation of Potential Dynamic Objects

To detect objects within an image that possesses the potential for motion, we em-
ployed a mask R-CNN instance segmentation network to segment the input image. The
mask R-CNN network is a widely used instance segmentation technique that enables
the acquisition of pixel-level semantic segmentation outcomes, along with instance-level
object labels. Current semantic SLAM algorithms designed for dynamic environments
typically utilize only semantic segmentation information and directly eliminate objects
that are likely to move. This approach inadvertently removes objects that are potentially
mobile yet stationary, thus diminishing the number of static feature points available for
the algorithm and affecting the precision of SLAM localization. This study innovatively
integrates semantic segmentation information with instance label data, thereby refining the
identification of moving objects to the level of individual instances, to preserve as many
static points in the image as possible.

The input for the mask R-CNN is the raw image captured using the camera, as
shown in Figure 3a. In this study, the mask R-CNN network was exclusively utilized to
segment the categories of objects that exhibit the potential for dynamics, including but not
limited to movable humans, bicycles, cars, cats and dogs. These categories are posited to
encompass the most dynamic objects likely to appear in most scenes. If additional object
categories must be identified, then one can retrain the mask R-CNN network using the
COCO dataset [32] and then fine-tune its weight files accordingly.
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For the output results of the mask R-CNN, we assumed that the input image size
was s × h × 3. During processing, the network generated an s × h × w matrix, where
w represents the number of dynamic objects in an image. Each output channel (c ∈ w)
generates a binary mask image for a specific object instance. Stacking these w images
yielded a segmented result that encompassed all instances of dynamic objects, as illustrated
in Figure 3b.

3.2. Region Segmentation and Data Association

The DSO performs tracking by selecting points with photometric gradients within an
image. To achieve a more uniform point distribution, the DSO segments the image into
n square regions, each with a side length of d, and selects photometric gradient points
within each region. To further conserve computational resources, this study enhances the
original algorithm by redefining the partitioning of regions based on the number and size of
potentially moving objects in an image, thereby facilitating motion detection. An analysis
of semantic segmentation labels across multiple datasets revealed that when the labels
indicating potential motion exceeded 30% of the total label count, the image was likely
to contain a higher number and larger projection area of moving objects. Consequently,
when the proportion of labels for potentially moving objects exceeded 30%, the image was
partitioned into square regions with a side length of 6d. Otherwise, the regions were defined
as having a side length of 4d. Upon completing the partitioning of regions, the central
point of each region was identified, and the Kanade–Lucas–Tomasi method was applied to
track their optical flow f : (u, v) → (u + ∆u, v + ∆v). Thus, the correspondence between the
segmentation regions of the two frames was identified, as illustrated in Figure 4.
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The association degree between segmentation regions of successive frames can be
represented as follows:

φf(Ct−1
a , Ct

b|Z, ft−1→t) =

N
∑

k=1
[Loc( f (zi), Ct

b)× Loc(zi, Ct−1
a )]

N
∑

k=1
Loc(zi, Ct−1

a )

, (1)

where φf denotes the association degree of regional centroids, Z the observation function,
zi the observation point, a and b the semantic tag and Ct

a, Ct
b the semantic label clustering

of central points at time t. By defining the spatial association of segment clustering, we can
represent the overlap between segmented regions across two frames [33]. Specifically, it
can be articulated as:

φs(Ct−1
a , Ct−1

b ) =

∥∥∥Ct−1
a ∩ Ct

b

∥∥∥
N
∑

k=0
Ct−1

k

, (2)

where, φs denotes the spatial association of segmentation clustering. By considering both
the spatial and centroid associations, the probability that (Ct−1

a , Ct
b) belongs to the same

category can be expressed as:

P = (lt
i = j

∣∣Ct−1, Ct, Lt−1, Z, ft−1→t) =
φs(Ct−1

i ,Ct
j )+α×φ f (C

t−1
i ,Ct

j )

N
∑

m=0

N
∑

n=0
[φs(Ct−1

m ,Ct
n)+α×φ f (C

t−1
m ,Ct

n)]

, (3)

where, lt
i denotes the object label. Consequently, the label of Ct

i can be expressed as:

lt
i = argmaxP(lt

i = j
∣∣Ct−1, Ct, Lt−1, Z, ft−1→t), (4)

The equation above clearly indicates, that when lt
i = lt−1

0 and i ̸= 0, a new object label
emerges in the scene, thus incrementing the label count. Using this approach, the association
between the segmentation results of potential moving objects across successive frames can be
established based on both centroid matching and the overlap of segmentation regions.

