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Abstract: The widespread use of encrypted traffic poses challenges to network management and
network security. Traditional machine learning-based methods for encrypted traffic classification no
longer meet the demands of management and security. The application of deep learning technology
in encrypted traffic classification significantly improves the accuracy of models. This study focuses
primarily on encrypted traffic classification in the fields of network analysis and network security. To
address the shortcomings of existing deep learning-based encrypted traffic classification methods
in terms of computational memory consumption and interpretability, we introduce a Parameter-
Efficient Fine-Tuning method for efficiently tuning the parameters of an encrypted traffic classification
model. Experimentation is conducted on various classification scenarios, including Tor traffic service
classification and malicious traffic classification, using multiple public datasets. Fair comparisons are
made with state-of-the-art deep learning model architectures. The results indicate that the proposed
method significantly reduces the scale of fine-tuning parameters and computational resource usage
while achieving performance comparable to that of the existing best models. Furthermore, we
interpret the learning mechanism of encrypted traffic representation in the pre-training model by
analyzing the parameters and structure of the model. This comparison validates the hypothesis that
the model exhibits hierarchical structure, clear organization, and distinct features.
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1. Introduction

In network management and cybersecurity domains, network traffic classification
plays an integral role. Traffic classification refers to the process of identifying and dis-
tinguishing different categories of network traffic according to specific requirements and
designs, enabling further analysis. Accurate network traffic classification can help us obtain
an overall perception of network bandwidth, capture different network usage habits, and
assess network security. Internet Service Providers (ISPs) optimize network resources and
enhance network management through traffic classification, while security departments
leverage traffic analysis to monitor network security states, identifying and responding to
malicious network attacks. However, the widespread use of traffic encryption technologies
such as Transport Layer Security (TLS) presents significant challenges to network traffic
classification [1]. Encrypted traffic, where plaintext payloads are encrypted and transmitted
as ciphertext, can only be decrypted by the sender and the receiver, making it difficult for
third parties to interpret. Traditional traffic analysis methods, which rely on extracting
valuable information from plaintext payloads (such as port-based methods, Deep Packet
Inspection (DPI) methods, and statistical methods), may become ineffective. This encryp-
tion prevents network administrators from directly extracting useful plaintext information
from network traffic, complicates management tasks, and creates convenient channels for
malicious actors to transmit malicious traffic, increasing network security risks [2,3].

In this complex scenario, encrypted traffic classification methods based on feature
engineering extract statistically designed features and classify them using classical machine
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learning [4–7] or deep learning [8,9]. This approach differs from traditional methods as they
do not solely rely on plaintext information such as ports, resulting in better classification
performance and ease of deployment. However, performance depends on the comprehen-
siveness and effectiveness of manually selected features [10]. Alternatively, representation
learning-based methods for encrypted traffic classification employ deep learning models
to automatically extract and process representations from encrypted traffic [2,10–14]. This
approach has become a high-performance algorithmic solution to the problem of encrypted
traffic classification [15,16]. While these methods can improve classification performance,
they also expose the immaturity of applying deep learning to this problem and are con-
strained by the limitations inherent in deep learning itself. Improper design may result
in biased conclusions or exaggerated classification outcomes. Neglecting the alignment
between deep learning methods and the challenges in this domain prevents designers from
fully harnessing the potential of deep learning [17]. Unlike natural language and images,
encrypted byte streams are difficult for humans to understand. The relevance of the loaded
bytes, coupled with the complexity of the deep learning model itself, makes the problem of
poor interpretability even more pronounced.

Among the many deep learning frameworks, pre-training models have been exten-
sively applied and have shown exceptional performance in fields such as Natural Language
Processing (NLP) and Computer Vision (CV) [14]. In the increasingly complex network
environment, pre-training model-based encrypted traffic classification methods outperform
other deep learning architectures. Pre-training models first undergo training with a large
volume of unlabeled data to pre-train the initial model, followed by fine-tuning with a
small amount of labeled data from downstream tasks. The fine-tuned model can then be
directly applied to well-designed tasks [18]. However, traditional pre-training methods
that adjust all parameters of the model lead to increasingly expensive training costs as the
model size and number of downstream tasks grow.

The feature engineering-based encrypted traffic classification methods and the rep-
resentation learning-based methods demonstrate that it is possible to classify traffic in a
fine-grained manner. Statistical representation, plaintext information, and features present
in the original payloads are discriminative enough to make each class easily separated
from one another [19]. We therefore focus on designing a fine-grained encrypted traffic
classification method with broad applicability and stable results in a generic network envi-
ronment. We aim to implement encrypted traffic functional classification methods under
limited conditions. The application scenarios for encrypted traffic classification include
four types: (I) the network analytics domain, (II) the network security domain, (III) the
user privacy domain, and (IV) the domain of network functions in middleboxes [3]. Our
research primarily focuses on two subdomains within Scenarios (I) and (II): application
identification, network intrusion detection, and malware detection, particularly emphasiz-
ing application identification in different network environments. Specifically, we aim to
design a representation learning framework that can be trained in different scenarios to
achieve encrypted traffic functional classification. For example, distinguishing different
services (VPN Email, Email, VPN Chat, Chat, etc.) and applications (Netflix, P2P, SCP, etc.)
in VPN traffic, distinguishing normal traffic (BitTorrent, Facetime, FTP, etc.) from traffic
generated by malware (Cridex, Geodo, etc.) in mixed traffic, and distinguishing different
attack traffic in the IoT environment (DDoS ACK Fragmentation, ARP Spoofing, XSS, etc.).

In this paper, we propose the Parameter-Efficient Fine-Tuning (PEFT)-based Encrypted
Traffic Representation Learning Method (PETReLM). We develop suitable data preprocess-
ing methods based on the characteristics of encrypted traffic and use pre-training models
for representation learning to accomplish encrypted traffic classification tasks.

Our contributions are as follows:

• We propose a novel packet-level encrypted traffic classification method based on
pre-trained models and PEFT methods. We introduce the Low-Rank Adaptation
(LoRA) [20] method into encrypted traffic classification, enhancing pre-training and
fine-tuning methods to adapt to encrypted traffic classification tasks. Our method
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can learn different types of traffic representations in different scenarios with wide
applicability and also improve the efficiency of parameter utilization.

