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Abstract: During the braking process of electric vehicles, both the regenerative braking system (RBS)
and anti-lock braking system (ABS) modulate the hydraulic braking force, leading to control conflict
that impacts the effectiveness and real-time capability of coordinated control. Aiming to enhance the
coordinated control effectiveness of RBS and ABS within the electro-hydraulic composite braking
system, this paper proposes a coordinated control strategy based on explicit model predictive control
(eMPC-CCS). Initially, a comprehensive braking control framework is established, combining offline
adaptive control law generation, online optimized control law application, and state compensation to
effectively coordinate braking force through the electro-hydraulic system. During offline processing,
eMPC generates a real-time-oriented state feedback control law based on real-world micro trip
segments, improving the adaptiveness of the braking strategy across different driving conditions. In
the online implementation, the developed three-dimensional eMPC control laws, corresponding to
current driving conditions, are invoked, thereby enhancing the potential for real-time braking strategy
implementation. Moreover, the state error compensator is integrated into eMPC-CCS, yielding a
state gain matrix that optimizes the vehicle braking status and ensures robustness across diverse
braking conditions. Lastly, simulation evaluation and hardware-in-the-loop (HIL) testing manifest
that the proposed eMPC-CCS effectively coordinates the regenerative and hydraulic braking systems,
outperforming other CCSs in terms of braking energy recovery and real-time capability.

Keywords: four-wheel hub drive electric vehicle; electro-hydraulic composite braking system;
coordinated control strategy (CCS); explicit model predictive control (eMPC); error compensator

1. Introduction

Recently, with advancements in vehicle control systems, there has been a steady
increase in attention to the coordinated control of electro-hydraulic composite braking
systems [1,2]. In electric vehicle braking, the real-time monitoring and processing of data
from multiple sensors enable the coordinated control of the regenerative braking system
(RBS) and anti-lock braking system (ABS), effectively controlling the distribution of braking
torque for each wheel based on parameters like battery status and vehicle speed [3–5].
However, the computational burden of data processing and control strategy in the elec-
tronic control unit (ECU) of the vehicle can adversely affect its real-time implementation
potential. To ensure real-time application capability, robustness, and enhanced braking
energy recovery efficiency, developing an advanced coordinated control strategy (CCS)
is crucial.

The reported CCSs can be categorized into two groups based on their objectives:
optimization-oriented control CCSs [6,7] and real-time capability-oriented CCSs [8,9].
Optimization-oriented control CCSs rely on offline methods to generate reference quantities
and trajectories for achieving optimized control performance, such as dynamic program-
ming (DP) [10,11] and particle swarm optimization (PSO) [12,13]. Given prior driving
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information, optimization-oriented control CCSs can calculate globally optimized control
sequences in short-term driving scenarios, thereby maximizing the braking control effect.
However, the intensive computational demands of these methods limit their practical ap-
plication. Additionally, acquiring the necessary driving information is challenging, which
restricts the adaptability of these methods across various braking conditions. The real-time
capability-oriented CCSs achieve real-time coordinated control by employing various con-
trol strategies, including proportional integral derivative-based CCS (PID-CCS) [14,15],
linear quadratic regulator-based CCS (LQR-CCS) [16,17], and model predictive control-
based CCS (MPC-CCS) [18–20]. In PID-CCS, the coordinated control of the RBS and ABS
is achieved by tuning the parameters of the PID controller based on the vehicle state and
control objectives. However, during the control process, the PID-CCS can only obtain a
suboptimal control law, making it difficult to precisely and effectively adjust the coordi-
nated control relationship between the RBS and ABS. Regarding the LQR-CCS, the state
gain matrix is formulated, and the wheel braking torque is optimized to attain coordinated
control, aligned with the vehicle model and control objectives. Nevertheless, the LQR
method requires a linearization process to simplify the control problem and cannot adjust
the weights assigned to different time steps within the prediction horizon, alleviating the
effect of coordinated braking force distribution. On the contrary, MPC provides flexibility
by allowing the weights assigned to different time steps within the prediction horizon to be
adjusted, taking into account various variables to make coordinated decisions and obtain
the optimal control sequences [21,22]. Additionally, the application of fast MPC techniques,
as demonstrated by Chu et al. [23] and Meng et al. [24], further enhances the adaptability
and real-time capabilities of MPC in handling dynamic and complex control scenarios.
Nonetheless, achieving real-time online solutions to the optimal control problem poses
challenges for practical vehicle controllers due to the online rolling optimization process
in MPC and the multitude of constraints involved. To overcome this MPC limitation, an
alternative approach named explicit model predictive control (eMPC) is proposed [25–27].
By introducing multi-parameter quadratic programming (mp-QP), eMPC acquires the ex-
plicit solution of state variable and control variable in advance, storing them in the memory
inside the controller, thereby transferring online calculation to the offline part to minimize
the computational burden. Furthermore, eMPC can be easily compiled on an embedded
platform, showing promising real-time application scenarios. Despite its appropriate capa-
bility in real-time deployment, eMPC is primarily for generating state feedback control law
in linear time-invariant (LTI) systems, which does not allow for optimal control throughout
the braking process in highly nonlinear vehicle braking systems [28,29]. Moreover, the
initially set constant state variables in the LTI system undergo changes during practical
vehicle braking, resulting in state error and diminishing the adaptability and robustness of
CCS. Therefore, substantially adjusting the vehicle braking state based on various braking
conditions is an intractable task that should be further investigated.

To substantially utilize information collected during vehicle braking, aiming to re-
duce the adverse impact of state error on the control effect, recent research on optimizing
system state variables has introduced adaptive optimization methods [30,31] and state
error compensation techniques [32–34]. Adaptive optimization methods, such as model
reference adaptive control (MRAC) [35], direct adaptive control (DAC) [36], and fuzzy
adaptive control (FAC) [37], allow for the automatic adjustment of controller parameters in
response to changes in system status and parameters, thereby enhancing control perfor-
mance. However, the intricate relationship between control parameters and the current
state necessitates a comprehensive acknowledgment of the optimized control system or
even a burdensome computational modeling process, presenting considerable implementa-
tion difficulty. Regarding state error compensation methods, encompassing feedforward
error compensating [38,39] and feedback error compensating [40,41], these methods are
directed towards diminishing the negative impact of state error generated during the
braking process on the control effect through error compensation. For feedforward error
compensation, although it can offset system error in advance and effectively suppress
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external interference, it relies on accurate mathematical models for prediction and faces
obstacles in performing nonlinear compensation, posing challenges for implementation
in electro-hydraulic composite braking systems. In contrast, feedback error compensation
only requires the construction of an error gain matrix from the practical and desired output
of the system, facilitating state variable adjustment based on this matrix to bolster system
robustness. During the braking process, the vehicle information can be divided into micro
trip segments with distinct braking states. Implementing feedback error compensation
for each micro trip segment enhances the capability of eMPC-CCS to counteract external
interference. To sum up, forming a comprehensive solution is crucial for optimizing the
control effectiveness of RBS and ABS while cooperatively ensuring real-time, robust, and
adaptive capability.