3.3. Dynamic Object Recognition and Determination of Dynamic Regions

Because the methodology used in this study was adapted from DSO, using the photo-
metric error-based matching approach, which is computationally efficient, may compromise
the accuracy of point matching. Consequently, this study incorporates a motion recognition
method based on semantic probability [34], which is expressed as follows:

ε2(x, x′F) =
(x′Fx)2

(Fx)2
1 + (Fx)2

2 + (FTx′)2
1 + (FTx′)2

2

, (5)

where x denotes the coordinates of the regional centroid in the previous frame, x′ the
coordinates of the regional centroid in the current frame, x the coordinates in homogeneous
form, and F the fundamental matrix between two adjacent frames. Consequently, for each
label cluster, a parameter D = {di|i = 1, 2, · · · , N} can be obtained to evaluate whether the
matching of the centroid of the cluster region adheres to geometric constraints. This can be
expressed as follows:

D(Z, Ct
i , F, ft−1→t) =

N
∑

k=1

[
ε2(zk, f (zk), F × Loc(zk, Ct

i )
]

N
∑

k=1
Loc(zk, Ct

i )

, (6)
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di = D(Z, Ct
i , F, ft−1→t), (7)

When di surpasses a specified threshold τdyn, we assume that motion has occurred
within the associated segmentation cluster.

After determining the motion status of the segmentation clusters, regions whose
centroids are dynamic cluster points are marked as dynamic areas. Additionally, there are
regions where the centroid is not a dynamic cluster point but the extremities are defined as
edge areas. The dynamism of the edge areas is ascertained based on the distance from the
centroid to the segmentation cluster. The distance from the centroid of an edge area to the
segmentation cluster is expressed as:

dist(xk, Cj) = min∥xk − xi∥2, xk ∈ Cj, xj ∈ Cj, (8)

In the equation, Cj represents the set of edge centroids of segmentation cluster Cj .
Therefore, the semantic probability that the edge centroid xk belongs to Cj can be expressed
using binomial logistic regression as follows:

P =
1

exp(−λ × dist(xk, Cj)) + 1
, (9)

When P exceeds Pdyn, the edge area becomes dynamic. Following the determination
of the dynamic areas, these regions are marked as occupied (as illustrated in Figure 5),
and all photometric gradient points selected using the DSO algorithm within these areas
are excluded. Subsequently, based on the proportion of dynamic areas to the total area,
the threshold for selecting the photometric gradient points in the static areas is reduced
appropriately to compensate for the number of points selected in unoccupied areas.
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3.4. Completion of Static Background in Keyframes and Loop Closure