• We validate the existence of comprehensive traffic representation information in in-
dividual packets and demonstrate the feasibility of classifying traffic for specific sce-
narios based on these representations. We also discuss the limitations of packet-level
encrypted traffic classification.

• Based on singular values and vectors, we compare the matrix parameters of the fine-
tuned model with those of the pre-trained model to analyze the model’s representation
learning mechanism and fine-tuning principles.

The rest of the paper is structured as follows: Section 2 introduces related work on
encrypted traffic classification and PEFT. Section 3 describes our proposed method for
encrypted traffic classification. Section 4 presents our experimental settings and results.
In Section 5, we analyze the mechanism of encrypted traffic representation extraction and
fine-tuning. In Section 6, we discuss the limitations of our method and conclude the paper.

2. Related Works

In this section, we review the related research in the fields of encrypted traffic classifi-
cation and PEFT, discussing the advantages and limitations of these methods.

2.1. Encrypted Traffic Classification

The methods of encrypted traffic classification mainly include feature engineering-
based approaches and representation learning-based methods. The objective is to classify
encrypted traffic according to predefined criteria by learning statistical features, payload
features, etc., of the encrypted traffic. Table 1 reports relevant work in these domains and
summarizes the fundamental aspects of the methodologies employed.

Table 1. Comparison of encrypted traffic classification algorithms.

Input Data Algorithms Paper

IP, Port, Packet Lenth, Packet Direction,
TLS Certificate Random Forest, Correlation Graph FlowPrint [4]

IP, Protocol, Packet Length Random Forest APPScanner [5]
Packet Lenth, Packet Direction Random Forest Conti et al. [6]

Certificate, Packet Length Second-order Markov Chains Shen et al. [7]
Packet Length, Arrival Time Auto Encoder Yu et al. [8]

Packet Lenth, Packet Direction GNN Shen et al. [9]
Payload 1D-CNN Wang et al. [11]
Payload SAE, 1D-CNN Deep Packet [10]
Payload 1D-CNN, BiLSTM TCSRNN [2]
Payload BiLSTM, TextCNN Jiang et al. [12]
Payload ALBERT PERT [13]
Payload BERT ET-BERT [14]

2.1.1. Feature Engineering-Based Methods

Feature engineering-based methods involve extracting manually designed traffic
features and classifying encrypted traffic using classic machine learning or deep learning.
Commonly effective features include basic features, time-series features, statistical features,
and multi-protocol payload characteristics [21]. Designers produce features based on
experience, screen features by comparing their information content and redundancy, and
provide these features as input to the designed model. Common classification granularities
include data flows (unidirectional or bidirectional), TCP connections, etc.

FlowPrint [4] utilizes the temporal correlation of traffic communication destination
addresses to discover different patterns in network traffic, creating a fingerprint library for
network traffic. APPScanner [5] employs manually selected traffic statistical features to
identify mobile applications, exploring the extent to which mobile app fingerprints can be
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constructed and assessing the robustness of the app fingerprint framework. Conti et al. [6]
generate different time-series cumulative graphs based on varied network behaviors and
learn the associations of network traffic cumulative graphs related to specific behaviors.
Shen et al. [7] propose constructing application fingerprints by merging the application
attribute bigrams into the second-order homogeneous Markov chains, where the attribute
bigram comprises certificate packet lengths and the size of the first application data in
encrypted sessions. Yu et al. [8] extract traffic statistical features and certificate features from
the TLS handshake to the verification phase, extend traffic features into higher dimensions,
and introduce hierarchical clustering to reduce data computation. Shen et al. [9] use traffic
packets to build the traffic interaction graph and then employ Graph Neural Networks
(GNNs) to achieve decentralized APP recognition.

The aforementioned methods lack flexibility and adaptability in the realistic mobile
context. Feature engineering relies on task characteristics and expert experience. Man-
ually selected features may not fully capture the characteristics of traffic. This selection
process, coupled with method usage, imposes certain limitations on the applicability of
classification methods.

2.1.2. Representation Learning-Based Methods

Representation learning-based methods avoid manually designing traffic features
and allow for deep learning frameworks to automatically extract representations from
raw encrypted byte streams in an end-to-end manner. Typically, these methods focus on
classifying at the granularity of data flows (unidirectional or bidirectional), packets, TCP
connections, and traffic bursts.

Wang et al. [11] use a One-Dimensional Convolutional Neural Network (1D-CNN) for
end-to-end encrypted traffic classification. They transform traffic into two-dimensional
images by truncating traffic payloads to a fixed length and converting bytes into image
pixels, subsequently using 1D-CNN to learn image representations. Lotfollahi et al. [10]
introduce Deep Packet architecture employing Stacked Auto-Encoders (SAE) [22] and a
1D-CNN to handle both traffic representation and application identification tasks. For
learning temporal dimension representations, TSCRNN [2] proposes using 1D-CNN to
extract spatial features of encrypted traffic, followed by stacked BiLTSM [23] to extract
temporal features based on these low-dimensional feature mappings. Jiang et al. [12] use
BiLSTM and TextCNN [24] to capture local features and temporal relationship of traffic,
employing a multi-head attention mechanism to select important features and reduce
the impact of noisy features. PERT [13] devises a novel method to convert encrypted
traffic payloads into byte streams, using the A Lite BERT (ALBERT) model [25] for packet-
level traffic representation learning, learning the contextual distribution of unlabeled
payload bytes, and then reusing the pre-trained model for data stream-level fine-tuning.
ET-BERT [14] designs an encrypted traffic representation model based on Bidirectional
Encoder Representation from Transformers (BERT) [18] and pre-training tasks more suitable
for encrypted traffic, achieving significant improvements in generalization ability and
performing well on multiple datasets.

Methods that take raw input data as input enable models to automatically extract
representations from the raw data, reducing the overall reliance on human expertise.
While current methods achieve good results, deep learning models selected by these
representation learning-based methods face certain constraints. The performance of the
methods is influenced by preprocessing methods for raw traffic, the adaptability of deep
learning models to encrypted traffic classification tasks, and the inherent limitations of
deep learning itself, such as slow convergence, high computational resource usage, and
poor interpretability.