In this context, this paper proposes a novel coordinated control strategy based on
eMPC, namely the eMPC-CCS, aiming to enhance the real-time capability, adaptability,
and robustness of the CCS in the solution. As for the eMPC-CCS, it includes offline control
law generation and online control law invocation. In the offline process, a multitude of
micro trip segments corresponding to braking operations are collected to generate real-
time-oriented state feedback control laws, improving the adaptability of the CCS. During
the online implementation, offline-generated state feedback control laws are invoked
accordingly to form a 3D eMPC explicit solution in the basic eMPC controller, enhancing
the real-time coordinated control of RBS and ABS. Furthermore, a state error compensator
is developed to rectify variations in the state variables and integrated into the basic eMPC
controller to enhance its functionality. The improved eMPC controller navigates through the
3D eMPC explicit solution using the adjusted state variables and delivers a corrective torque
that corrects the braking torque for each wheel, thereby further refining the braking process.
Ultimately, simulation evaluation and hardware-in-the-loop (HIL) testing demonstrate the
outstanding real-time responsiveness, robustness, and elevated efficiency in the braking
energy recuperation of the proposed eMPC-CCS across various braking conditions.

The detailed contributions are illustrated in the following:

(1) A coordinated control strategy for the RBS and ABS based on eMPC is proposed,
which integrates the offline-generated state feedback control law into online real-time
braking to fully enhance the real-time performance of coordinated control.

(2) A 3D eMPC law generation method is proposed, which employs the state feedback
control law generated at each micro trip segment to formulate an explicit solution
for the three-dimensional eMPC, thereby enhancing the adaptability of the control
strategy to various braking conditions

(3) A state variable optimization method based on feedback error compensation is pro-
posed. This method can integrate the gain matrix into the eMPC-CCS to compensate
for the state variable under various braking conditions, improving the ability of the
eMPC-CCS to resist external interference.

The remainder of this paper is organized as follows. The general description of the
vehicle model’s construction is provided in Section 2. Section 3 elaborates on the developed
eMPC-CCS. Section 4 discusses the simulation results. and HIL testing, verifying the
superior performance of the raised strategy. The discussions are provided in Section 5. The
conclusions are represented in Section 6.

2. Modeling

In this paper, a four-wheel hub drive electric vehicle is studied. The corresponding
configuration and detailed parameters are, respectively, presented in Figure 1 and Table 1.
The electro-hydraulic composite system of the studied vehicle is composed of the motor
regenerative braking system and the hydraulic braking system. When the driver presses
the brake pedal for deceleration, the vehicle controller calculates the braking intensity and
the necessary braking force based on the pedal position. Subsequently, the established
CCS guides the motor controller and hydraulic controller in response to the current vehicle
states. The motor controller manages the four motors, applying motor braking torque to
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the wheels, and the hydraulic controller supervises the hydraulic braking unit, facilitating
the application of hydraulic braking torque to the respective wheel.
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Figure 1. The configuration of a four-wheel hub drive electric vehicle.

Table 1. Vehicle parameters.

Parameter Sign Value

Vehicle mass m 2508 [kg]
Wheel radius Rw 0.377 [m]

The horizontal distance from the center of gravity to the front axle l f 1.506 [m]
The horizontal distance from the center of gravity to the rear axle lr 1.483 [m]

Wheelbase l 2.992 [m]
Center of gravity height hg 0.58 [m]
Wheel moment of inertia Jw 4299 [kgm2]

2.1. Vehicle Model

The five-degree-of-freedom vehicle dynamics model considering the rotational move-
ment of the four wheels and the longitudinal movement of the vehicle was established in
this study.

According to the vehicle dynamics equation, the longitudinal movement can be shown
as follows:

m
.
vx = −Fx f l − Fx f r − Fxrl − Fxrr (1)

where m is the vehicle mass, vx is the longitudinal speed, and Fx f l , Fx f r, Fxrl and Fxrr are
the ground braking force received by the wheels, respectively.

The rotational motion of the wheels can be written as follows:

Jw
.

ωij = FxijRw − Tmij − Thij, ij ∈ {FL, FR, RL, RR} (2)

where Jw is the wheel moment of inertia, Rw is the wheel radius, Tmij is the motor brak-
ing torque received by the wheels, and Thij is the hydraulic braking torque received by
the wheels.

The main parameters of the vehicle model are presented in Table 1.

2.2. Tire Model

The structural parameters and mechanical characteristics of tires connecting the vehicle
and the road determine the dynamic performance of the vehicle. The magic formula tire
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model is selected in this study to reflect the dynamic behavior of the tire, which can be
written as follows:

Fx = D sin{Carctan[Bλ− E(Bλ− arctan(Bλ))]}
C = a0
D = µ(a1F2

z + a2Fz)
B = a3 sin(a4arctan(a5Fz))/(CD)
E = a6F2

z + a7Fz + a8

(3)

where λ is the slip ratio, which can be calculated from λ = (vx − wRw)/vx, µ is the road
adhesion coefficient, Fx is the longitudinal tire force, and Fz is the vertical tire force. In
addition, B is the stiffness factor, C is the shape factor, D is the crest factor, E is the curvature
factor, and a0, · · · , a8 are the model parameters obtained from the experiment.

2.3. Motor Model

The purpose of this paper is to investigate the transient response of the motor in
the RBS, with the understanding that the dynamic characteristics of the motor will not
significantly impact the coordinated control process of the RBS and ABS. The relationship
among torque, speed, and efficiency is described by an efficiency map, which is shown in
Figure 2. The motor efficiency can be expressed by the following:

ηem = η(nem, Tem) (4)

where nem and Tem is the rotating speed and motor torque, respectively.
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Figure 2. Motor efficiency map.

The mathematical model of the permanent magnet synchronous motor, representing
the first-order inertia link, is used to portray the dynamic characteristics during regenera-
tive braking:

Tm_act =
1

tms + 1
Tm_req (5)

where Tm_act is the actual motor response torque, Tm_req is the target motor response torque,
and tm is the motor dynamic response constant.

2.4. Battery Model

The effect of temperature on the battery’s operation is ignored, and a simple internal
resistance model is used for simulation, motivated by the complexity of temperature
effects and the importance of Kirchhoff’s law in establishing the battery voltage balance
equation. According to the Kirchhoff law, the battery voltage balance equation can be
shown as follows:

Uoc = U + IbRint (6)

where Uoc is the open-circuit voltage, U is the load voltage, Ib is the battery current, and
Rint is the internal resistance of the battery.
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During regenerative braking, the charging current of the battery can be calculated by
the following:

Ib(t) =
−UOC(t) +

√
U2

OC(t)− 4Rint pm

2Rint
(7)

where pm is the motor power. Additionally, the state of charge (SOC) of the battery is
calculated through the ampere-hour integration method:{

SOC = SOC0 +
Q(t)
Q0.

Q(t) = Ib(t)
(8)

where SOC0 is the initial value of battery SOC, Q0 is the battery capacity in Ah, and Q(t) is
the variations in battery power.

2.5. Hydraulic Braking System Model

The specific working process of the hydraulic braking system, involving the physical
properties of the fluid and the response characteristics of hydraulic components, were
omitted in this paper as they do not affect electro-hydraulic coordinated control. The
response process is considered equivalent to a first-order inertial hysteresis link:

Th_act =
e−τhs

ths + 1
Th_req (9)

where Th_act and Th_req are the actual braking torque and the target braking torque of the
hydraulic system, respectively, th is the system time constant, and τh is the system pure
lag time.

