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Abstract: The process of image fusion is the process of enriching an image and improving the
image’s quality, so as to facilitate the subsequent image processing and analysis. With the increasing
importance of image fusion technology, the fusion of infrared and visible images has received
extensive attention. In today’s deep learning environment, deep learning is widely used in the field
of image fusion. However, in some applications, it is not possible to obtain a large amount of training
data. Because some special organs of snakes can receive and process infrared information and visible
information, the fusion method of infrared and visible light to simulate the visual mechanism of
snakes came into being. Therefore, this paper takes into account the perspective of visual bionics
to achieve image fusion; such methods do not need to obtain a significant amount of training data.
However, most of the fusion methods for simulating snakes face the problem of unclear details, so this
paper combines this method with a pulse coupled neural network (PCNN). By studying two receptive
field models of retinal nerve cells, six dual-mode cell imaging mechanisms of rattlesnakes and their
mathematical models and the PCNN model, an improved fusion method of infrared and visible
images was proposed. For the proposed fusion method, eleven groups of source images were used,
and three non-reference image quality evaluation indexes were compared with seven other fusion
methods. The experimental results show that the improved algorithm proposed in this paper is better
overall than the comparison method for the three evaluation indexes.

Keywords: rattlesnake; visible image; infrared image; image fusion; PCNN

1. Introduction

Image fusion is a process of using different sensors to generate richer and higher
quality images from the same scene through computer technology. Image fusion processing
can extract the effective information and available complementary information in the image,
filter the redundant information and invalid information in the source image, generate a
robust or informative image, and improve the image quality.

Image fusion has been studied for more than 40 years and has been widely used.
Researchers have improved fusion methods from various angles. Among them, the fusion
of visible image and infrared image has been paid more attention. Fusion algorithms
based on traditional image processing methods are constantly evolving, including many
different traditional methods, such as the multi-scale transform fusion algorithm [1,2],
sparse representation image fusion algorithm [3] and some other traditional methods [4,5].
This traditional method is generally stable, no training is needed and the fusion effect is also
very good, but it is generally complex to use in calculations and low in operation efficiency.
There may be some problems in the processing of details. Nowadays, fusion algorithms
based on deep learning methods are becoming more and more popular, including methods
based on convolutional neural networks [6,7], methods based on generative adversarial
networks [8], methods based on autoencoder networks [9] and so on. This method generally
provides a good fusion effect and rich details, but requires a large amount of data for
training. However, in some applications, a large amount of training data cannot be obtained.
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The research findings in the field of biology provide a new idea for the study of
image fusion methods. Researchers have studied the biological mechanisms of visual
perception and infrared vision in snakes. In 1953, by dissecting the optic nerve fibers of
frogs, Kuffler [10] discovered the activity of ganglion cells and the existence of two basic
receptor types based ON various firing patterns in the retina, ON/OFF centers surrounding
cells. Hodgkin and Huxley [11] proposed the passive membrane equation through scien-
tific research to describe center-surround shunting neural networks (CSSNNs). In 1978,
Hartline et al. [12] studied the visual function and infrared perception of ventral subfamily
snakes (rattlesnakes) using electrophysiological methods, and pointed out that visible light
and infrared sensing neurons were distributed in the optic tectum of these snakes, and
clarified the existence of bihump cells. In 1981, Newman and Hartline [13] discovered that
the two-mode cells of rattlesnakes can receive and process information from both infrared
and visible light, and automatically fuse infrared and visible images naturally. Chen et al.
then temporarily blocked some sensors of the pit viper, demonstrating that infrared and
visible information complement each other for the pit viper to hunt prey and inhibit each
other in the localization process [14].

On the basis of this research on the infrared sensing organs of snakes, some researchers
have proposed some novel fusion methods of infrared and visible light from the perspective
of mimicking the visual imaging mechanism of snakes. In 1997, Waxman et al. [15] imitated
the physiological mechanism of rattlesnakes and proposed an adversarial fusion method of
night vision images and infrared images. But the pseudo-color image generated by this
method is distorted and has low visibility, which is not conducive to human observation.
Reinhard et al. [16] proposed a method for color transfer between two color images. Li [17]
and Zhang et al. [18] have improved the classical receptive field model of snakes and
achieved good results.

The pulse-coupled neural network model is the third generation of untrained artificial
neural networks, which is different from the traditional artificial neural network. It is
inspired by mammals. In 1990, Eckhorn et al. [19] proposed a neural network model based
on signal transduction of neurons in the cat visual cortex. In 1999, Johnson and Padgett [20]
modified this model for image processing and named it the PCNN. Through linear addition
and modulation coupling, the PCNN reflects exponential attenuation and time delay of
bioelectrical transmission. So, the PCNN has better processing ability for adjacent excitation
signals and can be used for image fusion, image segmentation, etc. The PCNN does not
require training.

This paper is based on the research of the image fusion method of the rattlesnake
vision imaging system. From the perspective of bionics, the fusion method of infrared
images and visible images is designed to simulate the fusion mechanism of infrared signals
and visible signals of rattlesnakes. Different from deep learning methods, this kind of
method does not require a large amount of training data, and can still achieve fusion
in some applications where a large amount of training data cannot be obtained. So far,
all the fusion methods used to simulate snakes generate pseudo-color images because
human eyes can recognize objects faster in color images than in gray ones. However, the
pseudo-color images generated by these methods may make the details unclear. Therefore,
when building a model simulating the vision mechanism of snakes, this paper does not
use the step of directly mapping the processed images to RGB three-channel to generate
pseudo-color images, but combines the model with the PCNN network.