2.2. PEFT

PEFT aims to enhance the performance of pre-training models on new tasks by re-
ducing the number of fine-tuning parameters and computational complexity, thereby
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alleviating the high training costs of large pre-training models. PEFT methods can over-
come catastrophic forgetting [26] and exhibit excellent robustness in out-of-distribution
evaluations [27].

Houlsby et al. [28] design the Adapter module consisting of two feedforward pro-
jection matrices and a nonlinear layer embedded within the Transformer [29] structure.
During training, Transformer parameters are frozen, and only the newly added Adapter
module parameters are adjusted. The Adapter achieves results close to full fine-tuning with
just 3.6% of the original model’s parameter size. Lin et al. [27] construct a set of prompt
tokens as Prefix connected to the left side of each attention layer input in Transformer,
keeping model parameters unchanged during fine-tuning and updating only the Prefix
part. The Prefix Tuning approach has achieved good results in various language models.
Liu et al. [30] develop the IA3 method, which scales activations by learned vectors in atten-
tion layers and the Feedforward Neural Network (FNN), achieving stronger performance
than full model fine-tuning. Liu et al. [31] propose converting prompts into learnable
embedding layers and processing prompt embedding layers with MLP+LSTM, enhancing
BERT’s performance on few-sample tasks, and significantly reducing the need for prompt
engineering. Hu et al. [20] design the LoRA method based on the intrinsic “low rank” of
parameter update matrices. LoRA maintains the pre-trained model parameters unchanged
and uses two low-rank matrices to replace weight update matrices, avoiding inference
delay issues introduced by inserting other modules.

The shortcoming of PEFT is that it sacrifices a portion of the model’s performance and
fails to establish a connection with the pre-trained model, leaving room for improvement
in interpretability.

3. Our Methods

In this section, we present the overall framework and implementation details of the
PETReLM. The PETReLM is designed to extract representations of encrypted traffic and
classify traffic based on traffic representations. Our open-source code is hosted at the
following GitHub repository: https://github.com/ssy198/PETReLM.

3.1. Architectural Overview

We propose the overall framework of the PETReLM as shown in Figure 1. We select
BERT [18] as the foundational model architecture for pre-training and fine-tuning, and the
approach consists of three main stages:

(1) Traffic Preprocessing: This stage involves trimming and transforming raw encrypted
traffic data. We tailor traffic packets by removing irrelevant information and the
convert tailored traffic into a format suitable for the model.

(2) Model Pre-training: This stage employs a Masked Language Model (MLM) and a
modified Next Sentence Prediction (mNSP) task as pre-training tasks for the model
to learn general representations of traffic. This enables the model to initially extract
basic general representations.

(3) Model Fine-tuning: In this stage, the pre-trained model parameters are reused for
downstream classification task training. The pre-trained model parameters are frozen,
and the newly embedded PEFT module and added fully connected layer classifier pa-
rameters are fine-tuned. This enables the model to learn task-specific representations
and achieve encrypted traffic classification in specific scenarios.

https://github.com/ssy198/PETReLM
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Figure 1. Overview of model framework. 
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Figure 1. Overview of model framework.

3.2. Preprocessing

The preprocessing of traffic involves traffic trimming and traffic transformation. Traffic
trimming refers to appropriately trimming the original traffic to reduce interference from
noise information. Traffic transformation refers to converting the trimmed traffic into a
data format suitable for model input. We classify encrypted traffic in a packet level, with
specific rationale detailed in Section 4.1.

We analyze packet structure based on the TCP/IP protocol suite and discuss which
part should be retained or discarded. Because the data link layer (L2) header and trailer only
contain essential control information for communication between adjacent hosts, which is
not very helpful for encrypted traffic classification, they should be removed. The network
layer (L3) IP packet header mainly includes communication addresses (IP addresses)
within the packet-switched network. While the server’s IP address in normal traffic is
valuable for encrypted traffic classification, considering that VPNs, malware, etc., may
obscure actual IP addresses and the complexity of translating IP addresses into meaningful
information for deep learning models, we remove the network layer header information.
The transport layer (L4) is a crucial part of a packet, consisting of the TCP and UDP
protocols. Most services are designed based on these protocols. The transport layer header
includes information such as ports and session control. Ports indicate information about
processes, and if the port is a well-known port number, the service category can be directly
determined. Although ports may be obfuscated in some malicious traffic scenarios, the
transport layer header is an important reference for host process communication behavior.
We believe that retaining information from the transport layer header yields greater benefits
than the information loss from discarding it, so we keep the relevant information from
the transport layer. Finally, the application layer (L5) is a crucial reference for encrypted
traffic classification and is retained. In summary, to retain efficient representations that
enable the separation of different categories for downstream tasks, we discard network
layer headers and retain relevant information from the transport layer and the application
layer for further processing.

The length of encrypted traffic payload is not fixed, and we also need to preserve the
transportation layer header information and part of the application layer payload byte
stream by the truncation operation. This step reduces the dimensions of the input data and
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improves the efficiency of model training and inference. Details regarding the truncation
operation are discussed in Section 4.2.

Encrypted traffic is a distinct data type separate from natural language or images.
However, from an abstract perspective, traffic data can be considered sequential data.
Therefore, we employ sequence data preprocessing methods to handle trimmed traffic
payloads. To transform the byte stream of payloads into a sequence of basic character units
akin to natural language, we employ a Byte-Pair Encoding method [13]. It concatenates
two adjacent bytes to form a basic character unit (0000—ffff), turning the byte stream into
a string of byte pairs. Subsequently, the Word Piece algorithm [32] is used to tokenize
these byte pair strings. For subsequent task processing, special tokens [CLS], [SEP], [PAD],
and [MASK] are added to the dictionary generated by the Word Piece algorithm. Each
token sequence begins with [CLS], representing the hidden layer state output for the final
classification task. [SEP] marks the end of a sub-sequence, [PAD] is used for padding
sequences to reach a minimum length, and [MASK] is used to obscure existing tokens for
pre-training task MLM. The token embedding transformed by the Word Piece algorithm is
summed with the segment and position embeddings to obtain the input sequence. Figure 2
illustrates the process of traffic preprocessing.
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3.3. Pre-Training