3. Development of eMPC-CCS

To fully excavate the potential of eMPC-based control solutions in the real-time coor-
dinated control strategy of the RBS and ABS, a comprehensive braking control framework,
named the eMPC-CCS, is developed. This approach strengthens real-time capability and
adaptability while avoiding control conflict between the RBS and ABS. The implementation
process of the eMPC-CCS contains offline control law generation and online control law
invocation. An illustration of the eMPC-CCS is shown in Figures 3 and 4.
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the eMPC-CCS.

As depicted in Figure 3, in offline control law generation, vehicle information with
diverse braking states, collected from road tests, is segmented into micro trip segments
and stored in the vehicle controller. Subsequently, the eMPC algorithm is applied to these
distinct micro trip segments, generating the corresponding state feedback control laws,
which are then ready for online invocation.

In Figure 4, as for the online implementation, a 3D eMPC explicit solution is employed
to invoke the offline control law based on the similarity between the practical braking
conditions and micro trip segments. The required braking torque for each wheel under
the current braking condition can be allocated according to the ideal braking force dis-
tribution strategy, known as the I curve [42]. Ultimately, the eMPC-CCS optimizes the
allocation of distributed wheel braking torque by utilizing the matched eMPC explicit
solution. It employs the state error compensator and basic eMPC controller within the im-
proved eMPC controller to achieve optimal braking torque allocation within the composite
braking system.

3.1. Offline Control Law Generation

In the offline processing of eMPC, the state feedback control law of each braking
segment of the vehicle in the whole braking process is obtained. The offline control law
generation process in eMPC includes several key steps [25]. Firstly, the mathematical
model of the system is established. Secondly, the critical region of the system is determined
by introducing the theory of mp-QP and the Karush–Kuhn–Tucker (KKT) condition. In
each critical region, the control vector can be expressed as an affine function of the state
vector, constituting the control law. This affine function remains constant and allows eMPC
to derive the control law through offline calculation, thereby eliminating the need for
laborious online computation. The calculated optimal control laws are stored in a lookup
table for real-time implementation.

3.1.1. Basic eMPC

Before designing the controller, the fundamentals of eMPC are reviewed and the
explicit law of the control variable is presented in this section. In eMPC, the solution of an
optimization problem includes constraints on the control inputs and system states. The
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general nonlinear optimization problem in the finite time domain [ts, tm] can be defined as
a minimization constraint on the cost function:

J(x, u, p) ,
∫ tm

ts
L(x(t), u(t), p(t0))dt + T(x(tm), p(t0), tm) (10)

where x, u, and p are the state vector, control vector, and parameter vector, respectively.
In addition, L is the stage cost, and T is the terminal cost. The problem is subject to
inequality constraints:

xmin < x(t) < xmax (11)

umin < u(t) < umax (12)

G(x(t), u(t), p(ts), t) ≤ 0 (13)

The ordinary differential equations (ODEs) describing the system dynamics represent
the equality constraints:

d
dt

x(t) = f (x(t), u(t), p(ts), t) (14)

In the process of formulating the control problem, the prediction horizon is defined
as tq = Nptr, where Np is the number of prediction steps and tr is the discretization
interval of the internal model. It is assumed that the control input u[ts, tm] is calculated by
u(t) = ξ(U, t), where U is the control parameter vector. The optimal control problem is
now in its mp-NLP generic form:

J∗(x(ts), p(ts)) = min
U

J(x(ts), U, p(ts))

s.t.G(x(ts), U, p(ts)) ≤ 0
(15)

where p includes the system and controller parameters, which are considered constant for
the duration of the prediction horizon. One additional vector is defined as xp(ts) ∈ Rnp ,
where np = n + d, i.e., np is the sum of the number of state n and the size of parameter d:

xp(ts) = [x(ts), p(ts)] (16)

Hence, based on Equation (16), the cost function can be reformulated as follows:

J∗
(
xp(ts)

)
= min

U∗
J
(
xp(ts), U

)
s.t.G

(
xp(ts), U

)
≤ 0

(17)

In this study, the mp-QP problem is adopted to solve the mp-NLP problem by its
approximation [43,44]. The mp-NLP in Equation (17) is linearized around a predefined
point (xp,0, U0) by utilizing Taylor expansion. Therefore, the cost function is approximated
with a quadratic function and the constraints assume a linear formulation.

J0(xp, U) , 1
2 (U −U0)

T H0(U −U0) +
(

C0 + (xp − xp,0)
T F0

)
(U −U0) + Y0(xp)

s.t.G0(U −U0) ≤W0 + S0(xp − xp,0)
(18)

By evaluating at the linearization point (xp,0, U0), the different terms in Equation (18)
can be computed as follows:

H0 , ∇2
UU J(xp,0, U0)C0 ,

(
∇U J(xp,0, U0)

)T (19)

F0 ,
1
2

((
∇2

xpU J(xp,0, U0)
)T

+
(
∇2

Uxp
J(xp,0, U0)

)T
)

(20)
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Y0(xp) , 1
2 (xp − xp,0)

T∇2
xpxp J(xp,0, U0)(xp − xp,0)

+
(
∇xp J(xp,0, U0)

)T
(xp − xp,0) + J(xp,0, U0)

(21)

G0 ,
(
∇UG(xp,0, U0)

)T (22)

W0 , −G(xp,0, U0) (23)

S0 , −
(
∇xp G(xp,0, U0)

)T
(24)

The mp-QP problem is employed to compute local approximations of the original
mp-NLP problem in the exploration space. This is represented as multiple hyperrectangles,
on which single mp-QP problems are solved. Each hyperrectangle is further partitioned
into polyhedra, i.e., the CRregions of the mp-QP problem. Finally, the mp-QP solution is
represented as a piecewise affine (PWA) function, which is determined by a finite number
of regions dividing state variables. Given that eMPC is designed for LTI systems, achieving
improved control effects in the coordinated control of the RBS and ABS requires both offline
and online optimizations.

3.1.2. Internal Prediction Model

In the basic design of the eMPC controller, only the control process of the left front
(FL) brake component is depicted, with the other wheels following a similar pattern.

In the internal quarter-vehicle model, the slip ratio of the left front wheel, λFL, is
defined as follows:

λFL(t) =
vx(t)−ωFL(t)Rw

vx(t)
(25)

where vx is the longitudinal speed, ωFL is the wheel velocity, and Rw is the wheel radius.
The time derivative of λFL can be expressed as follows:

d
dt

λFL =
d
dt vx(t)− Rw

d
dt ωFL(t)

vx(t)
−

(vx(t)−ωFL(t)Rw)
(

d
dt vx(t)

)
v2

x(t)
(26)

where the wheel rotation dynamics equation can be expressed as follows:

d
dt

ωFL(t) =
1
Jw

(Fx,FLRw − TCA,FL + ∆TFL(t)) (27)

where Jw is the wheel moment of inertia, and TCA,FL is the distributed braking torque ac-
cording to the I-curve, which is kept constant over the prediction horizon. The longitudinal
force balance of the quarter-vehicle model associated with the wheel under consideration
can be shown as follows:

d
dt

vx(t) = −
1

mF
Fx,FL (28)

where Fx is the longitudinal tire force, which can be calculated using the simplified Pacejka
magic formula (MF) model [45], as follows:{

Fx,FL = µx,FLFz,F
µFL = D sin{Carctan[BλFL − E(BλFL − arctan(BλFL))]}

(29)

where Fz,F is the vertical tire load, considered a constant, and µx,FL is the longitudinal
tire–road friction coefficient. Additionally, B, C, D and E are the MF parameters, which are
shown in Table 2.
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Table 2. Intermodal parameters.