2. Related Work
2.1. Visual Receptive Field and Mathematical Mode
2.1.1. Visual Receptive Field

In the 1930s, Hartline became the first person to document the axonal ganglion cells of
a single retina by dissecting optic nerve fibers from frogs. He identified three types of retinal
ganglion cells: ON cells that fire strongly when the retina is illuminated, OFF cells that
fire when light is turned OFF, and ON/OFF cells that react briefly to both the turning on
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and turning off of light. He proved that each cell was sensitive to only a small illuminated
area on the surface of the retina, which he called the receptive field of the cell. Kuffler
then discovered in cats that the receptive field of each ganglion cell is actually composed
of two concentrically arranged regions: an excitatory central region and an antagonistic
surround region. Stimulating the central area with a small spot will cause a strong response,
while a larger spot stimulus will produce a diminished response (antagonization) when it
spreads to the surrounding area. When the irradiation range of light spot is limited to the
center of its receptive field, ON/OFF cells have a strong instantaneous response to both
the beginning and the end of light. When ON cells are stimulated by light intensity or
local light enhancement, the frequency of the nerve pulse is increased. The OFF cells are
activated when the light intensity is removed or when the local light intensity is reduced,
and the frequency of their nerve pulse is increased. When the size of the spot increases to
the surrounding area, the response to light increment and light decrement is decreased,
proving that the surrounding area causes the opposite response.

According to the study of anatomy and physiology, the common receptive field of
retinal nerve cells can be divided into ON-center and OFF-center ganglion cells. The ON
ganglion cells are located in the ON excitatory region and surrounded by the OFF inhibitory
region. The OFF ganglion cells are located in the OFF excitatory region and surrounded
by the ON inhibitory region. In Figure 1, “+” represents the excitatory region and “−”
represents the inhibitory region.
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Figure 1. ON/OFF central receptive field model (left is ON receptive field; right is OFF receptive field).

2.1.2. ON/OFF—Mathematical Model of Central Receptive Field

At first, A.F.Huxley et al. proposed the passive membrane equation to simulate the
exchange of cell membrane ion currents in physiology. Later, Newman et al. [21] used
Grossberg’s centered surround shunt neural network to build an image fusion model based
on snakes. The formula is as follows:

d
dt

X(x, y) = −A[X(x, y)− D] + [E − X(x, y)]C(x, y)− [F + X(x, y)]S(x, y) (1)

d
dt

Y(x, y) = −A[Y(x, y)− D] + [E − Y(x, y)]S(x, y)− [F + Y(x, y)]C(x, y) (2)

where X(x, y) and Y(x, y) are the ON center versus cell response and OFF center versus cell
response, respectively. A represents the attenuation constant of the cell, D and D represent
the basal activity of ON and OFF against cells, respectively, E and F are the polarization
constants, C(x, y) and S(x, y) represent the central region and surrounding region of the
receptive field obeying the Gaussian distribution, respectively, and the formula is as follows:

C(x, y) = I(x, y) ∗ Wc(x, y) =
1

2πσ2
c
∑m,n I(x − m, y − n)exp(−m2 + n2

2σ2
c

) (3)

S(x, y) = I(x, y) ∗ Ws(x, y) =
1

2πσ2
s
∑p,q I(x − p, y − q)exp(− p2 + q2

2σ2
s

) (4)

The above formulas describe the instantaneous changes in cells after stimulation.
When the cell response eventually tends to balance, the following equation is obtained.
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ON against cell output:

X(x, y) =
AD + EC(x, y)− FS(x, y)

A + C(x, y) + S(x, y)
(5)

OFF against cell output:

Y(x, y) =
AD + ES(x, y)− FC(x, y)

A + C(x, y) + S(x, y)
(6)

2.2. Six Dual-Mode Cell Fusion Mechanisms and Mathematical Models in Rattlesnakes

ON, OFF, and ON/OFF cells in the retina and their antagonistic center-surrounding
tissue form the basic structure of all vertebrate visual systems, and spatial antagonism
is common in the cellular receptive field of the visual system. A great number of dual-
mode cells exist in the optic tectum of venomous snakes such as pythons and rattlesnakes.
These cells have different nonlinear responses when receiving infrared and visible light
stimulation. These responses are roughly divided into six categories, and the following will
be briefly introduced to these six responses.

2.2.1. “OR” Cells

When the “OR” cell receives two kinds of stimulus signals, the visible light signal
and infrared signal, it can not only respond to any single one of the two kinds of stimulus
signals, but also respond to two kinds of stimulus signals that exist at the same time, and it
will result in a gain effect when both signals are present at the same time and stimulate the
cell. Therefore, the weighted method is adopted to simulate the physiological mechanism
of “OR” cells.

When IV(x, y) < IIR(x, y), the mathematical model is

IOR(x, y) = nIV(x, y) + mIIR(x, y) (7)

When IV(x, y) > IIR(x, y), the mathematical model is

IOR(x, y) = mIV(x, y) + nIIR(x, y) (8)

where m > 0.5, n < 0.5, IOR(x, y) represents the image obtained after the processing of the
“OR” cell mathematical model.

