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Abstract: This paper presents an enhanced ground vehicle localization method designed to address
the challenges associated with state estimation for autonomous vehicles operating in diverse envi-
ronments. The focus is specifically on the precise localization of position and orientation in both
local and global coordinate systems. The proposed approach integrates local estimates generated
by existing visual–inertial odometry (VIO) methods into global position information obtained from
the Global Navigation Satellite System (GNSS). This integration is achieved through optimizing
fusion in a pose graph, ensuring precise local estimation and drift-free global position estimation.
Considering the inherent complexities in autonomous driving scenarios, such as the potential failures
of a visual–inertial navigation system (VINS) and restrictions on GNSS signals in urban canyons,
leading to disruptions in localization outcomes, we introduce an adaptive fusion mechanism. This
mechanism allows seamless switching between three modes: utilizing only VINS, using only GNSS,
and normal fusion. The effectiveness of the proposed algorithm is demonstrated through rigorous
testing in the Carla simulation environment and challenging UrbanNav scenarios. The evaluation
includes both qualitative and quantitative analyses, revealing that the method exhibits robustness
and accuracy.

Keywords: state estimator; vehicle localization; sensor fusion; adaptive mechanism

1. Introduction

To address the inherent limitations in individual sensors, researchers have shifted their
focus towards the development of multi-sensor fusion localization systems. These systems
capitalize on the strengths of diverse sensors to augment the precision and robustness of
the localization system. Consequently, there is a growing emphasis on the application of
sensor fusion methods to ascertain vehicle positions. Currently, simultaneous localization
and mapping (SLAM) stands as the prevailing solution for autonomous vehicle localization,
incorporating the fusion of GNSS/RTK, laser radar, LIDAR-based prior maps, and IMU-
based high-quality positioning [1,2]. However, the widespread adoption of laser radar
sensors in autonomous vehicles is impeded by their high cost.

In contrast, visual odometry (VO) and visual simultaneous localization and mapping
(SLAM) have garnered significant attention due to their advantages, including low cost,
compact size, and straightforward hardware configuration. Nevertheless, the purely visual
approach lacks robustness in the presence of sparse-textured areas, motion blur, sharp
turns, and lighting variations. Therefore, the inertial measurement unit (IMU) is integrated
to provide short-term motion constraints and the absolute scale of motion. Systems tightly
coupling visual observations and IMU measurements are denoted as visual–inertial navi-
gation systems (VINSs), proficient in estimating the six-degree-of-freedom (DOF) pose of a
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vehicle. Even in conditions of rapid motion or substantial changes in lighting, this system
consistently achieves high precision and robust localization results [3–7].

The most direct approach to fuse visual and inertial measurements is through a filter-
based loosely coupled framework [8,9]. However, this straightforward strategy overlooks
the correlations between different sensor data, leading to suboptimal localization accuracy.
Consequently, tightly coupled fusion methods have been introduced, wherein the tight
coupling of visual and inertial measurements falls into filter-based and optimization-based
categories. Filter-based tightly coupled fusion methods, such as [3,6,10], concurrently
optimize the states of the camera and IMU. These methods typically restrict the num-
ber of landmarks, preserving only the most recently detected features in the state vector
to ensure a manageable problem complexity. Nevertheless, they commonly encounter
a shared challenge: visual–inertial navigation systems (VINSs) constitute nonlinear sys-
tems, necessitating the linearization of nonlinear measurements before processing, which
may introduce significant errors [11]. In contrast, optimization-based methods convert
sensor fusion into a graph-based nonlinear least squares problem, delivering superior
accuracy compared to filter-based methods, with the drawback of increased computational
time. Consequently, effective IMU pre-integration techniques are widely employed in
optimization-based tightly coupled visual–inertial odometry (VIO) methods [4,5,12], as
well as in [7,13,14], where manifolds are used instead of Euler angles to parameterize the ro-
tation group for enhanced computational efficiency. Optimization-based methods typically
optimize the most recent states within a limited-size sliding window while marginalizing
past states and measurements [5]. Ref. [5] stands out as one of the most popular open-
source VIO systems, exhibiting an excellent performance on the KITTI dataset. However,
depending solely on local relative pose estimation is insufficient with autonomous vehicles,
prompting the need for an absolute localization method to map local state estimates into a
global coordinate system.