Symbol Parameters Value

mi Apparent front (rear) corner mass (kg) 625 (629)
Fz,i Front (rear) tire vertical load (N) 6125 (6164)
B MF coefficient: stiffness factor 21.52
C MF coefficient: shape factor 1.4
D MF coefficient: peak value 0.45
E MF coefficient: curvature factor −0.28

Np Prediction step 3
tr Sampling time (s) 0.004

Therefore, the time derivative of Equation (25) can be rewritten as follows:

d
dt

λFL(t) =
(λFL(t)− 1)

vx(t)
Fx,FL

mF
− Rw

Jwvx(t)
(Fx,FL(t)Rw − TCA,FL(t) + ∆TFL(t)) (30)

Due to the difference in inertia, the longitudinal dynamic of the vehicle is much slower
than the rotational dynamic of the wheels. Therefore, the vehicle speed is considered a
slowly changing parameter.

An integral process is incorporated into the prediction model to tackle the steady-state
error and model uncertainty. Hence, the model includes eFL(t), which is the integral of the
error between the actual slip rate, λFL, and the reference slip rate, λFL

re f .

d
dt

eFL(t) = λFL(t)− λFL
re f (31)

For each sampling moment, the state equation of the system after linearization can be
obtained as follows:

.
x(t) = A(t)x(t) + B(t)u(t) (32)

where x(t) ∈ Rn, u(t) ∈ Rm

A(t) =

[
Fx,FL(t)

vx(t)·mF
+ (λFL(t)−1)

vx(t)·mF
· dFx,FL(t)

dλFL(t)
− Rw

2

Jw ·vx(t)
· dFx,FL(t)

dλFL(t)
0

1 0

]
(33)

B(t) =

[
− Rw

Jw ·vx(t)
0

]
(34)

where dFx,FL(t)
dλFL(t)

denotes the derivative of Fx,FL(t) to λFL(t).
The continuous-time state space representation, Equation (32), is discretized with a

sampling time.
x(k + 1) = Ad[k]x(k) + Bd[k]u(k) (35)

where

Ad[k] =
[

A1
d[k] 0
ts 1

]
(36)

Bd[k] =
[

A2
d[k]
0

]
(37)

where Ai
d[k], i = 1, 2 indicates the varying elements due to vx(t), and k is the sampling

time index.
In the prediction model, the state vector, input vector, and parameter vector are

xFL = [λFL, eFL], u = [∆TFL], and p =
[
vx, TCA,FL, λFL

re f
]
, respectively. The prediction

horizon, tp = Nptr (i.e., Np is prediction steps; tr is sampling time), is selected for the
current implementation. The problem includes five parameters (a 5D-eMPC problem),
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i.e., xp,FL =
[
λFL(ts), eFL(ts), vx(ts), TCA,FL(ts), λFL

re f
]
, and four decision variables, i.e.,

UFL = [∆TFL(ts), ∆TFL(ts+1), ∆TFL(ts+2), ∆TFL(ts+3)]. The horizon control input that is
applied to the system is u = ∆T(ts), which will be indicated as u in the remainder. The
5D-eMPC problem will be referred to as eMPC5D in the remainder.

At each moment throughout the vehicle braking process, the state variables at that
moment are aligned with the previously gathered braking segments, facilitating the genera-
tion of the state feedback control laws depicted in Figure 5 within the basic eMPC controller.
Subsequently, the generated control laws are prepared for online invocation, reducing the
computational burden of the control problem.
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3.1.3. Cost Function and Constraints

During the offline optimization process, the optimal adjustment of the required braking
torque for the FL wheel is achieved by minimizing the cost function. The changes in braking
torque are applied to the wheels to quickly achieve the desired slip rate of the FL wheel
throughout the ABS braking process. Moreover, the cost function includes the influence
of braking torque on the wheel to minimize variations in wheel braking torque. The cost
function can be written as follows:

JFL =
∫ t f

tk

[
q1

w2
1

(
λFL(t)− λFL

re f
)2

+
q2

w2
2

eFL(t)
2 +

ru

w2
u

∆TFL(t)
2

]
dt +

p1

w2
1

(
λFL(t f )− λre f

)2
+

p2

w2
2

eFL(t f )
2 (38)

where q1 = 5, q2 = 60, ru = 10, p1 = 5, p2 = 60, w1 = 0.1, w2 = 0.1, and wu = 3000. In
addition, λFL

re f is computed from the longitudinal tire force characteristics as a function of
the slip ratio, by using the MF [46].

For the implementation of eMPC, some constraints related to the powertrain perfor-
mance and vehicle dynamic should be set, which would ensure that different components
can operate within limits. Thus, the inequality constraints of Equation (38) can be shown
as follows:

λmin < λFL(t) < λmax (39)
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∆Tmin < ∆TFL(t) < ∆Tmax (40)

where ∆Tmax = TCA,FL and ∆Tmin = 0, while λmin and λmax are used as tuning parameters.

3.2. Online Implementation

Building upon the control laws generated in the preceding offline process, the online
implementation invokes the eMPC solution generated by the three-dimensional eMPC
control law generation method for the adaptability of the CCS through various braking
conditions. To improve the ability of the eMPC-CCS to resist external interference, a state
error compensator is developed, optimizing the control logic of the control problem. The
illustration of the online implementation of the eMPC-CCS is shown in Figure 6. During
the control process, the state error compensator is used to optimize the state variables,
and then the optimized state variables are transmitted to the 3D eMPC solution in the
basic eMPC controller to obtain a correction torque to correct the braking torque of each
wheel. The corrected braking torque prioritizes the requirements of the motor before being
distributed to both the motor and the hydraulic braking system, thus ensuring the enhanced
adaptability and robustness of the CCSs.
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Figure 6. The illustration of the online implementation of the eMPC-CCS.

3.2.1. Explicit Solution of RBS and ABS Coordinated Control

Regarding the comment about eMPC5D, the representation of the explicit solution is
presented in Figure 7. Figure 7 illustrates that the three-dimensional eMPC control law
generation method partitions the state input space into polyhedral regions, each connected
via PWA systems. The principle of PWA in eMPC involves segmenting the state space of
the system and using linear models and corresponding optimal control laws within each
region to effectively control nonlinear systems. The offline control law generation stage
precomputes and stores optimal control laws, while the online control law invocation stage
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dynamically selects and applies the appropriate control law based on the current system
state, achieving real-time control of the system.
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Invoking these offline generated control laws across diverse state input domains facili-
tates optimal control input determination, amalgamating into an eMPC explicit solution.
To visualize the three-dimensional eMPC explicit solution in Figure 7, three parameters
are treated as constants: the integral of the slip rate error, xp,FL(2), is 0, the vehicle speed,
xp,FL(3), is 100 km/h, and the reference slip ratio, xp,FL(5), is set to 0.15. Furthermore,
xp,FL(4) is the demand torque calculated using the I-curve and the red dashed line is
indicated as a constant slip ratio reference in the legend.