Pre-training leverages unlabeled data to train the model to learn general representa-
tions of encrypted traffic. Plaintext payloads are transformed into unintelligible ciphertext
through encryption algorithms. Cryptographic implementation of encryption algorithms
exhibits a certain degree of non-complete randomness [33], indicating a high information
content and high uncertainty in the ciphertext. Encryption algorithms (e.g., AES, etc.)
mix bytes from input plaintext blocks, enhancing the entropy of the ciphertext and also
increasing the correlation between bytes within the blocks. Although the ciphertext itself
appears random, there are still some abstract representations that can be learned by neu-
ral networks, such as the frequency of occurrence of certain bytes and the relationships
between specific bytes. Therefore, we directly introduce BERT’s original pretraining task,
MLM, and improve the original NSP method to adapt to the byte-level representations of
the encrypted traffic.
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The model’s core structure is a BERT base [18], consisting of 12 Transformer [29]
Encoder modules. Each Encoder’s input and output vectors correspond one to one and
maintain consistent dimensions. Within each Encoder module, there are two sequential
sub-layers: the first is a multi-head self-attention mechanism, and the second is an FNN.
Both sub-layers employ residual connections followed by layer normalization.

To learn the contextual relationships of token embeddings, the MLM task randomly
masks part of the input tokens, and the output hidden layer vectors corresponding to the
masked tokens are computed in a fully connected layer to predict the actual tokens. A total
of 15% of the tokens in the input sequence are masked, with 80% replaced by [MASK], 10%
replaced by random tokens, and 10% unchanged. The negative log-likelihood function is
used as the loss function for this task, as shown in Equation (1):

LMLM(θ, θMLM) = −
M

∑
i=1

log P(tokeni|θ, θMLM) . (1)

In this equation, θ denotes the parameter of the Encoder part, θMLM is the parameter
of the fully connected layer of the MLM task, M is the number of randomly masked tokens,
and tokeni represents the token predicted by the model at position i of the sequence.

The mNSP task learns the matching relationship of payload by determining whether
two sub-sequences belong to the same packet. Unlike natural language, encrypted traffic
payloads are continuous byte streams without clear sentence demarcation or independent
meaning, so it is not feasible to divide them using punctuation as in natural language.
However, encrypted payloads from different plaintext have distinct ciphertext feature
distributions, allowing for us to determine whether two sub-sequences belong to the same
payload. In this task, payloads are divided into two nearly equal-length sub-sequences,
each ending with [SEP] to mark the end of the sub-sequence. The second sub-sequence
is replaced with another packet’s sub-sequence in 50% of cases. The complete input byte
sequence consists of [CLS] at the beginning followed by the two sub-sequences. The
output hidden layer vector corresponding to [CLS] is passed through a binary classifier to
determine whether the sub-sequences belong to the same packet. This classifier comprises
two fully connected layers. The negative log-likelihood function is used as the loss function
for this task, as indicated in Equation (2):

LmNSP(θ, θmNSP) = −
N

∑
j=1

log P(yj
∣∣θ, θmNSP) . (2)

In this equation, θmNSP is the binary classifier parameter followed by Encoder, N
is the number of input sequences, yj ∈ [0, 1] is the output result of the binary classifier
(1 represents paired sub-sequences and 0 represents unpaired ones).

The sum of the loss functions from both tasks is used to calculate the model loss for
gradient updates, as shown in Equation (3):

L(θ, θMLM, θmNSP) = LMLM(θ, θMLM) + LmNSP(θ, θmNSP). (3)

3.4. Fine-Tuning

During the fine-tuning phase, the model is trained on small-scale labeled datasets
for given tasks to learn task-specific representations. Adjusting all parameters in a pre-
trained model enables quick adaptation to downstream tasks. However, full parameter
fine-tuning in a pre-trained model demands high computational and memory resources.
As the model size and number of tasks increase, training and storing a new model for each
task exacerbates the issue of inefficient parameter use.

The PEFT method, particularly LoRA [20], effectively mitigates this problem. We
apply LoRA’s parallel matrix approach to the encrypted traffic classification model to
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conserve computational parameters. The advancement of LoRA over other PEFT methods
in encrypted traffic classification is shown in Section 4.6.

LoRA involves inserting matrices parallel to the pre-trained model matrices while
freezing the pre-trained model. This allows for the model to maintain new small-scale
parameter matrices for downstream tasks. Unlike classic fine-tuning methods, the model
can switch PEFT module parameters as needed for different traffic classification tasks
without replacing the entire model’s parameters, enhancing parameter utilization efficiency
and reducing deployment and switching costs for multi-task models. Compared to other
PEFT methods, LoRA modules compute in parallel with the pre-trained model, avoiding
the computational bottlenecks and inference delays of new serial modules.

LoRA updates only the query and value projection weight matrix of each Encoder’s
multi-head attention layer and the final fully connected classifier layer. Specifically, lever-
aging the low “intrinsic rank” of over-parametrized models [20], it employs the product of
two low-rank matrices to replace the original matrix for gradient updates during backprop-
agation, as demonstrated in Equation (4).

h = W(i)x + ∆Wx = W(i)x +
α

r
BAx. (4)

In this equation, W(i) ∈ Rd×k represents the projection weight matrix of layer i with
rank r (r << d, k) selected, the product of matrices A ∈ Rr×k, B ∈ Rd×r is used to replace
the updated weight matrix ∆W of W(i), x is the input vector, h is the output vector, and
α is the deflation parameter of the updated weight matrix. We use a random Gaussian
initialization for each element of A and zero for B. W(i) is kept frozen during the training
process, and gradients are computed and updated for A, B.

Drawing on the computational ideas of LoRA, we introduce this computational ap-
proach into our model. Figure 3 illustrates the computational operation for a single Encoder.
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As for the fully connected classifiers, the classic LoRA method preserves the first
fully connected layer parameter of the pre-trained model’s NSP task classifier and allows
for only the second fully connected layer parameter to undergo gradient updating due
to the consideration of the relevance of the NLP fine-tuning task to the pre-training task.
However, because of the distinct association manner of encrypted traffic payloads compared
to natural language sentences, continuing to use the first fully connected layer might not
effectively synthesize feature information. Since the association between encrypted traffic
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payloads and natural language sentences differs, and different encryption algorithms
encrypt traffic with varying byte-level features, to accommodate these differences and
improve the model’s effectiveness, we design both fully connected layers of the classifier
subjected to gradient updates.