2.2.2. “AND” Cells

When the “AND” cell receives two kinds of stimulus signals, the visible light signal
and infrared signal, it can only produce an obvious response when the two kinds of
stimulus signals are present at the same time. And when either of the two kinds of stimulus
signals separately stimulate the cell, there is basically no response or only a weak response.
Therefore, the weighted method is adopted to simulate the physiological mechanism of
“AND” cells.

When IV(x, y) < IIR(x, y), the mathematical model is

IAND(x, y) = mIV(x, y) + nIIR(x, y) (9)

When IV(x, y) > IIR(x, y), the mathematical model is

IAND(x, y) = nIV(x, y) + mIIR(x, y) (10)

where m > 0.5, n < 0.5, IAND(x, y) represents the image obtained after the processing of
“AND” cell mathematical model.
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2.2.3. Enhanced Cell Mathematical Model

(1) The mathematical model of infrared enhanced visible light: When the cell receives
two kinds of stimulus signals, the visible light signal and infrared signal, a response is
generated only when the visible light signal separately stimulates the cell, and when the
infrared signal separately stimulates the cell, there is basically no response or only a weak
response. However, when two kinds of signals stimulate the cell at the same time, the
response generated will be enhanced. So, the infrared signal plays a role in enhancing the
response in the cell.

When the received two signals stimulate the cell simultaneously, the response gen-
erated by the visible light signal stimulation of the cell is the most significant part, while
the stimulation of the infrared signal to the cell enhances the response generated by the
visible light signal stimulation. Therefore, visible light signal plays a dominant role in the
establishment of mathematical models to simulate the physiological mechanism of this cell,
while the infrared signal uses the exponential function to represent the enhancement effect.
The mathematical model is

IIR+V(x, y) = IV(x, y)exp[IIR(x, y)] (11)

(2) The mathematical model of visible enhanced infrared light: When the cell receives
two kinds of stimulus signals, the visible light signal and infrared signal, the response is
generated only when the infrared signal stimulates the cell alone, and basically no response
or only a weak response is generated when the visible light signal stimulates the cell alone.
However, when the two kinds of signals stimulate the cell at the same time, the response
generated by the cell will be enhanced. So, visible light signal plays a role in assisting
enhancement in this cell.

Therefore, in the establishment of mathematical models to simulate the physiological
mechanism of this cell, the infrared signal plays a dominant role, while the visible signal
uses the exponential function to represent the enhancement effect. The mathematical
model is

IV+IR(x, y) = IIR(x, y)exp[IV(x, y)] (12)

2.2.4. Inhibited Cell Mathematical Model

(1) The mathematical model of infrared suppression of visible light: When the cell
receives two kinds of stimulus signals, the visible light signal and infrared signal, the
response is generated only when the visible light signal stimulates the cell alone, while
when the infrared signal stimulates the cells alone, there is basically no response or only a
weak response. However, when the two kinds of signals stimulate the cell at the same time,
the response produced by the cell will be weakened. Therefore, the infrared signal plays a
role in inhibiting the response in the cell.

When the received two signals stimulate the cell simultaneously, the response gen-
erated by the visible light signal stimulation of the cell is the most significant part, while
the stimulation of the infrared signal to the cell weakens the response generated by the
visible light signal stimulation. Therefore, the visible light signal plays a dominant role
in the establishment of mathematical models to simulate the physiological mechanism of
this cell, while the infrared signal uses the logarithmic function to represent the inhibition
effect. The mathematical model is as follows:

IIR−V(x, y) = IV(x, y)log[IIR(x, y) + 1] (13)

(2) The mathematical model of visible suppression of infrared light: When the cell
receives two kinds of stimulus signals, the visible light signal and infrared signal, the
response is generated only when the infrared signal stimulates the cell alone, and when the
visible light signal stimulates the cell alone, there is basically no response or only a weak
response. However, when the two kinds of signals stimulate the cell at the same time, the
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response produced by the cell will be weakened. Therefore, the visible light signal plays a
role in inhibiting the response in this cell.

Therefore, in the establishment of mathematical models to simulate the physiological
mechanism of this cell, the infrared signal plays a dominant role, while the visible signal
uses the logarithmic function to represent the inhibition effect. The mathematical model is
as follows:

IV−IR(x, y) = IIR(x, y)log[IV(x, y) + 1] (14)

2.3. Basic Theory of Pulse-Coupled Neural Networks

As a famous third-generation artificial neural network, the PCNN has its own advan-
tages compared with other image processing methods. First, the PCNN model is derived
from studies of the cat visual cortex. Its information processing is closer to human vi-
sual processing. And the PCNN has a flexible structure. In addition, the existing PCNN
method also shows that the PCNN has a wide range of applications in image processing
fields such as image fusion and image enhancement. Therefore, recently, the image fusion
method based on PCNNs has attracted more attention from many experts because of its
characteristics in the field of biology.

This section mainly introduces PCNN neuron model, simplified neuron model, and
the operating mechanism of PCNN. Firstly, the standard model of PCNN and its simplified
model are introduced.