Therefore, the solution consists of three planes, including the following:

(1) A plateau of zero-control input for the low slip ratio indicates an input lower constraint
in Figure 7. According to Equations (39) and (40), the torque correction must be
positive.

(2) An inclined plane, parallel to the xp,FL(1) axis, indicates an input upper constraint in
Figure 7. According to Equations (39) and (40), the regulating torque cannot be larger
than the demand torque.

(3) Another inclined plane is the non-saturated feedback control input.

In the state prediction process of eMPC, the precision of the state variable markedly
impacts the efficacy of vehicle control. Due to the eMPC solution being obtained through
linearization, it encounters limitations in the mathematical state function that represents the
change in braking torque, making it challenging to fully reflect the dynamic characteristics
of the electro-hydraulic composite braking system. Therefore, a state error compensator
that can address state error within the predictive horizon is crucial for enhancing the effec-
tiveness of the eMPC controller, which will be elaborated upon in the subsequent section.

3.2.2. Online State Optimization Based on Feedback Error Compensation

To precisely anticipate changes in braking torque within the predictive horizon, an
algorithm [47] is proposed to compensate for the state variable x(t) in Equation (32). This
algorithm enhances the robustness of the eMPC controller against parameter changes.

Due to the vehicle speed being fixed during a sampling time, the matrices Ad[k] and
Bd[k] in Equation (35) are regarded as the constant matrices Ad and Bd, and the system
is transformed into an LTI system. The corresponding state space representation can be
shown as follows:

x(k + 1) = Adx(k) + Bdu(k) (41)

However, maintaining a constant longitudinal velocity, vx, in an actual driving situa-
tion is challenging. In this paper, vx is regarded as a slowly varying parameter, vx(t).

The time-varying matrix Ad[k] can be determined as follows:

Ad[k] = Ad +
Nv

∑
i=1

∆x,iαx,i(k) (42)
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where ∆x,i ∈ Rn×n, αi(t) ∈ R, and Nv represent the number of the time-varying elements
in the matrix Ad[k].

In this study, Ad[k] is assumed to be a time-varying matrix with sufficiently slow
variation, but the mechanisms of its evolution are not clear. Additionally, the effect of the
time-varying matrix Bd[k] is neglected, and it is treated as a constant matrix. Thus, Ad, Bd
and the matrix ∆x,i are known. However, the function αx,i(k), describing the time-varying
part of Ad[k], remains unclear.

Equation (35) can be rewritten as follows:

x(k)− Adx(k− 1) =
Nv

∑
i=1

[∆x,iαx,i(k− 1)x(k− 1)] (43)

Assuming that Dx(k− 1) = [∆x,1x(k− 1), . . . , ∆x,Nv x(k− 1)], ∆x,ix(t− 1)(1 ≤ i ≤ Nv)
is a column vector in Rn, Equation (43) can be rewritten as follows:

x(k)− Adx(k− 1) = Dx(k− 1)[αx,1(k− 1), . . . , αNv(k− 1)] (44)

In Equation (44), the previous states, x(k− 1), and input, u(k− 1), are known via mea-
surement, so the current state, x(k), can be calculated. To simplify the study in this section,
the ranks of Dx(k− 1) and [Dx(k− 1), x(k)− Adx(k− 1)− Bdx(k− 1)] are considered to
be equal for all k ≥ 1. Therefore, based on the Rouché–Capelli theorem [48], Equation (44)
has a unique solution, αx,i(k− 1)(1 ≤ i ≤ Nv), for all k ≥ 1.

As a result, Ad[k − 1] can be obtained from the most recent state, x(k − 1), control
history, u(k− 1), and current state, x(k). To obtain the state gain matrix, L(k), for compen-
sating the state vector, the equation is expressed as follows:

x̂(k + 1) = Ad x̂(k) + Bdu(k) (45)

where x̂(k) denotes a compensated state vector at the time instant k. Ad is considered to be
invertible, and x̂(k) in Equation (45) is replaced by L(k)x(k), where L(k) can be shown as
follows:

L(k) = A−1
d Ad(k) (46)

Then, x̂(k + 1) = x(k + 1) in Equations (35) and (45), meaning the compensated state
vector can be identical to the state vector obtained by the time-varying system matrix,
Ad[k], in Equation (35). By substituting Ad[k− 1] from Equation (44) for Ad[k] in Equation
(46), L(k− 1) can be calculated. With sufficiently slow time-varying parameters, it can be
assumed that L(k) ∼= L(k− 1). Consequently, the compensated state vector can be shown
as follows:

x̂(k) = L(k)x(k) ∼= L(k− 1)x(k) (47)

The online implementation structure of the state error compensation is represented in
Table 3.

Moreover, considering the research target in the study is to ensure braking stability
while improving the braking energy recovery rate of electric vehicles, the corresponding
system parameter vector, xp,FL, is rewritten as follows:

x̂p,FL =
[
λ̂FL(tk), eFL(tk), vx(tk), TCA,FL(tk)

]
(48)

where λ̂FL(tk) = λ̂FL(tk) + A−1
d Ad(tk), and other system parameters are the same as

in xp,FL.
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Table 3. Implementation structure of the error compensation.

Initialization:

From the system Equation (35), set Ad[0] = Ad, Bd[0] = Bd. For the system Equation (41)
obtain the optimal look-up map, i.e., the eMPC solution in Figure 7 by solving the mp-QP
problem Equation (10). Set the initial condition x(0) of the system Equation (35) and k = 0.

Step 1: Measure the state vector x(k) of the system Equation (35).
Step 2: If k = 0 then Ad(−1) = Ad. Otherwise, Ad(−1) is calculated by using Equation (35) with

x(k), x(k− 1), u(k− 1) if ranks of Dx(k− 1) and
[Dx(k− 1), x(k)− Adx(k− 1)− Bdx(k− 1)] are equal for all k ≥ 1.

Step 3: Obtain L(k− 1) by substituting Ad[k− 1] from Equation (44) for Ad[k] in Equation (46),
and estimate x̂(k) by Equation (47) with x(k) and L(k− 1). Note that, by Equation (46),
L(−1) = A−1

d Ad(−1) = A−1
d Ad = I.

Step 4: Evaluate the function u(k) by eMPC solution in Figure 7 based on x̂(k) and apply u(k) to
the system Equation (35).

Step 5: Set k = k + 1, and go to Step 1.

The architecture of the improved eMPC controller, which consists of the basic eMPC
controller and the state error compensator, is shown in Figure 8. The basic eMPC controller
can generate critical regions in Figure 8 when only xp,FL(1) and xp,FL(4) vary and the
other parameters are fixed. Each region owns its unique sequence of optimal vectors, and
the controller explicitly chooses a region based on the parameter values. The state error
compensator employs feedback error compensation according to the variation in the system
matrix, i.e., x̂p,FL in Equation (48), and enhances the robustness of the controller against
parameter variation.
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Figure 8. The architecture of the improved eMPC.