The loss function for the fine-tuning stage is formulated as shown in Equation (5).

L(θA,B, θcls) = −
k

∑
i=1

log P(predicti|θ, θA,B, θcls) . (5)

Here, θA, B represent the parameters of all A and B, θcls is the classifier, θ is the
frozen parameters from the pre-trained model, k is the batch, and predicti is the classifier’s
prediction label.

4. Experiments

This section validates the advanced performance of the PETReLM from multiple
perspectives. We first introduce the datasets, experimental setup, and evaluation metrics
used in our experiments, then present the classification results of the model on these
datasets, and follow by ablation studies to prove the effectiveness of each module.

4.1. Datasets

For model pre-training and fine-tuning, we utilize various public encrypted traffic
datasets, each with its specific characteristics:

Browser2020 [4]: This dataset comprises traffic generated by accessing the top 1000 web-
sites on Alexa using four different browsers: Google, Firefox, Samsung Internet, and UC.
Each website visit lasts for 15 s, with scripts simulating random clicks and browsing behavior.

CIC-IDS 2017 [34]: A network attack traffic dataset containing benign and malicious
traffic based on protocols like HTTP, HTTPS, FTP, and SSH. The traffic is segmented into
different time periods, each producing various types of traffic.

ISCXTor2017 [35]: A dataset focusing on The Onion Routing (Tor) traffic which in-
cludes eight different types of Tor traffic collected using onion routing.

ISCXVPN2016 [36]: A Virtual Private Network (VPN) traffic dataset that gathers traffic
generated by different types of applications under conditions of using or not using a VPN,
simulated between two hosts. This dataset is one of the most commonly used datasets
currently. The dataset categorizes encrypted applications into 17 classes and encrypted
services into 12 classes.

USTC-TFC2016 [37]: This dataset comprises malicious traffic collected in a real network
environment alongside normal traffic.

CIC IoT Dataset 2023 [38]: This dataset contains IoT attack traffic collected from a
topology consisting of 105 IoT devices. It includes both normal IoT traffic and network
attack traffic generated by 33 types of malicious IoT devices.

The granularity of encrypted traffic classification mainly includes a packet level and a
session level. Encrypted traffic sessions contain more information than individual packets.
However, it is challenging to obtain datasets with sufficient diversity and undisputed
ground truth [19]. Labeled encrypted traffic datasets may suffer from class sample imbal-
ances, with limited samples collected for certain categories under constrained conditions.
For instance, in the ISCXVPN2016 dataset (see Table 2), the AIM and ICQ categories each
contain only 49 and 45 valid sessions, respectively (we consider a session to be valid if it
contains more than 4 packets). The limited samples may hinder deep learning models from
effectively learning sample representations. Therefore, we confine our study to packet-level
representation learning. We validate that valuable information about traffic can still be
obtained from packets. Additionally, packet-level traffic classification can alleviate the
problem of insufficiently labeled training samples.
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Table 2. Description of fine-tuning datasets.

Dataset Task Classes Classification Basis Specific Categories

ISCXTor2017 [35] ISCXT8 8 Tor Service Audio, Browsing, Chat, FTP, Mail, P2P, Video, VoIP

ISCXVPN2016 [36]
ISCXS12 12 VPN Service VPN: Email, Chat, Stream, File transfer, VoIP, P2P; Non-VPN:

Email, Chat, Stream, File transfer, VoIP, P2P

ISCXA17 17 VPN Application AIM, Email, Facebook, FTP, Gmail, Hangouts, ICQ, Netflix, P2P,
SCP, SFTP, Skype, Spotify, tor, Vimeo, Voipbuster, Youtube

USTC-TFC2016 [37] USTC20 20 Malware
Benign: BitTorrent, Facetime, FTP, Gmail, MySQL, Outlook,
Skype, SMB, Weibo, World of Warcraft; Malware: Cridex,
Geodo, Htbot, Miuref, Neris, Nsis-ay, Shifu, Tinba, Virut, Zeus

CIC IoT Dataset 2023
[38] CICIoT33 33 IoT Cyberattack

DDoS: ACK Fragmentation, HTTP Flood, ICMP Flood, ICMP
Fragmentation, PSHACK Flood, RSTFIN Flood, SlowLoris,
SynonymousIP Flood, SYN Flood, TCP Flood, UDP Flood, UDP
Fragmentation; Brute Force: Dictionary Brute Force; Spoofing:
ARP Spoofing, DNS Spoofing; DoS: HTTP Flood, SYN Flood,
TCP Flood, UDP Flood; Recon: Host Discovery, OS Scan, Ping
Sweep, Port Scan, Vulnerability Scan; Web Based: Backdoor
Malware, Browser Hijacking, Command Injection, SQL
Injection, Uploading Attack, XSS; Mirai: Greeth Flood, GREIP
flood, UDPPlain

For pre-training, we use benign traffic from Browser, CIC-IDS 2017, and the CIC
IoT Dataset 2023 as the pre-training dataset. This dataset comprises 955,000 unlabeled
traffic data, totaling 11.3 GB. For fine-tuning, we use datasets as shown in Table 2. It is
worth mentioning that our datasets encompass a wide range of protocols such as QUIC.
By selecting datasets that cover a variety of protocols, we aim to enable the model to learn
more general and effective representations. We select datasets from various classification
scenarios to validate the model’s performance. ISCXT8, ISCXS12, and ISCXA17 simulate
traffic classification in network management scenarios, while USTC20 and CICIoT33 simu-
late malicious traffic classification in network security scenarios. Our experiment ensures
the orthogonality between the pre-trained and fine-tuned datasets, simulating the scenario
where the model learns representations of encrypted traffic it has never seen before.

We select 5000 samples from each category in the fine-tuning dataset with a ratio of
8:1:1 for the training, validation, and test sets, respectively.

4.2. Experimental Settings

The experiments are conducted using the NVIDIA Tesla V100 GPU, with Python
version 3.10.12, CUDA version 11.7, and PyTorch version 1.13.0.

In BERT-base, each multi-head self-attention sublayer within the Encoders contains
12 attention heads. The dimension of the embedding vectors is set to 768, and the maximum
length for input vector sequences is 512.