Given that the Global Navigation Satellite System (GNSS) offers absolute positioning
information in the Earth coordinate system, a natural approach involves integrating local
positioning results into the absolute position data from GNSS for precise global localization.
Notably, ref. [15] devised a tightly coupled visual–inertial odometry (VIO) system aug-
mented by intermittent GNSS measurements, yielding consistent global localization results.
This approach concurrently addresses spatiotemporal sensor calibration and state initializa-
tion. Additionally, ref. [16] introduced an innovative filter-based estimator, amalgamating
GNSS measurements with visual–inertial data. It concurrently estimates the extrinsic rota-
tion between GNSS and VIO results online, achieving robust global localization. Beyond
filter-based methods, ref. [17] proposed a sliding window optimization-based strategy that
positions the vehicle in the global coordinate system by fusing long-range stereo vision,
inertial integration, and limited GNSS information. Ref. [18] introduced a tightly coupled
framework that integrates visual–inertial odometry with global positioning measurements.
Recent advancements, as demonstrated by methods [19,20], tightly couple visual–inertial
SLAM with raw GNSS measurements, yielding globally consistent localization information.
However, tightly coupled methods present challenges in both complex initialization and
limited scalability. Integrating new sensors necessitates algorithm redesign, making system
expansion difficult. Ref. [21] presents a loosely coupled sensor fusion framework capable
of attaining locally accurate and globally drift-free attitude estimation, showcasing a com-
mendable performance in practical scenarios. However, it is noteworthy that this system
does not explicitly initialize the coordinate transformation from East North Up (ENU) to
visual–inertial odometry (VIO).

Additionally, it overlooks the potential issues that may arise from the failure of a sensor.
This study introduces the integration of Global Navigation Satellite System (GNSS)

signals to enhance the performance of visual–inertial navigation systems (VINSs) for achiev-
ing locally accurate and globally drift-free attitude estimation. The proposed approach is
easy to extend and involves a two-stage initialization method to acquire initial poses at
both local and global levels. Additionally, an adaptive fusion mechanism is introduced to
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ensure effective global pose estimation even in the event of VIO or GNSS failure. Algorithm
validation is conducted in simulation environments and challenging urban road scenarios.
The primary contributions of this work include the following:

• Two-Stage Initialization Method: The introduction of a two-stage initialization method
leveraging inertial, camera, and asynchronous GPS measurement data. This method
facilitates a coarse estimation of visual–inertial odometry (VIO) initialization parame-
ters and the transformation matrix between the VIO coordinate system and the global
East North Up (ENU) system when the vehicle is stationary. Further optimization of
relevant initialization parameters occurs as the vehicle is in motion.

• Adaptive Fusion Mechanism: The implementation of an adaptive fusion mechanism
that incorporates anomaly detection for VIO and GPS information. In the event of VIO
or GPS failure, this mechanism enables the system to continue estimating the global
pose of the vehicle, ensuring robust and continuous vehicle localization.

• Algorithm Validation in Simulations and Challenging Urban Roads: The validation
of the algorithm’s effectiveness in both simulation environments and challenging
urban roads. The validation process includes qualitative and quantitative analyses.
Through these experiments, the study demonstrates the satisfactory performance of the
proposed method across different scenarios, highlighting its robustness and accuracy.

2. System Overview

The structure of our proposed system is illustrated in Figure 1.
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Figure 1. The scheme of proposed system.