Equation (48) dictates that compensating the state variable in Figure 8 involves straightfor-
ward matrix multiplication considering the previous state and input. This compensator avoids
the necessity for modifying the critical regions of eMPC concerning parameter variation.

In summary, a comprehensive braking control framework is established by combin-
ing offline adaptive control law generation, online optimal control law application, and
state compensation.

4. Comparison of Simulation Results

In this section, based on the studied vehicle and the proposed structure of the electro-
hydraulic composite braking system, a MATLAB/Simulink simulation platform is estab-
lished for a four-wheel hub drive electric vehicle. The coordinated control of the electro-
hydraulic composite braking system emphasizes regulating the electric and hydraulic
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braking force to ensure braking safety in both regular and emergency braking conditions.
Additionally, the regenerative braking system should provide a certain amount of electric
braking force during the test, and the test conditions need to include regular braking and
emergency braking conditions. Therefore, the performance of the proposed eMPC-CCS
is evaluated in comparison with that of conventional CCSs, such as the PID-CCS, LQR-
CCS, and MPC-CCS. Evaluations include assessing the performance of the driver in an
integrated braking operation, starting with low-intensity braking and then transitioning
to high-intensity braking, to verify the effectiveness of the proposed eMPC-CCS. Another
assessment involves emergency braking on joint and bisectional roads to verify the braking
stability and robustness of the proposed eMPC-CCS. The initial battery SOC is set to 0.8.
The key parameters of the vehicle model are shown in Tables 1 and 2. According to the
above analysis, the simulated braking conditions selected in this section are as follows:

• The vehicle performs integrated braking on the road with a high-adhesion coefficient
of 0.8 and the initial braking speed is 100 km/h;

• The vehicle performs integrated braking on the road with a low-adhesion coefficient
of 0.3 and the initial braking speed is 50 km/h;

• The vehicle performs emergency braking on the joint road with an adhesion coefficient
that changes from 0.2 to 0.8, and the initial braking speed is 60 km/h;

• The vehicle performs emergency braking on the bisectional road with an adhesion
coefficient of 0.3 on the left and 0.8 on the right, and the initial braking speed is
60 km/h.

4.1. Simulation Analysis of Integrated Braking Conditions

As shown in Figures 9 and 10, the integrated braking conditions are simulated and
analyzed for vehicle braking on the high- and low-adhesion coefficient road, respectively.
In addition, the driver is set to perform an integrated braking operation, i.e., small-intensity
braking with a value of 0.1 at 0–1 s first, which changes to large-intensity braking with a
value of 1 after 1 s. When the vehicle brakes on this road, the front-left wheel is selected to
be analyzed, i.e., the simulation results of the four coordinated control strategies controlling
whole braking are demonstrated by the front-left wheel motion.

The vehicle braking simulation results on the dry asphalt road with an adhesion
coefficient of 0.8 are shown in Figure 9. The initial braking speed is 100 km/h and the
battery SOC is 0.8. In Figure 9d–f, within 1 s from braking, according to the current
vehicle status, the braking mode analysis module judges the braking system working
mode to be conventional regenerative braking. At this time, the regenerative braking
system can completely provide the whole vehicle’s demanded braking torque. After 1 s, the
braking intensity is more than 0.2, and the eMPC-CCS distributes the front and rear axle
braking force according to the I-curve and prioritizes the motor to provide the demanded
braking force. When the demanded braking force is larger than the maximum braking
force that can be provided by the motor, the motor outputs the current maximum braking
force, and the remaining demanded braking force is provided by the hydraulic braking
system. In Figure 9a–c, with the increase in braking force applied to the wheels, the braking
system enters into the RBS and ABS coordinated control mode. Then, the RBS and ABS
coordinated control strategy is triggered to control the wheels for antilock control, at which
point the wheels engage in emergency braking. When the wheel reaches the ABS-triggering
condition, the eMPC-CCS calculates the wheel demand braking torque according to the
vehicle state parameters, to maintain the slip ratio at the optimal road slip ratio. It can
be seen from Figure 9a that during the emergency braking, compared with the other
three control strategies, the eMPC-CCS can quickly stabilize the slip rate around 0.15 with
minimal fluctuation. This means that the adhesion between the wheels and the road is
more stable, and makes the brake system control the wheels more accurately. When the
vehicle speed drops to 10 km/h, the braking torque of the motor decreases to 0 Nm and the
motor exits the braking process. After that, the vehicle is not suitable for anti-lock braking,
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so the coordinated control strategy controls the hydraulic braking torque to increase rapidly
to complete the final parking brake.
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The vehicle braking simulation results on a snowy road with an adhesion coefficient
of 0.3 are shown in Figure 10. The initial braking speed is 50 km/h, and the battery
SOC is 0.8. In Figure 10d–f, within 1 s from braking, according to the current vehicle
status, the braking mode analysis module judges the braking system working mode to
be conventional braking. At this time, the regenerative braking system can completely
provide the demanded braking torque. After 1 s, the braking intensity is more than 0.2, and
the eMPC-CCS distributes the front and rear axle braking force according to the I-curve
and prioritizes the motor to provide the demanded braking force. At this point, large
fluctuations in the slip ratio occur due to emergency braking taking place, and the four
coordinated control strategies perform anti-lock braking by adjusting the braking torque on
the wheels. In Figure 10a, compared with the other three control strategies, the eMPC-CCS
can maintain the slip rate around 0.15 faster and more stably with minimal fluctuation.
When the vehicle speed is less than 10 km/h, the wheel speed drops directly to 0, the
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regenerative braking system quits braking, and the required braking force is completely
provided by the hydraulic braking system, until complete parking.

By comparing the braking performance indicators among the four coordinated control
strategies, shown in Figure 11, the eMPC-CCS has the maximum energy recovery efficiency
and adhesion factor utilization rate on high- and low-adhesion-coefficient roads. The
MPC-CCS performs a bit worse than the eMPC-CCS but better than the LQR-CCS and
PID-CCS; the PID-CCS has the worst performance. The differences in performance among
these strategies are due to the optimal control logic invocation and the method of achieving
the invoking process. The improved eMPC controller can reasonably distribute the braking
force of each wheel and solidly underpin the control logic update, ensuring the motor is in
a high-efficiency field in different driving conditions. The MPC-CCS with driving condition
identification in the whole braking process can also invoke the optimized control logic but
struggles to obtain a flexible, timely update in contrast to the eMPC-CCS.
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Tables 4 and 5 present the simulation results of various CCSs, emphasizing energy
recovery efficiency as the main evaluation criterion for assessing the coordinated control
effectiveness of the RBS and ABS. As shown in Equation (49), the vehicle speed changes
from v0 to v1 during the time interval [0, tb].
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∫ t0
0

(
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4
∑
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)
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m(v2
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(49)

where Ti and ωi are the braking torque and speed output by the motors, respectively.
ηi(i = 1, 2, 3, 4) is the efficiency of motors when outputting torque, Ti, and speed, ωi. m is
the vehicle mass, and η is the braking energy recovery efficiency.

Table 4. Comparison of four coordinated control strategies on high-adhesion-coefficient road.