During the model’s pre-training phase, the batch size is set to 32, with a total step
count of 500,000 and a learning rate of 2 × 10−5. For the fine-tuning phase, the batch size
remains at 32, and the learning rate is adjusted to 8 × 10−4. We consistently use AdamW as
the optimization tool. The deflation parameter of the updated weight matrix is set to 32,
and the rank for the weight update matrix is set to 4. The fine-tuning process is conducted
over 10 epochs.

By comparing the distribution of network layer payload lengths in each fine-tuning
dataset, we determine the specific truncation length. Figure 4 illustrates the distribution
of network layer payload lengths for the four fine-tuning datasets. We observe that the
payload distribution of the datasets mostly falls below 300 bytes, with some datasets
having a proportion of over 1000 bytes. As shown in Figure 2, since most byte pairs are
converted into one token and a byte appears in two adjacent byte pairs, it is reasonable to
approximate one byte as one token. If a larger value is chosen for the input token length, a
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high proportion of samples requires padding with [PAD]. Conversely, selecting a smaller
value compromises the model’s ability to learn representations of the application layer
payload. Considering the overall distribution of dataset payloads and the generality of the
pre-trained model, we opt to use 512 tokens of the payload as the maximum input length
for pre-training. With TCP packets having a fixed header of 20 bytes and UDP packets
having an 8-byte header, this choice ensures the retention of complete transport layer
header information and most of the application layer encrypted payload while mitigating
the impact of excessive [PAD] on model classification results.
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4.3. Evaluation Metrics

We use classic metrics to evaluate model performance, including Accuracy (Acc),
Precision (Pre), Recall (Rec), and F1-Score (F1). For binary classification problems, the
equations are as follows:

Acc =
TP + TN

TP + FP + FN + TN
(6)

Pre =
TP

TP + FP
(7)

Rec =
TP

TP + FN
(8)

F1 = 2 × Precision × Recall
Precision + Recall

(9)

where TP represents true positives, FP is false positives, TN is true negatives, and FN
is false negatives. In multi-classification scenarios, we adopt the Macro Average [39]
method to calculate Precision, Recall, and F1-Score. It involves calculating these metrics for
each category and then averaging the results. The accuracy metric is not affected by the
multi-class nature of the problem.

4.4. Performance Analysis

PETReLM’s performance is compared against baseline models based on deep learning
including 1D-CNN [11], Deep Packet [10], PERT [13], and ET-BERT [14]. The motivation
for selecting these baseline models is that they represent typical deep learning methods
applied to encrypted traffic classification. Comparing against these baseline models can
objectively demonstrate the performance of our model. These models are replicated with
their original structure and parameters, and their performance (in terms of Acc, F1) is
compared with our model across various datasets, as shown in Table 3.
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Table 3. Comparative experiment results of different methods.

Model
ISCXT8 ISCXS12 ISCXA17 USTC20 CICIoT33

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

1D-CNN [11] 0.9704 0.9709 0.9149 0.9147 0.9265 0.9181 0.7738 0.7508 0.7280 0.7307
Deep Packet [10] 0.9722 0.9727 0.9169 0.9153 0.9154 0.9073 0.7911 0.7659 0.6987 0.7029

PERT [13] 0.9995 0.9995 0.9705 0.9706 0.9816 0.9782 0.9875 0.9876 0.8419 0.8400
ET-BERT [14] 0.9998 0.9997 0.9785 0.9786 0.9911 0.9893 0.9940 0.9940 0.8065 0.8094

PETReLM 0.9998 0.9997 0.9685 0.9686 0.9867 0.9830 0.9881 0.9881 0.8234 0.8247

Based on the experimental results, we observe that individual packets indeed contain
sufficient representations for distinguishing between traffic categories. Most methods are
effective in accurately classifying designed scenarios based on packet representations. Fur-
thermore, convolutional deep learning methods (1D-CNN, Deep Packet) exhibit unstable
performance: they show significant discrepancies in performance on USTC20 and CICIoT33
datasets. There are two main reasons: (a) Convolutional neural networks have a relatively
narrow low-level field of view. Convolutions capture relationships between nearby bytes,
while distant relationships can only be learned at higher layers. Therefore, the overall byte
relationship extraction capability of convolutional methods may be lacking, resulting in
inferior representation extraction performance on complex datasets. (b) Convolutional
neural networks lack prior knowledge of encrypted traffic. Un-pretrained convolutional
methods cannot acquire universal representations of traffic and only learn proprietary
representations in limited datasets. The lack of incremental learning may also lead to
subpar performance.

In contrast, the excellent performance of pretraining-based methods highlights the
strong appeal of deep learning frameworks for encrypted traffic classification. Pretraining
models with large-scale parameters and architectures conducive for learning long sequences
are more suitable for encrypted traffic classification tasks. Specifically, ET-BERT and PERT
have similar structures and training methods. PERT uses the ALBERT architecture to
share all parameters between layers, resulting in performance fluctuations observed in the
ISCXA17 dataset. ET-BERT’s performance declines on the CICIoT33 dataset. Overall, the
PETReLM demonstrates more balanced performance across different application scenarios,
and it also performs similarly to the best baseline models.

At the same time, we identify potential limitations in our approach. From the clas-
sification results, we observe that the effectiveness of classifying IoT attack scenarios is
notably lower compared to other scenarios. As illustrated in Figure 5, the PETReLM clas-
sification heatmap reveals that the model nearly classifies all DoS SYN Flood traffic as
DDoS SYN Flood. This discrepancy arises because the primary difference between the
two attacks lies in the flood attack originating from multiple or fewer source hosts, which
may not be clearly evident at the level of individual packets. Similar issues are observed
with Command Injection, Uploading Attacks, and XSS, where all attacks involve similar
data transmission methods such as Web requests, and their application layer payloads
may also be comparable. These challenges extend to other confused categories, where the
representations of these categories within a single packet are similar, making them difficult
to distinguish. In summary, we find that the limitations of this approach may arise in
scenarios where the representation of individual packet is not sufficiently clear, and relying
solely on packet-level information may not effectively classify data accurately.
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4.5. Resource Usage Analysis

To compare resource usage, we take the USTC20 task as an example. We compare the
parameter scales of all baseline methods and also examine the GPU usage of pre-training
models.