The structure of PCNN neurons is shown in Figure 2. The neuron consists of an input
part, a connection part and an impulse generator. Neurons receive input signals from feed
inputs and link inputs. The feed input is the main input from the receiving area of the
neuron. The receiving area of the neuron consists of adjacent pixels of the corresponding
pixel in the input image. Link inputs are secondary inputs that are laterally connected to
adjacent neurons. The difference between these inputs is that the feed input has a slower
characteristic response time constant than the link input. The standard PCNN model is
represented by the following formula.
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weight matrix, αL and αF: time attenuation constant, VF and VL: inherent potential constant, Uij: in-
ternal state of the neuron, β: connection coefficient of the modulation domain, Tij: dynamic threshold,
αT: time attenuation constant; VT: the threshold of firing neurons) [22].

The role of the receive field is to receive the following two types of input:

Fij(n) = exp(−αF)Fij(n − 1) + VF∑kl MijklYkl(n − 1) + Sij (15)

Lij(n) = exp(−αL)Lij(n − 1) + VL∑kl WijklYkl(n − 1) (16)
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where Fij and Lij represent the feed input and the link input, respectively, Sij represents the
external stimulus and Mijkl and Wijkl represent the connection weight matrix, which can
regulate the influence of each neuron in the neighborhood of the central neuron. αL and
αF represent the time attenuation constant, which determines the attenuation speed of
channel F and channel L. Usually, αL > αF. VF and VL are the inherent potential constants,
respectively, are the amplitude coefficients of the feed input and the connection input,
and represent the amplitude adjustment constants of the connection domain. The energy
transferred by the ignition neuron in the neighborhood to the central neuron can be scaled.
The subscript ij indicates the position of the center pixel of the PCNN. The subscript kl
represents the position of the adjacent pixel corresponding to the center pixel.

In the modulation domain, the following equation can be used:

Uij(n) = Fij(n)[1 + βLij(n)] (17)

where Uij represents the internal state of the neuron and β represents the connection
coefficient of the modulation domain, which can change the weight of the linked channels
in the internal activity, and the value of β usually depends on different needs. If the
influence from the L channel is expected to be large, β should be given a larger value. All
neurons usually have the same value. But it is not absolute. Each neuron can have its
own value.

The function of the pulse generator is to generate pulse output, which is composed of
a threshold regulator, comparator and pulse generator, as shown below:

Tij(n) = exp(−αT)Tij(n − 1) + VTYij(n) (18)

Yij(n) =
{

1, Uij(n) > Tij(n)
0, Uij(n) ≤ Tij(n)

(19)

where Tij(n) represents the dynamic threshold and αT represents the time attenuation
constant, and the rate at which the threshold decays in the iterative process. It directly
determines the firing time of neurons and is an important parameter. Smaller αT can make
the PCNN work more intricate, but it takes a significant amount of time to complete the
processing. Larger αT values can reduce the running time of PCNNs. VT determines
the threshold of firing neurons, which is usually constant. When the internal state Uij of
the neuron is greater than the threshold value Tij, that is, the neuron meets the condition
Uij(n) > Tij(n), the neuron will generate a pulse, also known as firing once.

Since the formula of the standard model of PCNNs is too complicated, a simplified
model of PCNNs is proposed later with the improvement of research. The formula of this
simplified model is an improvement of Equation (15) and is shown below:

Fij(n) = Sij (20)

3. Fusion Method Based on Rattlesnake Imaging Mechanism and PCNN

In the previous chapter, according to the physiological mechanism of rattlesnake
double-mode cells, six cell types were classified, and the mechanism and mathematical
model of these six cells were introduced. The basic theory of the PCNN model was also
briefly introduced. An improved algorithm based on the rattlesnake imaging mechanism
and PCNN is proposed to solve the problem of detail loss in fused images.

The structure of the improved algorithm is shown in Figure 3. Infrared and visible
light source images are denoted as IR and VI.
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Third, after subtracting the common information (VI∩IR) obtained by “AND” cells
from the enhanced visible light image VI_ON, the unique information vi of the enhanced
visible light is obtained.

Fourth, VI∪IR input surrounds the suppression area and corresponds to the suppres-
sion signal; VI+IR input to the central excitation area corresponds to the excitation signal,
and the final output is OR+VI_IR. At the same time, VI∪IR input surrounds the suppression
area, corresponding to the suppression signal; IR+VI input surrounds the central excitation
area, corresponding to the excitation signal, and the final output is OR+IR_VI. That is,
VI+IR, IR+VI and VI∪IR are input into two ON confrontation systems at the same time.

Then, OR+VI_IR and vi are entered into a PCNN, resulting in PCNN1. At the same
time, OR+IR_VI and vi are entered into another PCNN to obtain PCNN2.

Finally, the two-image information of PCNN1 and PCNN2 is weighted to obtain the
final fusion image.

4. Results and Discussion

Following on from the above discussion, this section will conduct experimental simu-
lation for the proposed improved algorithm and compare it with other fusion methods. The
image fusion effect of the improved algorithm is compared from two aspects, subjective
evaluation and objective evaluation.

To observe the image fusion effect of our improved algorithm more directly and
concretely, seven fusion algorithms are prepared in this section as comparative experi-
ments. In this paper, we briefly introduce the following methods to compare with the
improved algorithm.

First, the improved fusion algorithm proposed by Li [17] is taken as one of the com-
parative experiments. In order to facilitate the identification of comparison methods in
subsequent evaluation, it is denoted as Li here.