After instance segmentation and motion-consistency verification are performed to
eliminate dynamic objects, the constructed static background map may exhibit gaps, as
illustrated in Figure 6. In the DSO framework, non-keyframes participate only in local-
ization and tracking, whereas map construction relies on keyframes. Consequently, we
utilized pixels from non-keyframes to fill in the static background voids caused by dy-
namic objects obstructing the keyframes. Thus, the keyframes can be used to synthesize
more realistic static environment images after the removal of dynamic objects. This type
of composite image, which includes static structures, can not only further optimize and
enhance the accuracy of camera pose estimation but also contribute significantly to virtual
and augmented reality applications.
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For missing regions in an image, computing the optical flow field of the area is easier
than direct pixel filling, and optical flow-guided pixel propagation can naturally maintain
temporal coherence [35]. Additionally, owing to the tracking of object movement in non-key
frames, their optical flow can be more readily obtained. Therefore, we adopted the FGVC
algorithm, which is guided using optical flow edges. After the tracking thread identifies
dynamic objects, it sends the keyframe images and dynamic object labels to the video
completion thread. The FGVC video completion algorithm primarily comprises three steps
(as shown in Figure 7): (1) Flow completion, where the forward and backward optical flows
between adjacent frames are calculated; (2) temporal propagation, where the trajectory of
the optical flow is followed to identify a set of candidate pixels for each missing pixel, and
a confidence score as well as a binary validity indicator are estimated for each candidate
frame; (3) fusion, where confidence-weighted averaging is employed to fuse each missing
candidate pixel with at least one valid candidate pixel. Single-image completion techniques
are used to fill areas devoid of candidate pixels. To ensure the effectiveness of the map
completion thread, the tracking thread saves 20 frames of non-keyframes for achieving
completion. After completing the missing areas, photometric gradient points are selected
within the completed areas and integrated into the backend optimization thread to enhance
the localization accuracy and mapping outcomes.
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After completing the video inpainting, we re-selected some photometric gradient
points on the incorporated static background into the mapping thread. Subsequently,
we detected loop closure candidates using the Bag of Words (BoW) model, computing
the Sim(3) transformation between the candidate frames and the current frame, and we
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applied these constraints to pose a graph optimization to enhance the overall map accuracy.
This method effectively avoids failures in the Bag of Words model detection caused by
occlusions from dynamic objects, thereby improving the efficiency of loop closure detection
in dynamic environments.

4. Simulation Testing

To verify the effectiveness of the proposed method, we conducted tests using a publicly
available indoor dynamic TUM dataset [36] and the outdoor dynamic KITTI dataset [37].
Because the proposed method modifies the existing stable open-source DSO algorithm, it
primarily serves as a benchmark for comparison. Additionally, we compared the proposed
method with a similar Dyna-SLAM algorithm, which utilizes the mask R-CNN algorithm
for segmenting dynamic objects. To evaluate the effect of map completion on the localization
accuracy, we used an algorithm that removes dynamic objects but does not perform map
completion (named DSOM) and an algorithm that removes dynamic objects and performs
map completion (named DSOMF). Additionally, we employed the absolute trajectory
error (ATE) and relative pose error (RPE) for a quantitative evaluation of the algorithms’
localization accuracy. The ATE metric represents the global consistency of the trajectory,
whereas the RPE metric reflects the drift in translation and rotation. All the experiments
were conducted on a notebook computer equipped with an Intel Core i9-14900H CPU, RTX
4090 GPU with 16GB of graphics memory, and 64GB of RAM in a dual 32GB configuration.

4.1. Simulation Testing on TUM Dataset

The TUM dataset captures data for various task types in indoor environments using
RGB-D cameras. Moreover, the dataset provides the ground truth for camera poses and
comparison tools, thus rendering it highly suitable for SLAM researchers to evaluate the
performance of their algorithms.

In this study, three sets of data from the dynamic object module of the dataset were
used for simulation testing: fr3_sitting_static, fr3_walking_static, and fr3_walking_xyz.
The first dataset represents a static environment, whereas the latter two are dynamic
environments. The results yielded using the algorithm are shown in Table 1, where the
first column lists the dataset names and the second to fourth columns are the names of
the algorithms. From left to right, the second, third, and fourth columns present the root
mean square error (RMSE) and standard deviation (STD), which effectively reflects the
stability and robustness of the algorithm. In dynamic environments, the improvement in
the localization accuracy of the proposed method relative to the other two algorithms is
expressed as:

δ =
α − β

α
× 100%, (10)

where δ represents the improvement rate, α the data from the other two algorithms, and β
the data from the proposed algorithm.

Table 1. Comparison of absolute trajectory errors in TUM datasets.