The system integrates inputs such as images, inertial measurements, and GNSS data.
The high-frequency IMU between the two images will be pre-integrated. The GNSS
frequency is low and unstable. When new GNSS data are obtained, the positioning status is
detected first, and the positioning anomaly and some GNSS data far away from the image
acquisition time will be discarded to avoid major positioning errors. At the initial moment
when the vehicle is stationary, IMU data are utilized to estimate rough accelerometer
and gyroscope biases, the direction of gravity, and the coordinate transformation from
ENU to VIO. The transition from a static to dynamic state is identified by analyzing
disparities between consecutive images. Upon detecting vehicle motion, the initialization
parameters initially estimated during the stationary phase are optimized to conclude the
VIO initialization. Following initialization, the VIO local estimator generates local pose
estimates. These local pose estimates, in conjunction with GNSS information, serve as
inputs to the global estimator. A nonlinear optimization process is then employed to
produce the final six-degree-of-freedom (DOF) global pose results.
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3. Methods

This section begins with the definitions of the coordinate systems. The involved
coordinates in this paper are shown in Figure 2, including the sensor frames: the camera
frame {C}, the IMU frame {B} (vehicle frame), and the GNSS frame {A}. The phase center
of the GNSS antenna serves as the coordinate origin for {A}. {W} is the reference frame
for local odometry, aligning the gravity vector with the z-axis, and the origin is set at the
vehicle’s starting point, gW = [0, 0, 9.81]T . {G} represents the global East-North-Up (ENU)
frame, serving as the reference frame for global poses, with an origin identical to the local
reference frame {W}. The following symbols will be used. We define (•)G and (·)W to
represent matrices (or vectors) in {G} and {W}, respectively. (·)Ck , (·)Bk , and (·)Ak are the
camera, IMU, and GNSS data frames when capturing the kth image. RB

A is considered the
rotation matrix from frame {A} to {B}, with the corresponding Hamilton quaternion form
denoted as qB

A. pB
A and vB

A represent the position and velocity vectors of {A} in {B}, and
TB

A is the homogeneous expression of the transformation matrix from {A} to {B}. External
parameters between sensors are employed to transform measurement data from different
frames to a unified coordinate system. The external parameters for Camera-IMU include
RB

C and pB
C. LB

A represents the GNSS-IMU external parameter, known as the lever arm, and
all involved external parameters are calibrated offline. ⌊·⌋× denotes vector cross-product,
⊗ denotes quaternion multiplication, and finally, (•̂) is used to represent measurement
data containing noise.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 15 
 

 

global estimator. A nonlinear optimization process is then employed to produce the final 
six-degree-of-freedom (DOF) global pose results. 

3. Methods 
This section begins with the definitions of the coordinate systems. The involved co-

ordinates in this paper are shown in Figure 2, including the sensor frames: the camera 
frame {C}, the IMU frame {B} (vehicle frame), and the GNSS frame {A}. The phase center 
of the GNSS antenna serves as the coordinate origin for {A}. {W} is the reference frame for 
local odometry, aligning the gravity vector with the z-axis, and the origin is set at the 
vehicle’s starting point, [0, 0, 9.81]W T=g . {G} represents the global East-North-Up (ENU) 
frame, serving as the reference frame for global poses, with an origin identical to the local 

reference frame {W}. The following symbols will be used. We define ( )G•  and ( )W  to 

represent matrices (or vectors) in {G} and {W}, respectively. ( ) kC , ( ) kB , and ( ) kA  are 
the camera, IMU, and GNSS data frames when capturing the kth image. B

AR  is considered 
the rotation matrix from frame {A} to {B}, with the corresponding Hamilton quaternion 
form denoted as B

Aq . B
Ap  and B

Av  represent the position and velocity vectors of {A} in {B}, 
and B

AT  is the homogeneous expression of the transformation matrix from {A} to {B}. Ex-
ternal parameters between sensors are employed to transform measurement data from 
different frames to a unified coordinate system. The external parameters for Camera-IMU 
include B

CR  and B
Cp . B

AL  represents the GNSS-IMU external parameter, known as the 
lever arm, and all involved external parameters are calibrated offline. 