Second, the improved MIT color fusion algorithm proposed by Zhang et al. [18] is
taken as one of the comparative experiments. In order to facilitate the identification of
comparison methods in subsequent evaluation, it is denoted as Zhang here.

Third, the improved image fusion model based on rattlesnake double-mode cells
proposed by Wang et al. [23] is taken as one of the comparative experiments. In order to
facilitate the identification of comparison methods in subsequent evaluation, it is denoted
as Wang here.

Fourth, the experiment based on Gradient Transfer Fusion and total change (TV)
proposed by Ma et al. [24] is taken as one of the comparative experiments. In order to
facilitate the identification of comparison methods in subsequent evaluation, it is denoted
as GTF here.
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Fifth, the fusion method of latent low-rank representation proposed by Li et al. [25]
is taken as one of the comparative experiments. In order to facilitate the identification of
comparison methods in subsequent evaluation, it is denoted LatLRR here.

Sixth, the image fusion method based on multi-resolution singular value decompo-
sition proposed by Naidu et al. [26] is taken as one of the comparative experiments. In
order to facilitate the identification of comparison methods in subsequent evaluation, it is
denoted as MSVD here.

Seventh, the multi-sensor image fusion method based on the fourth-order partial
differential equations proposed by Bavirisetti et al. [27] is taken as one of the comparative
experiments. In order to facilitate the identification of comparison methods in subsequent
evaluation, it is denoted as FPDE here.

Eighth, in order to facilitate the identification of the comparative methods in subse-
quent evaluation, the proposed improved algorithm is recorded as Our.

4.1. Subjective Evaluation

Aiming at the improved method Our proposed in the previous section and other
fusion methods compared with Our, 11 groups of source images of different scenes are
used in this section for comparative simulation. Among them, seven groups of source
images are from the TNO dataset [28] and four groups of source images are from the MSRS
(Multi-Spectral Road Scenarios for Practical Infrared and Visible Image Fusion) dataset.
The experimental parameters of Our are as follows: σs = 500, σc = 2.83, A = 1, D = 0, E = 900
and F = 1. In this section, a comparative analysis is made from the subjective evaluation,
namely the visual effect of the fused image observed by human eyes.

4.1.1. TNO Dataset

Figures 4–10 show the fusion results obtained by the proposed improved algorithm
and the corresponding comparative experiment using the source image simulation of seven
groups of the TNO dataset. In these results, (1) and (2) are visible and infrared source
images, respectively; (3) is the fusion result of Li’s method [17]; (4) is the fusion result of
Zhang’s method [18]; (5) is the fusion result of Wang’s method [23]; (6) is the fusion result
of GTF’s method [24]; (7) is the fusion result of the LatLRR method [25]; (8) is the fusion
result of the MSVD method [26]; (9) is the fusion result of the FPDE method [27]; (10) is the
fusion result of the improved method Our.
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By observing all the experiments on the TNO dataset, we can find that there is not
much difference between Figures 3 and 10 in the surrounding environment, and the key
information in the figure can distinguish the rough outline. Combining the comparison
of seven groups of images, we can conclude that the results of the fusion method shown
in Figure 3 are the most natural color, but the target information is not very prominent.
The results of the fusion method shown in Figures 4 and 5 are bright as a whole. As



Sensors 2024, 24, 3077 10 of 20

shown in Figure 6, the target information of the fusion method is prominent, but the lack of
surrounding environment information in the retained visible image is noticeable, and the
overall image is closer to the infrared image. The results of the fusion method shown in
Figures 7–9 are basically similar, and closer to the visible image than Figure 6. The result
graphs of the fusion method shown in Figure 10 not only highlight the target information
in the infrared image, but also are closest to the visible image.
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4.1.2. MSRS Dataset

Figures 11–14 show the fusion results obtained by the proposed improved algorithm
and the corresponding comparative experiment using the source image simulation of four
groups of the MSRS dataset. The images corresponding to (1) to (10) are the same as in the
previous section.

By observing all the experiments on the MSRS dataset, we can find that there is not
much difference between Figures 3 and 10 in the surrounding environment, and the key
information in the figure can distinguish the rough outline. Combining the comparison of
seven groups of images, we can conclude that the results of the fusion method shown in
Figure 3 are the most natural color, but the target information is not very prominent. As
shown in Figure 4, the experimental results are red and bright as a whole. As shown in
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Figure 5, the target information of the fusion method is prominent, but there are distortion
problems in some positions. As shown in Figure 6, the results of the fusion method are
darker as a whole, which are closer to the infrared image. The results of the fusion method
shown in Figures 7–9 are basically similar, and closer to the visible image than Figure 6.
The result graphs of the fusion method shown in Figure 10 not only highlight the target
information in the infrared image, but also are closest to the visible image.
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Figure 14. Comparison of experimental results of the fourth set of graphs in the MSRS dataset. (1) vis-
ible image; (2) infrared image; (3) Li [17]; (4) Zhang [18]; (5) Wang [23]; (6) GTF [24]; (7) LatLRR [25];
(8) MSVD [26]; (9) FPDE [27]; (10) Our.

4.2. Objective Evaluation

Above, we used 11 groups of source images for the improved method Our, and
conducted experimental comparison with seven algorithms, respectively, and carried out
subjective evaluation on the fusion results of the eight algorithms. This section will evaluate
the performance of these eight fusion algorithms through three evaluation indexes, such as
spatial frequency (SF).