Identifier
DSO Dyna-SLAM DSOM DSOMF

RMSE STD RMSE STD RMSE STD RMSE STD

sitting_static 0.009 0.004 0.006 0.003 0.006 0.003 0.006 0.003
walking_static 0.307 0.113 0.037 0.043 0.035 0.039 0.029 0.032
walking_xyz 0.889 0.419 0.091 0.057 0.081 0.047 0.072 0.043

Based on the data shown in Table 1, one can observe that in the fr3_sitting_static data
scenario, the RMSE and STD of DSOM improved by 37% and 24%, respectively, compared
with those of DSO, whereas they did not improve significantly with respect to those of
Dyna-SLAM2. The RMSE and STD of DSOMF improved by 45% and 27%, respectively,
compared with those of the DSO, whereas they did not improve significantly with respect
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to those of Dyna-SLAM2. In the fr3_walking_static data scenario, the RMSE and STD of
DSOM improved by 88.5% and 65.4%, respectively, compared to DSO, and by 5.4% and
9.3%, respectively, compared with those of Dyna-SLAM. The RMSE and STD of DSOM
improved by 90.6% and 71.6%, respectively, compared with those of DSO, and by 21.6%
and 25.5%, respectively, compared with those of Dyna-SLAM. In the fr3_walking_xyz
data scenario, the RMSE and STD of DSOM improved by 90.8% and 87.8%, respectively,
compared with those of DSO, and by 10.9% and 17.5%, respectively, compared with those
of Dyna-SLAM. The RMSE and STD of DSOMF improved by 92% and 89.7%, respectively,
compared with those of DSO, and by 20.8% and 24.6%, respectively, compared with those
of Dyna-SLAM.

To further analyze the test results, Figure 8 shows a comparison of the ATEs among
DSO, Dyna-SLAM, and the methods presented here in this study, i.e., DSOM and DSOMF,
across the three scenarios of fr3_sitting_static, fr3_walking_static, and fr3_walking_xyz.
One can intuitively observe that as the dynamic nature of the scenes increases, the im-
provement effect of the methods on the localization accuracy intensifies gradually. In
environments with higher dynamics, the localization effect of the methods presents a clear
enhancement compared with that of DSO. However, the improvement effect of DSOMF
was slightly weaker relative to that of Dyna-SLAM, which is attributed to the deteriorating
image completion effect owing to the increased number of dynamic objects in the image.
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To further enhance the real-time performance of our method, we drew inspiration from
RDS-SLAM [19] and incorporated the selection of semantic keyframes into our algorithm.
Therefore, in addition to comparing the localization accuracy, we quantitatively compared
the runtime overhead and GPU memory consumption of several methods on the TUM
dataset, as listed in Table 2. As shown, the per-frame processing time of DSOM was
lower than that of Dyna-SLAM. After the video completion thread was incorporated, the
per-frame processing time of DSOMF was slightly longer than that of Dyna-SLAM.

Table 2. Execution time and GPU memory cost on KITTI dataset based on several methods.

Algorithm Name Time (ms/Frame) GPU Memory Usage/GB

DSO 19 -
DSOM 240 5.2

DSOMF 312 6.5
Dyna-SLAM 300 5.7

Additionally, Table 3 shows the time overhead of the main modules of the proposed
method on the TUM dataset. Clearly, the semantic segmentation module was the most time-
consuming. In this study, instance segmentation is executed as a separate, independent
thread, thus allowing for the substitution with a less time-consuming instance segmentation
algorithm (if necessary) to further enhance the real-time performance of the proposed
method. Moreover, through efficient parallel operations, the incorporation of instance
segmentation and video completion modules, in addition to DSO, results in frame rates
and memory usage that are comparable to those of Dyna-SLAM.

Table 3. Execution time cost of our method’s main modules.