Table 4 reveals that settings of convolution-based methods affect the parameter scale,
with an average magnitude of around 105. Pre-training methods have parameters scaled
1–2 orders of magnitude higher than convolutional methods. PERT reduces the parameter
scale by sharing parameters between layers, but fluctuates in performance. The PETReLM
reduces the parameter scale by inserting additional modules while maintaining stable
performance. PETReLM’s parameter scale accounts for only 5.6% and 21.0% of ET-BERT
and PERT, respectively, and is in the same order of magnitude as small-scale convolutional
models. The PETReLM utilizes the least GPU memory among pretrained models because
only a small fraction of parameters accepts gradient updates, reducing GPU resource usage
for storing gradients. Updating only a small fraction of parameters also accelerates model
computation speed, reducing training time by 16.68% compared to ET-BERT. The PETReLM
is more suitable for multitask applications, as conventional methods require storing all
model parameters for each task, while the PETReLM only needs to store the inserted
modules to preserve task-specific feature extraction capabilities. When task switching
is needed, the PETReLM can quickly switch between different task scenarios by only
switching small modules.
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Table 4. Parameter scales of different methods.

Trainable Parameters Pretraining Parameters Percentage (%) GPU (GB)

1D-CNN [11] 5.7 × 106 - - -
Deep Packet [10] 10.1 × 106 - - -

PERT [13] 36.7 × 106 36.7 × 106 100 24.8
ET-BERT [14] 136.3 × 106 136.3 × 106 100 23.3

PETReLM 7.7 × 106 136.3 × 106 5.6 19.3

Overall, the PETReLM ensures that the model’s complexity is sufficient to learn the
basic representations of encrypted traffic while significantly reducing the required training
resources. It facilitates rapid task switching in multitask scenarios while maintaining
classification performance comparable to that of state-of-art models.

4.6. Ablation Analysis

To validate the effectiveness of our fine-tuning approach, we conduct ablation experi-
ments focusing on two aspects:

(1) Suitability of the modified LoRA for fine-tuning pre-trained models in encrypted traf-
fic classification. We compare it with other traditional PEFT methods like Adapter [22],
Prefix Tuning [21], P-Tuning [25], and IA3 [24].

(2) Applicability of using two fully connected layers as a classifier for encrypted traffic
classification. We compare two approaches: (i) Using a classifier composed of two
fully connected layers, where the first layer parameters from the mNSP task are
preserved and the second layer is subject to gradient updates (mNSP1 + FC2); (ii)
Using a classifier composed solely of one fully connected layer, which reduces the
input dimension to the classification dimension (FC1).

The experiments are conducted on the USTC20 dataset, and the results are presented
in Table 5.

Table 5. Comparison of ablation results.

Method Acc Pre Rec F1

Adapter 0.9839 0.9842 0.9839 0.9839
Prefix Tuning 0.9706 0.9713 0.9706 0.9702

P-Tuning 0.8734 0.8816 0.8734 0.8722
IA3 0.9698 0.9703 0.9698 0.9695

mNSP1 + FC2 0.9824 0.9824 0.9824 0.9817
FC1 0.9861 0.9863 0.9861 0.9862

PETReLM 0.9878 0.9888 0.9878 0.9877

The findings indicate that compared to other PEFT methods and classifier configu-
rations, our model achieves superior results in encrypted traffic classification tasks. The
Adapter method is similar to the PETReLM in that both insert modules that function
to downscale and then upscale the input vectors to the output. The main difference is
that Adapter inserts serial parameter modules between layers while the PETReLM inserts
parallel parameter modules in the layers. IA3 reduces trainable parameters through vector-
scaled activation. Prefix Tuning and P-Tuning construct prompts to minimize fine-tuning
parameters. The PETReLM shows improvement in F1-Score compared to these methods.
When comparing different classifier configurations, performance slightly drops with both
the original classifier and the use of a single fully connected layer as a classifier. Notably,
even with a 75% reduction in trainable parameter volume when using only one fully
connected layer, the performance exhibits only minor fluctuations. Therefore, employing
a single fully connected layer as a classifier also emerges as a balanced choice between
performance and resource utilization.
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5. Interpretability Analysis

This section analyzes the model’s matrix parameters using singular value decom-
position, comparing the changes between pre-trained and fine-tuned model parameters
to explain the mechanism of learning traffic representations. We use the original pre-
trained model, the fully fine-tuned model, and the PETReLM for interpretability analysis,
aiming to explain the underlying learning mechanisms of the full fine-tuning and PEFT
methods by analyzing the correlations between model parameters in the pre-training and
fine-tuning phases.

5.1. Singular Value Analysis

The magnitude of the singular value corresponds to the importance of the left and
right singular vectors in a matrix. A large singular value indicates primary structures and
directions represented by their associated vectors. Singular values and singular vectors are
primarily used for interpretability analysis. In this section, we take the ISCXA17 task as
an example, and set W(i)

p , W(i)
f , and W(i)

m to represent the query projection matrices of the
multi-head self-attention mechanism of the Encoder at layer i of the pre-trained model (p),
the fully fine-tuned model (f ), and the PETReLM (m), respectively. We merge PETReLM’s
parallel module with the pre-trained model to align the model sizes. The singular value
decomposition of matrix W(i)

p is as shown in Equation (10):

W(i)
p = U(i)

p Σ
(i)
p (V(i)

p )
T

. (10)

Setting the diagonal element σ
(i,j)
p represents the jth singular value of Σ

(i)
p . We define

the magnification factor of the fine-tuned matrix’s jth singular value as the ratio of the jth
singular value of the fine-tuned matrix to the jth singular value of the pre-trained matrix.
For instance, the calculation formula of the jth singular value magnification factor for the
fully fine-tuned model is shown in (11):

f
(

W(i)
f , W(i)

p , j
)
=

σ
(i,j)
f

σ
(i,j)
p

. (11)

Figure 6a displays the jth singular value of W(i)
p for different values of i and j (repre-

sented as p-i in the figure), while Figure 6b shows the magnification factors (represented as
f -i, P-i in the figure) for W(i)

f and W(i)
m . For brevity, only the first 10 singular values of the

odd-numbered layers are shown in the figures.
It can be observed that the singular values of the fully fine-tuned model and the pre-

trained model are closely aligned, increasing with layer number i, but they are generally
small in value. PETReLM significantly amplifies the first four singular values. Similar results
are observed in the value projection matrix and other matrices of the fully fine-tuned model.