4.2.1. TNO Dataset

Table 1 and Figure 15 show the data table and corresponding line graph of the standard
deviation evaluation index obtained by experimental comparison of seven other fusion
methods and the improved method Our using seven TNO dataset image pairs, respectively.
By analyzing the information in the data table and line chart, it can be found that 1/7 of the
standard deviation best values are generated using the method proposed by Li et al., 2/7 of
the standard deviation best values are generated using the method proposed by Wang et al.,
and 4/7 of the standard deviation best values are generated using the improved method
Our. This shows that in the comparative experiment of these eight fusion methods, the
optimal method in terms of standard deviation is the improved method Our.

Table 1. Standard deviation (TNO).

Li [17] Zhang [18] Wang [23] LatLRR [24] GTF [25] MSVD [26] FPDE [27] Our

Picture
group 1 0.2135 0.1546 0.1520 0.1126 0.0915 0.1025 0.1037 0.1898

Picture
group 2 0.1539 0.1651 0.1662 0.1165 0.1022 0.0893 0.0907 0.1664

Picture
group 3 0.1418 0.1450 0.1440 0.0674 0.0864 0.0647 0.0654 0.2033

Picture
group 4 0.1021 0.1094 0.1382 0.1078 0.1168 0.0829 0.0870 0.1120

Picture
group 5 0.2120 0.1776 0.2065 0.1402 0.1497 0.1240 0.1245 0.2267

Picture
group 6 0.1413 0.1250 0.1232 0.0603 0.1046 0.0529 0.0536 0.1456

Picture
group 7 0.1467 0.1413 0.1493 0.0877 0.0875 0.0740 0.0769 0.1468

Table 2 and Figure 16 show the data table and corresponding line graph of the spatial
frequency evaluation index obtained by experimental comparison of seven other fusion
methods and the improved method Our using seven TNO dataset image pairs, respectively.
By analyzing the information in the data table and line chart, it can be found that 1/7 of the
spatial frequency best values are generated using the FPDE method, and 6/7 of the spatial
frequency best values are generated using the improved method Our. This shows that in
the comparative experiment of these eight fusion methods, the optimal method in terms of
spatial frequency is the improved method Our.



Sensors 2024, 24, 3077 14 of 20

Sensors 2024, 24, x FOR PEER REVIEW 14 of 21 
 

 

Picture 
group 4 0.1021 0.1094 0.1382 0.1078 0.1168 0.0829 0.0870 0.1120 

Picture 
group 5 

0.2120 0.1776 0.2065 0.1402 0.1497 0.1240 0.1245 0.2267 

Picture 
group 6 

0.1413 0.1250 0.1232 0.0603 0.1046 0.0529 0.0536 0.1456 

Picture 
group 7 

0.1467 0.1413 0.1493 0.0877 0.0875 0.0740 0.0769 0.1468 

 
Figure 15. Line chart of standard deviation (TNO dataset) [17,18,23–27]. 

Table 2 and Figure 16 show the data table and corresponding line graph of the spatial 
frequency evaluation index obtained by experimental comparison of seven other fusion 
methods and the improved method Our using seven TNO dataset image pairs, respec-
tively. By analyzing the information in the data table and line chart, it can be found that 
1/7 of the spatial frequency best values are generated using the FPDE method, and 6/7 of 
the spatial frequency best values are generated using the improved method Our. This 
shows that in the comparative experiment of these eight fusion methods, the optimal 
method in terms of spatial frequency is the improved method Our. 

Table 2. Spatial frequency (TNO). 

 Li [17] Zhang [18] Wang [23] LatLRR [24] GTF [25] MSVD [26] FPDE [27] Our 

Picture 
group 1 8.8415 7.5451 10.0236 7.2846 9.6134 10.1040 9.6411 12.9517 

Picture 
group 2 8.5481 8.8754 11.8046 8.6205 7.9767 8.5605 8.1801 13.7281 

Picture 
group 3 6.0567 6.0392 6.9992 3.8864 2.5295 4.2855 4.3835 12.8079 

Picture 
group 4 

5.1933 5.4416 8.4458 9.1842 9.4375 9.9641 12.4838 7.4459 

Picture 
group 5 6.4334 5.9170 7.8947 6.4058 6.4738 7.6088 7.1472 9.8928 

Picture 
group 6 

6.1416 6.3427 7.1119 5.0020 5.4890 6.9946 6.5330 11.3467 

Picture 
group 7 

7.6393 7.4567 10.3869 8.3988 10.3762 9.0481 9.8858 11.4572 

Figure 15. Line chart of standard deviation (TNO dataset) [17,18,23–27].

Table 2. Spatial frequency (TNO).

Li [17] Zhang [18] Wang [23] LatLRR [24] GTF [25] MSVD [26] FPDE [27] Our

Picture
group 1 8.8415 7.5451 10.0236 7.2846 9.6134 10.1040 9.6411 12.9517

Picture
group 2 8.5481 8.8754 11.8046 8.6205 7.9767 8.5605 8.1801 13.7281

Picture
group 3 6.0567 6.0392 6.9992 3.8864 2.5295 4.2855 4.3835 12.8079

Picture
group 4 5.1933 5.4416 8.4458 9.1842 9.4375 9.9641 12.4838 7.4459

Picture
group 5 6.4334 5.9170 7.8947 6.4058 6.4738 7.6088 7.1472 9.8928

Picture
group 6 6.1416 6.3427 7.1119 5.0020 5.4890 6.9946 6.5330 11.3467
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group 7 7.6393 7.4567 10.3869 8.3988 10.3762 9.0481 9.8858 11.4572
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Figure 16. Line chart of spatial frequency (TNO dataset) [17,18,23–27].