Algorithm Name Time (ms/Frame)

Semantic Segmentation 70
Tracking 10

Data Association 5
Image Completion 55

4.2. Simulation Testing on KITTI Dataset

The KITTI dataset is widely recognized and utilized in the field of computer vision
algorithms for testing an autonomous driving scenario. It encompasses various dynamic
outdoor scenarios, including urban, rural, and highway environments. The images that
captured the most dynamic objects include 15 vehicles and 30 pedestrians, thus indicating
a high level of scene dynamism. Sequences 00-10 from the dataset were used to validate
the DSOM and DSOMF algorithms proposed herein. The comparisons were performed
made with the DSO and Dyna-SLAM algorithms using the EVO evaluation tool.

To analyze the positioning performance of DSOMF in outdoor dynamic environments, we
present a comparison of the absolute pose errors between the DSOMF and DSO algorithms for
dataset sequences 01, 02, 04, and 06 in Table 4. The data in the table include the corresponding
RMSE, mean, max and min values. The data in the table indicate that, for sequences 01 and
02, the absolute pose error of DSOMF is significantly lower than that of DSO. For sequences
04 and 06, the absolute pose error of the method presented herein is comparable to that of
DSO. This is because sequences 01 and 02 contain many dynamic vehicles and pedestrians,
whereas sequences 04 and 06 contain primarily stationary vehicles.

To analyze the effect of the video completion module on the localization accuracy in
outdoor environments, we present a comparison of the APEs among the DSOM, DSOMF,
and Dyna-SLAM algorithms across dataset sequences 00–10 in Table 5. As shown in the
table, in outdoor environments, both DSOM and DSOMF exhibited slight improvements
in terms of pose-estimation accuracy across various dataset sequences compared with
Dyna-SLAM. However, the inclusion of the video completion thread in DSOMF did not
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significantly enhance its performance compared with those of the first two methods. This
is because in large outdoor scenes, dynamic objects typically occupy a relatively small area
in images, and images completed thereafter fail to provide additional map information for
backend optimization.

Table 4. Comparison of absolute pose errors in KITTI dataset.

Sequence
DSO DSOMF

RMSE Mean Max Min RMSE Mean Max Min

01 9.478 7.969 16.756 4.125 5.987 6.028 11.763 1.485
02 6.561 5.212 15.608 0.199 5.626 3.697 10.438 0.286
04 1.131 1.759 1.745 0.541 1.067 1.172 2.251 0.318
06 0.886 0.739 1.241 0.433 0.568 0.786 1.081 0.306

Table 5. Comparison of absolute pose errors of same-type algorithms.

Sequence Dyna-SLAM DSOM DSOMF

00 3.505 2.937 2.521
01 9.003 7.607 6.420
02 5.219 4.213 4.238
03 1.299 1.054 0.966
04 1.591 1.256 1.214
05 1.779 1.289 1.372
06 0.824 0.672 0.604
07 2.489 2.036 1.880
08 3.291 2.778 2.473
09 2.564 2.101 1.966
10 2.743 2.259 2.375

Figure 9 shows the process of dynamic object removal using a video completion thread
in the KITTI-04 dataset. In this figure, a white vehicle moving at a constant speed in
the same direction is identified as a static object, whereas a black vehicle moving in the
opposite direction is recognized as a dynamic object and thus removed and completed.
The map-construction effect, as presented in Figure 10, shows that DSOMF excluded the
interference of the black vehicle during map construction, thus resulting in a complete,
linear road point cloud map.
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5. Unmanned Platform Experiment
5.1. Drone Experiment

Given the absence of distinct loops in the datasets utilized above, to verify the effective-
ness of the loop closure detection module, we conducted real-world loop closure detection
experiments using the quadcopter drone depicted in Figure 11. The drone is equipped
with an Intel Realsense D435 image sensor (Santa Clara, CA, USA) and a micro-computer
developed on the Jetson AGX Orin platform (2048-core NVIDIA Ampere architecture GPU
(Santa Clara, CA, USA) featuring 64 Tensor Cores, 12-core ARM Cortex-A78AE v8.2 64-bit
CPU, PVA v2 visual processing accelerator, 64 GB of 256-bit LPDDR5 memory).
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Figure 11. Unmanned flight platform SLAM algorithm test system.