Control
Strategy

Energy Recovery
Efficiency (%)

Braking
Distance (m)

Adhesion Factor
Utilization Rate (%)

Final SOC of the
Battery (%)

Braking
Stability (%)

eMPC-CCS 30.38 75.94 98 80.37 100
MPC-CCS 22.36 76.88 96.6 80.27 100
LQR-CCS 20.99 77.79 95 80.25 100
PID-CCS 18.63 78.79 93 80.22 100
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Table 5. Comparison of four coordinated control strategies on low-adhesion coefficient road.

Control
Strategy

Energy Recovery
Efficiency (%)

Braking
Distance (m)

Adhesion Factor
Utilization Rate (%)

Final SOC of the
Battery (%)

Braking
Stability (%)

eMPC-CCS 37.64 45.83 96 80.14 100
MPC-CCS 33.59 46.29 94.8 80.11 100
LQR-CCS 20.02 48.98 94.1 80.06 100
PID-CCS 25.21 47.32 94.5 80.08 100

According to the numerical results in Figure 11a and Table 4, the eMPC-CCS con-
tributes to an increase of 8.02% in the energy recovery efficiency compared with the
MPC-CCS, an increase of 9.39% compared with the LQR-CCS, and an increase of 11.75%
compared with the MPC-CCS on a high-adhesion-coefficient road. Similarly, numerical
results in Figure 11b and Table 5 reveal that the eMPC-CCS contributes to an increase of
4.05% in the energy recovery efficiency compared with the MPC-CCS, an increase of 17.62%
compared with the LQR-CCS, and an increase of 12.43% compared with the MPC-CCS on
a low-adhesion-coefficient road. From the perspective of energy recovery efficiency, the
eMPC-CCS can more effectively invoke the optimized control thresholds in real time by
referring to the wheel braking torque corresponding to the optimal road slip ratio, so it has
better adaptability to different braking modes. In terms of the adhesion factor utilization
rate in Tables 4 and 5, the eMPC-CCS can improve by 1.4% and 1.2% compared with the
MPC-CCS, which means that the vehicle has more braking force on the road, can transfer
power more efficiently, and provides better handling performance and stability.

4.2. Robustness Verification for eMPC-CCS

As shown in Figures 12 and 13, braking simulations are performed on the joint
road with varying adhesion coefficients, and a bisectional road with different adhesion
coefficients on the left and right sides, respectively.

The vehicle braking simulation results of four coordinated control strategies on the joint
road are shown in Figure 12. At the initial braking stage, emergency braking on a snowy road
with an adhesion coefficient of 0.3 is simulated; the initial braking speed is 60 km/h and the
initial SOC is 0.8. In Figure 12d–i, With the increase in braking torque applied to the wheels,
the front and rear wheels reach the condition of triggering the ABS one after another. After
the ABS is triggered, the proposed eMPC-CSS calculates the demanded braking torque for the
wheels to maintain the optimal slip rate, and then controls the braking system to apply the
corresponding braking torque on the wheels to quickly stabilize the slip rate near the optimal
slip rate. After the vehicle has traveled 15 m, i.e., after 1 s, the road suddenly becomes a dry
asphalt road with a value of 0.8. The proposed eMPC-CSS can still quickly make the wheel
slip ratio track the best slip ratio on the current road. In Figure 12b,c, it is clear that the slip rate
under the eMPC-CSS fluctuates more gently than that under the other three control strategies,
and can quickly keep up with the desired slip rate and stay close to it so that the wheels do
not lock up during ABS braking. The smaller fluctuations in the slip rate allow the braking
system to control the wheels more accurately and can improve vehicle stability and reduce
unnecessary vehicle sway and drift due to braking. Thus, the eMPC-CSS has better stability
and robustness on the joint road.
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As shown in Figure 13, the vehicle performs emergency braking on the bisectional
road with an adhesion coefficient on the left side of 0.3 and an adhesion coefficient on
the right side of 0.8. The initial braking speed is 60 km/h and the initial SOC is 0.8. At
the beginning of braking, as the braking torque increases, the front-left wheel on the
low-adhesion-coefficient road triggers the ABS earlier than the front-right wheel on the
high-adhesion-coefficient road. At this time, there is a large gap between the slip rate of
the front-left wheel and the front-right wheel. The eMPC-CSS controls the slip rate of
the front-left wheel to be near the optimal road slip rate while continuing to increase the
braking torque on the front-right wheel. Subsequently, the rear-left wheel, which is on the
low-adhesion-coefficient road, reaches the ABS-triggering condition, and the eMPC-CSS
controls the slip rate of the rear-left wheel near the optimal road slip rate while continuing
to increase the braking torque on the rear-right wheel. Finally, the front-right wheel, which
is on a high-adhesion-coefficient road, also reaches the ABS-triggering condition. Aiming
at providing good braking performance, the eMPC-CSS controls the wheel slip rate near
the optimal road slip rate, which utilizes the road adhesion conditions to the fullest. When
the vehicle speed is more than 10 km/h, the left and right wheels are not locked to ensure
stability and safety during braking.

As shown in Figure 14, compared with the braking performance indicators among
the four coordinated control strategies, the eMPC-CCS has the maximum energy recovery
efficiency and braking deceleration on the joint road and the bisectional road. In addition,
four coordinated control strategies can stabilize the vehicle during braking, but the eMPC-
CCS has the shortest braking distance. The MPC-CCS performs a bit worse than the eMPC-
CCS but better than the LQR-CCS and PID-CCS; LQR-CCS has the worst performance. The
eMPC-CCS can reasonably distribute the braking force of each wheel, and make corrections
to ensure that the motor is in the field of high efficiency under different driving conditions.
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Figure 14. Comparison of four coordinated control strategies on the joint road and the bisectional road.

According to the numerical results in Figure 14a and Table 6, the eMPC-CCS con-
tributes to an increase of 5.63% in the energy recovery efficiency compared with the
MPC-CCS, an increase of 12.86% compared with the LQR-CCS, and an increase of 8.33%
compared with the MPC-CCS on the joint road. Similarly, numerical results in Figure 14b
and Table 7 reveal that the eMPC-CCS contributes to an increase of 3.51% in the energy
recovery efficiency compared with the MPC-CCS, an increase of 9.82% compared with the
LQR-CCS, and an increase of 5.38% compared with the MPC-CCS on the bisectional road.
From the perspective of energy recovery efficiency, the eMPC-CCS can more effectively
invoke the optimized control thresholds in real time by referring to the wheel braking
torque corresponding to the optimal road slip ratio, so it has better adaptability to different
braking modes. In Tables 6 and 7, in terms of braking deceleration, the eMPC-CCS has the
best performance, which means that the vehicle can slow down to the target speed or stop
faster, and allow the driver to control braking effort more accurately.
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Table 6. Comparison of four coordinated control strategies on the joint road.

Control Strategy Energy Recovery
Efficiency (%)

Braking
Distance (m)

Braking
Deceleration (m/s2)

Final SOC of the
Battery (%)

Braking
Stability (%)

eMPC-CCS 23.68 24.08 5.89 80.12 100

MPC-CCS 18.05 25.68 5.5 80.08 100

LQR-CCS 10.82 26.7 5.2 80.05 100

PID-CCS 15.35 26.2 5.34 80.07 100

Table 7. Comparison of four coordinated control strategies on the bisectional road.