Table 3 and Figure 17 show the data table and corresponding line graph of the in-
formation entropy evaluation index obtained by experimental comparison of seven other
fusion methods and the improved method Our using seven TNO dataset image pairs,
respectively. By analyzing the information in the data table and line chart, it can be found
that 1/7 of the information entropy best values are generated using the method proposed
by Li et al. [17], 1/7 of the information entropy best values are generated using the GTF
method, 2/7 of the information entropy best values are generated using the method pro-
posed by Wang et al. [18], and 3/7 of the information entropy best values are generated
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using the improved method Our. This shows that in the comparative experiment of these
eight fusion methods, the optimal method in terms of information entropy is the improved
method Our.

Table 3. Information entropy (TNO).

Li [17] Zhang [18] Wang [23] LatLRR [24] GTF [25] MSVD [26] FPDE [27] Our

Picture
group 1 6.8670 6.3806 6.5015 6.3750 6.4274 6.2278 6.3057 6.6705

Picture
group 2 7.0262 6.8819 7.0225 6.5537 7.0241 6.2495 6.2887 7.0583

Picture
group 3 5.8593 6.0163 6.3209 6.0161 5.4626 5.9345 5.9674 6.1107

Picture
group 4 5.3138 5.8331 6.5289 6.0297 6.6205 5.9350 6.0671 5.2849

Picture
group 5 7.1138 7.0863 7.1669 6.7016 6.9581 6.5541 6.6235 7.2189

Picture
group 6 6.5886 6.0013 6.2707 5.7537 6.7120 5.6038 5.6463 6.5948

Picture
group 7 7.0030 6.8522 6.9275 6.2539 6.5104 6.1284 6.2031 7.0052
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4.2.2. MSRS Dataset

Table 4 and Figure 18 show the data table and corresponding line graph of the standard
deviation evaluation index obtained by experimental comparison of seven other fusion
methods and the improved method Our using four MSRS dataset image pairs. By analyzing
the information in the data table and line chart, it can be found that 100% of the standard
deviation best values are generated using the improved method Our. This shows that in
the comparative experiment of these eight fusion methods, the optimal method in terms of
standard deviation is the improved method Our.

Table 4. Standard deviation (MSRS).

Li [17] Zhang [18] Wang [23] LatLRR [24] GTF [25] MSVD [26] FPDE [27] Our

Picture
group 1 0.1561 0.1581 0.1728 0.1220 0.0638 0.0936 0.0935 0.1740

Picture
group 2 0.2413 0.2114 0.2099 0.1745 0.1035 0.1514 0.1522 0.2606

Picture
group 3 0.1632 0.1566 0.1634 0.1372 0.0682 0.1085 0.1085 0.1754

Picture
group 4 0.1414 0.1550 0.1268 0.1092 0.0663 0.0835 0.0837 0.1685
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Table 5 and Figure 19 show the data table and corresponding line graph of the spatial
frequency evaluation index obtained by experimental comparison of seven other fusion
methods and the improved method Our using four MSRS dataset image pairs. By analyzing
the information in the data table and line chart, it can be found that 25% of the spatial
frequency best values are generated using the method proposed by Wang et al., and 75% of
the spatial frequency best values are generated using the improved method Our. This
shows that in the comparative experiment of these eight fusion methods, the optimal
method in terms of spatial frequency is the improved method Our.

Table 5. Spatial frequency (MSRS).

Li [17] Zhang [18] Wang [23] LatLRR [24] GTF [25] MSVD [26] FPDE [27] Our

Picture
group 1 6.4717 6.1116 8.6695 7.1532 5.9345 7.4550 6.0949 9.0415

Picture
group 2 11.8137 9.3834 17.0645 13.2754 16.5825 16.0087 13.0278 16.4181

Picture
group 3 5.9809 5.5280 6.2842 7.2816 4.8935 7.3191 6.1444 7.7393

Picture
group 4 6.6357 6.6135 6.4892 7.4747 7.2597 7.4051 6.2608 9.3136
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Table 6 and Figure 20 show the data table and corresponding line graph of the in-
formation entropy evaluation index obtained by experimental comparison of seven other
fusion methods and the improved method Our using four MSRS dataset image pairs. By
analyzing the information in the data table and line chart, it can be found that 25% of
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the information entropy best values are generated using the method proposed by Zhang
et al., 25% of the information entropy best values are generated using the method proposed
by Wang et al., and 50% of the information entropy best values are generated using the
improved method Our. This shows that in the comparative experiment of these eight fusion
methods, the optimal method in terms of information entropy is the improved method Our.

Table 6. Information entropy (MSRS).