In this experiment, we operated the drone to circle around the fixed-wing aircraft
shown in Figure 12. By observing whether the semi-dense point clouds constructed at
the starting and ending points overlap, we assessed the effectiveness of the loop closure
detection module of our algorithm in a real-world setting. Figure 13a and Figure 13b,
respectively, represent the semi-dense point cloud maps of the fixed-wing aircraft with and
without loop closure detection. The red boxes indicate the semi-dense point cloud maps at
the starting and ending points of the drone’s flight. As shown in the red box in Figure 13a,
with loop closure detection enabled, the drone successfully triggered loop closure at the
starting and ending points, correcting the cumulative trajectory error and allowing the
point cloud maps of these points to overlap effectively. In contrast, as illustrated in the red
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box in Figure 13b, without loop closure detection, the drone could not trigger loop closure
at the endpoint, resulting in the inability to eliminate the cumulative trajectory error, which
prevented the point cloud maps at the starting and ending points from overlapping. This
experiment successfully validated the effectiveness of real-world loop closure detection on
the same drone platform.
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5.2. Driverless Car Experiment

To further verify the effectiveness of the algorithm presented in this paper in handling
dynamic objects, we conducted a localization and mapping experiment in an outdoor
environment using a ground unmanned platform, as shown in Figure 14 below. To ensure
the safety of the experiment, the unmanned platform was placed on the left side of the road,
moving forward close to the edge of the road. The image sensor was oriented towards the
center of the road to capture dynamic objects on the road. This experiment utilized the
monocular mode of the Intel Realsense D435i image sensor mounted on the robot to collect
environmental information and the same model of microcomputer as the drone. Due to
the limited computing power of the computing platform carried by the unmanned vehicle,
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the collected image information was sent to a high-performance laptop computer by the
unmanned vehicle for instance segmentation and video completion.
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Figure 14. SLAM algorithm test system for unmanned ground platform.

We conducted tests on the algorithm proposed in this study by deploying unmanned
vehicles to navigate around the site for one round, using DSO and DSOMF. The trajectories
formed using the two algorithms are compared in Figure 15 below. In the site schematic,
the green trajectory includes a section where a pedestrian is walking slowly (as shown
in Figure 16a), while the white trajectory incorporates a segment with an electric truck
moving at a higher speed (as shown in Figure 16b). The comparative observation of the
trajectories generated using the two algorithms reveals that the algorithm proposed in this
study demonstrates a notable improvement in positioning accuracy in both the white trajectory
segments and the sections where loops occur. Upon calculation, it was determined that the
processing time per frame for the algorithm discussed in this study was 49.6 milliseconds
during the experimental process. Although the dynamic settings of this experiment were
somewhat simplified due to hardware limitations, it has nonetheless validated the feasibility
of the algorithm presented in this study in real-world scenarios to a certain extent.
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6. Conclusions

This study addressed the need for high-precision navigation and positioning for un-
manned platforms in dynamic environments by introducing instance segmentation and
completion into the DSO algorithm framework, proposing a machine learning-based dy-
namic environment SLAM algorithm. Initially, the algorithm utilizes instance segmentation
to divide the scene into objects with potential for motion. Subsequently, it combines se-
mantic and geometric information to identify and eliminate moving objects. After the
removal of dynamic objects, a video inpainting algorithm fills in the static background
obscured by these moving entities, enhancing the algorithm’s loop closure detection and
improving pose alignment accuracy in dynamic environments. Finally, the methodology
is validated using the TUM dataset, KITTI dataset, and real-world scenarios. The results
demonstrate that in dynamic settings, the positioning accuracy of the proposed algorithm
significantly surpasses that of DSO. In our future research, we aim to enhance the real-time
performance of the proposed algorithm by improving keyframe selection strategies and
data association methods, thereby reducing the computational resource consumption of
semantic segmentation and optical flow completion algorithms. Additionally, dynamic
objects in the environment hold significant value, and we plan to incorporate them into
map construction in our subsequent studies.
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