Control Strategy Energy Recovery
Efficiency (%)

Braking
Distance (m)

Braking
Deceleration (m/s2)

Final SOC of the
Battery (%)

Braking
Stability (%)

eMPC-CCS 26.07 27.18 5.11 80.13 100
MPC-CCS 22.56 28.9 4.81 80.10 100
LQR-CCS 16.25 29.31 4.74 80.06 100
PID-CCS 20.69 29.16 4.76 80.09 100

Through the simulation analysis, the proposed eMPC-CCS can control vehicles to
perform anti-lock braking with excellent stability and robustness when the road adhesion
coefficient changes suddenly and the road adhesion coefficients on the left and right sides
are different.

4.3. Hardware-in-the-Loop Test

To validate the performance of the eMPC-CC and its functionality in lowering com-
putation time and improving real-time performance, a hardware-in-the-loop (HIL) test
is conducted. Hardware test planning is depicted in Figure 15, primarily composed of
host PC1 (the controller), host PC2 named Speedgoat, and the target machine interface.
In host PC1, the eMPC-CCS and vehicle model, including component sub-models, are
constructed in MATLAB/Simulink. The Simulink model is then compiled into C code
components. Subsequently, the compiled Simulink model from host PC1 is downloaded
to PC2 and displayed through the target machine interface. The communication between
the controller and host PCs is attained via CAN bus communication. To better illustrate
the braking energy recovery performance and real-time performance of the eMPC-CCS,
the test scenario involves emergency braking, starting at a speed of 100 km/h and using a
braking intensity of 0.8.
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Figure 16 represents the slip ratio changes of different CCSs in the test scenario. Table 8
lists the numerical results of the energy recovery efficiency of different CCSs in the test
scenario, and the step time costs are shown in Table 9.
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Table 8. Braking energy recovery efficiency of different CCSs.

Control
Strategy

Energy Recovery
Efficiency (%)

Braking
Distance (m)

Final SOC of
the Battery (%)

Braking
Stability (%)

eMPC-CCS 25.58 47.18 80.24 100
MPC-CCS 22.51 48.9 80.20 100
LQR-CCS 20.61 49.31 80.18 100
PID-CCS 16.44 52.16 80.15 100

Table 9. Real-time applications of different CCSs.

Control Strategy Minimum Step Time
Cost (s)

Maximum Step Time
Cost (s)

Average Step Time
Cost (s)

eMPC-CCS 7.26 × 10−6 2.54 × 10−5 7.76 × 10−6

MPC-CCS 7.5 × 10−6 2.73 × 10−5 8.27 × 10−6

LQR-CCS 7.25 × 10−6 3.02 × 10−6 7.78 × 10−6

PID-CCS 7.33 × 10−6 2.71 × 10−5 7.91 × 10−6

Table 8 lists the maximum step time cost, minimum step time cost, and average time
cost in the HIL test for different control strategies. Compared with other CCSs, the eMPC-
CCS has the smallest step time cost and meets real-time applications in road driving with a
maximum computational frequency of more than 50 Hz [49].

In the control strategies, the MPC-CCS, LQR-CCS, and PID-CCS tend to activate the
ABS frequently, but the slip ratio curve of the eMPC-CCS is closer to the reference slip ratio.
To be specific, from Figure 16, it can be seen that the slip ratio gradually increases during
the initial 0.5 s of braking, then vehicle braking torque is adjusted in real-time according
to the reference slip ratio. After 3.3 s, the vehicle speed decreases to 10 km/h, at which
point the ABS disengages from the braking process, resulting in a sudden surge in the slip
ratio to 1. Compared with the slip ratio curve of the other traditional CCSs in the partially
enlarged figure, the slip ratio of the eMPC-CCS changes smoothly, so the eMPC-CCS shows
a strong adjustment ability. According to the results in Table 9, the eMPC-CCS can increase
braking energy recovery efficiency by nearly 3.07% to 9.14% compared with other CCSs.

Through the simulation analyses, the developed eMPC-CCS, formed by offline control
laws generation and online control law invocation, can better coordinate the control RBS
and ABS, which could follow the braking energy recovering trend of the reference slip
ratio. To be specific, in the HIL test, the real-time calculation ability of the eMPC-CCS can
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also meet the requirement of the communicating frequency for the CAN bus. In short, the
eMPC-CCS shows an advantage in coordinated control between RBS and ABS.

5. Discussion

In this study, a novel eMPC-based coordinated control strategy, namely the eMPC-
CCS, is proposed for the electro-hydraulic composite braking system. The aim is to ensure
the real-time performance and stability of the braking process and maximize the braking
energy recovery of the four-wheel-drive hub electric vehicle. Comparative studies are
conducted through simulations to verify the feasibility and validity of the eMPC-CCS.
From the analysis in Section 3, we can draw the following conclusions:

(1) The proposed CCS based on eMPC, named the eMPC-CCS, greatly improves the
online calculation speed of coordinated control strategy allocation through offline
processing and online implementation, and can provide more accurate and intuitive
control performance analysis.

(2) A three-dimensional eMPC law generation method based on multiple braking condi-
tions generates a 3D eMPC explicit solution by invoking multiple sets of micro trip
segments to generate state feedback control laws, achieving the adaptability of the
control strategy.

(3) The eMPC-CCS includes an improved eMPC controller with a basic eMPC controller
and state error compensator, which improves real-time capability, adaptability, and
robustness under various braking conditions. Compared with the other CCSs, namely
the PID-CCS, LQR-CCS, and MPC-CCS, the braking energy recovery efficiency of the
eMPC-CCS is increased by at least nearly 4%.

6. Conclusions

In this paper, a novel eMPC-based coordinated control strategy named the eMPC-CSS
is proposed for electro-hydraulic composite braking systems. By combining offline control
law generation with online control law invocation, this strategy augments real-time capa-
bility and robustness between the RBS and ABS. Offline control law generation, including
real-time-oriented state feedback control laws under micro braking segments, supporting
the eMPC-CCS to have a properly coordinated control tendency. The online implemen-
tation, containing 3D eMPC control law generation and state error compensation, can
facilitate control law application in practice while also allowing for the rational distribution
of motor and hydraulic braking torque. Compared to other CCSs such as the MPC-CCS,
LQR-CCS, and PID-CCS, the proposed eMPC-CSS demonstrates a significant improvement
in braking energy recovery efficiency, with gains ranging from approximately 4% to 17%.
The simulation-based test and HIL validation verify that the proposed eMPC-CCS effec-
tively ensures the real-time capability, adaptability, and robustness of the CCS, showcasing
its anticipated superior performance.

However, it is crucial to acknowledge the significant discoveries and limitations
presented in these studies. Firstly, one key limitation identified is the considerable braking
torque fluctuations due to the differing dynamic response characteristics of the regenerative
and hydraulic braking systems, particularly during mode-switching sequences. This
issue warrants further investigation into mode transition-smoothing techniques. Secondly,
the current study solely considers the influence of longitudinal force on vehicle braking,
disregarding the impact of lateral force throughout the time course. Consequently, it is
imperative for future studies to comprehensively examine both the implications of braking
torque fluctuations and the influence of lateral force during vehicle braking for a more
complete understanding and enhancement of system performance.
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