Li [17] Zhang [18] Wang [23] LatLRR [24] GTF [25] MSVD [26] FPDE [27] Our

Picture
group 1 6.0258 6.7251 6.7449 5.9413 5.5473 5.5442 5.6435 6.1622

Picture
group 2 7.1236 7.2519 7.1105 6.7882 5.6220 6.4905 6.5077 7.3097

Picture
group 3 5.7315 6.4371 5.8671 5.7037 5.4701 5.3070 5.4223 5.9582

Picture
group 4 6.3980 6.7393 6.3160 5.9207 5.1357 5.5716 5.5835 6.7519
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On the whole, most of the optimal values of both TNO dataset and MSRS dataset are 
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On the whole, most of the optimal values of both TNO dataset and MSRS dataset
are concentrated in the method proposed in this paper. Then, the Wilcoxon signed rank
test is used to test our proposed method. On the basis of these 11 image pairs, we pair
seven comparative methods with the method proposed in this paper on three indicators.
First, the null assumption is that the data difference between the two groups is zero; the
alternative hypothesis is that there are differences in the data between the two groups. We
pair the seven methods with the method proposed in this paper, and since there are three
indicators, there are 21 sets of data tests. According to the Wilcoxon signed rank test, our
difference value is assumed to be the data index of the method in this paper minus the
data index of the comparative method. When the value of the method in this paper is
higher than that of the comparative method for an image pair, it is positive rank, and vice
versa. Secondly, the difference values are ranked according to their absolute values, and the
ranking is assigned in order from small to large in absolute value. Then, we find the sum
of the positive ranking and the negative ranking, respectively. Our test statistic W is the
smallest absolute value of the sum of positive rankings and the sum of negative rankings.
Since we have a total of 11 image pairs, n = 11. To determine whether the null hypothesis
should be rejected, we refer to the Wilcoxon signed rank test critical value table to find the
critical values. The critical value corresponding to a significance level α of 0.1 and n = 11 is
13. If our test statistic W is less than or equal to the critical value 13 in the table, we can
reject the null hypothesis. Otherwise, we cannot reject the null hypothesis.

(1) According to the calculation, in comparison with the method proposed by Li, we
obtain the test statistic W1 = 9 using the standard deviation index, the test statistic W2 = 0
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using the spatial frequency index, and the test statistic W3 = 11 using the information
entropy index. Since the test statistic W for the three indexes is less than the critical
value 13, we reject the null hypothesis, and there is sufficient evidence to prove that there
are significant differences between the two methods. Moreover, the sum of our positive rank
rankings is much larger than the sum of our negative rank rankings. So, compared with
the method proposed by Li, the method proposed in this paper demonstrates a significant
improvement in the three indexes. (2) Similarly, in comparison to the method proposed
by Zhang, three test statistics are obtained as W1 = 0, W2 = 0, and W3 = 27. We reject the
null hypothesis for the index of standard deviation and spatial frequency, while we cannot
reject the null hypothesis for the index of information entropy. In other words, compared
with the method proposed by Zhang, the method proposed in this paper demonstrates a
significant improvement in standard deviation and spatial frequency index. However, for
the index of information entropy, there is almost no difference with the method proposed
by Zhang. (3) In comparison with the method proposed by Wang, three test statistics are
obtained as W1 = 10, W2 = 5, and W3 = 28. We reject the null hypothesis for the index of
standard deviation and spatial frequency, while we cannot reject the null hypothesis for
the index of information entropy. In other words, compared with the method proposed
by Wang, the method proposed in this paper demonstrates a significant improvement in
standard deviation and spatial frequency index. However, for the index of information
entropy, there is almost no difference with the method proposed by Wang. (4) Compared
with the LatLRR method, three test statistics are obtained as W1 = 0, W2 = 2, and W3 = 8. We
reject the null hypothesis for all three indexes. In other words, compared with the LatLRR
method, the method proposed in this paper demonstrates a significant improvement in
the three indexes. (5) Compared with the GTF method, three test statistics are obtained as
W1 = 1, W2 = 4, and W3 = 11, and we reject the null hypothesis for all three indexes. In other
words, compared with the GTF method, the method proposed in this paper demonstrates a
significant improvement in the three indexes. (6) Compared with the MSVD method, three
test statistics are obtained as W1 = 0, W2 = 7, and W3 = 4. We reject the null hypothesis
for all three indexes. In other words, compared with the MSVD method, the method
proposed in this paper has a significant improvement in the three indexes. (7) Compared
with the FPDE method, three test statistics are obtained as W1 = 0, W2 = 9, and W3 = 7. We
reject the null hypothesis for all three indexes. In other words, compared with the FPDE
method, the method proposed in this paper demonstrates a significant improvement in the
three indexes.

To sum up, in the statistical test compared with the seven comparative methods, the
method proposed in this paper shows significant improvement in other indicators except
that there is almost no difference between the method proposed by Zhang and the method
proposed by Wang in the index of information entropy. Therefore, the improved algorithm
proposed in this paper is superior to the other seven comparative methods.

5. Conclusions

Based on the characteristics of six dual-mode cells of rattlesnakes and the standard
mathematical model of pulse coupled neural networks, we proposed a new rattlesnake
fusion method. Compared with the image fusion method based on deep learning, it does
not need to obtain a significant amount of training data. The overall brightness of the
fusion image obtained by our method is moderate, the target information is prominent,
and the detail information is rich. And the experimental data compared with other fusion
methods prove that the proposed method demonstrates good performance.
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