Overall, the main features of the first layer query projection matrix of the pre-trained
model and the fully fine-tuned model are not pronounced, while the main features, espe-
cially in the last two layers near the output, are more prominent. The PETReLM amplifies
certain features of the original matrices to varying degrees. The magnification of singular
values in lower layers by the PETReLM is significantly higher than in higher layers, indi-
cating substantial changes made by the PETReLM to the pre-trained model. The extent of
these changes is greater in extracting basic representations in lower layers compared to
abstract representations in higher layers.
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Figure 6. Comparison of singular values between pre-trained and fine-tuned models. (a) Pre-trained
model singular values of different layers; (b) Magnification factors of different fine-tuned matrix’s
singular values.

5.2. Subspace Similarity Analysis

To analyze the adjustments made by the fine-tuned model to the parameters of the pre-
trained model, we compare the feature and structural similarity of matrices. We measure
the similarity by comparing the overlap of the subspaces formed by the first k ∈ [1, 784]
right singular vectors of the query projection matrix in the first-layer Encoder of the pre-
trained model and the fine-tuned model. The normalized matrix similarity [40] is used to
calculate the subspace similarity, as shown in (12):

d(A, B) =
∑

p
i=1 σi

2

p
p = min{m, n}. (12)

Here, A ∈ Rl×n and B ∈ Rl×n represent matrices composed of the first m and n l-
dimensional right singular vectors, respectively, with σi being the ith singular value of
matrix ATB. When the value of the normalized matrix similarity tends to one, it means
that the subspaces formed by A, B have a high degree of overlap; equality to one means
complete overlap; tendency to zero means low overlap; and equality to zero means no
overlap at all.

Figure 7a,b shows the similarity of the subspaces formed by the first k right singular
vectors of each layer of the pre-trained model with the fully fine-tuned model and the
PETReLM, respectively.

Each square in the figure represents the similarity of the subspace consisting of the
first k vectors of the matrices. The first 40 singular vectors already illustrate the pattern
well. The figure reveals that, apart from some fluctuations, the subspace similarity of the
fully fine-tuned model with the pre-trained model remains at a high level. The subspace
formed by the right singular vectors corresponding to the largest four singular values of the
PETReLM and the pre-trained model barely overlap. However, as the dimension number of
the subspace increases, the similarity rapidly grows, with most of the subspace formed by
the first 25 singular values overlapping. Each layer shows the same trend. Similar results
are observed for the left singular vectors.
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5.3. Summary of Interpretability Findings

Combining the changes in singular values and the subspace similarity between model
matrices, we observe that the structure and features of the pre-trained model’s query projec-
tion matrices are balanced and smooth. The matrices in the lowest layer are the smoothest,
while the structure and features of the matrices in the higher layers are relatively more
prominent, with the middle layers having fewer prominent features. This characteristic is
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more suitable for extracting general representations of traffic: the lower layers use smoother
matrices to extract general byte representations of the payload, the middle layers continu-
ally filter and process representations from byte representations to abstract features, and
the higher layers use matrices with more pronounced features to extract abstract features.

The fully fine-tuned model essentially maintains the structure and features of the pre-
trained model’s matrices, making only minor adjustments to the matrix structure. However,
since full fine-tuning alters the parameters of each matrix in the model, it is challenging to
observe the actual changes made by fine-tuning.

The PETReLM, by updating a minimal number of matrix parameters instead of the
full parameter set, allows for us to capture the subtle parameter changes at each layer,
reflecting the fine-tuning adjustments made to the parameters of the pre-trained model. The
PETReLM alters the model’s most crucial structure and features of the pre-trained model
while maintaining the essential structure and features. Specifically, at the microscopic
level, the matrix does not replicate the primary feature directions of the original matrix but
instead amplifies directions not emphasized in the original matrix. The amplification is
greater in the lower layers than in the higher layers. Macroscopically, this is reflected in
the rapid increase in subspace similarity within a certain range as the value of k increases.
Therefore, fine-tuning alters the overall feature extraction framework of the pre-trained
model, thoroughly changing the primary feature extraction pattern at each layer. This
includes more significant adjustments in the lower layers near the input for byte feature
extraction and relatively minor macroscopic changes in the higher layers for abstract feature
processing. This approach is more suitable for extracting specific traffic representations
for a given classification task, with the lower layers filtering and retaining representation
capabilities relevant to the given task and the higher layers focusing more on processing
abstract features related to the task.

6. Conclusions

Motivated by the need to achieve encrypted traffic functional service classification un-
der limited conditions, we propose the PEFT-based encrypted traffic classification method,
the PETReLM. The method utilizes low-rank matrices instead of weight update matrices
for parameter fine-tuning, enabling precise functional classification at the packet level for
downstream tasks. We evaluate PETReLM’s generalization, robustness, and effectiveness
across various network analysis and network security scenarios, including Tor service
classification, VPN network service classification, VPN application classification, malware
classification, and IoT attack traffic classification. When compared with existing methods,
PETReLM maintains performance comparable to that of advanced models while reducing
the trainable parameters by 99.44%, effectively saving computational and storage resources
and reducing the deployment and switching costs of multi-task models. We explain the
underlying principles and mathematical logic of how the PETReLM extracts features from
the encrypted traffic, representing a novel attempt in encrypted traffic classification. We
find that the PETReLM changes the characteristics of model parameters so that parameter
hierarchy becomes distinct and the structure remains basically the same, which enhances
the interpretability of the model.

However, we also identify some limitations in our approach. Our method does not
consistently outperform existing state-of-the-art models in experimental performance.
Additionally, packet-level identification introduces inherent limitations to the classification
model. In scenarios where packet-level representations are not sufficiently effective, the
classification results may not be optimal. Therefore, designing a universal encrypted traffic
classification model may be more suitable for benign network environments in the field of
network application detection. For environments where malicious or deceptive traffic may
exist, more targeted designs are needed.

In the future, we hope to combine neural network model architectures with encrypted
traffic algorithms to analyze the representation extraction mechanisms of encrypted traffic,
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further improving model classification effectiveness, and providing a more universally
effective interpretative approach for encrypted traffic classification.
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