×    denotes vec-

tor cross-product, ⊗   denotes quaternion multiplication, and finally, ( )•̂   is used to 
represent measurement data containing noise. 

 
Figure 2. Diagram of the coordinates involved. 

3.1. System Preliminaries 
3.1.1. IMU Measurements and Pre-Integration Theory 

IMU sensors typically consist of a 3-axis gyroscope and a 3-axis accelerometer, allow-
ing for the measurement of angular velocity and acceleration of the inertial sensor (i.e., 
body frame) with respect to the inertial frame. IMU measurements combine the force for 
countering gravity and the platform dynamics, subject to acceleration bias, gyroscope 
bias, and additional noise. The raw measurements from the gyroscope and accelerometer 
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3.1. System Preliminaries
3.1.1. IMU Measurements and Pre-Integration Theory

IMU sensors typically consist of a 3-axis gyroscope and a 3-axis accelerometer, allow-
ing for the measurement of angular velocity and acceleration of the inertial sensor (i.e.,
body frame) with respect to the inertial frame. IMU measurements combine the force for
countering gravity and the platform dynamics, subject to acceleration bias, gyroscope bias,
and additional noise. The raw measurements from the gyroscope and accelerometer ω̂ and
â are given by Equation (1):

ât = at + bat + Rt
WgW + na

ω̂t = ωt + bwt + nw
(1)

Assuming that the additional noise in the accelerometer and gyroscope measurements
are Gaussian white noise, na ∼ N (0, σ2

a ), nw ∼ N (0, σ2
w). The accelerometer bias and
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gyroscope bias are modeled as a random walk by Equation (2), with their derivatives being
Gaussian white noise, nba ∼ N (0, σ2

ba
), nbw ∼ N (0, σ2

bw
).

.
bat = nba ,

.
bwt = nbw . (2)

To avoid recomputing integrals when linearization points change, we adhere to the
approach outlined in [5]. Given the biases, we compute the relative motion increment be-
tween two consecutive keyframes using Equation (3). Importantly, this increment remains
independent of the attitude and velocity at time tk.

α
Bk
Bk+1

=
s

t∈[tk ,tk+1]

RBk
t (ât − bat)dt2

β
Bk
Bk+1

=
∫

t∈[tk ,tk+1]

RBk
t (ât − bat)dt

γ
Bk
Bk+1

=
∫

t∈[tk ,tk+1]

1
2 Ω(ω̂t − bwt)γ

Bk
t dt

(3)

where Ω(·) is defined by Equation (4):

Ω(ω) =

[
−⌊ω⌋× ω

−ωT 0

]
, ⌊ω⌋× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (4)

3.1.2. Monocular Vision

Applying the monocular pinhole camera model, upon receiving a new image, features
are detected using Harris corner detection [22]. Subsequently, the KLT sparse optical
flow algorithm [23] is employed to track these newly detected features. The mapping
relationship between landmark points and features is expressed through Equation (5):

π(x, l) = K
[
RC

W pC
W
]
LW (5)

where K denotes the camera intrinsic calibration matrix. x represents the inverse of the
camera pose, l represents the projection of a landmark in the three-dimensional world onto
the camera plane, while LW denotes the three-dimensional position of the landmark in the
local reference frame {W}.

3.1.3. GNSS Measurements

Taking the first GNSS position measurement as the origin of the global reference frame
{G}, the GNSS observations at time tk are represented by a general Equation (6):

zA
k = h(xk)

A + nA (6)

where h(·)A is the function connecting the IMU frame {B} and GNSS measurements, and
nA represents the measurement noise. In fact, GNSS observations can be expressed using
Equation (7):

pG
Ak

= pG
W + RG

WpW
Ak

pW
Ak

= pW
Bk

+ RW
B LB

A

(7)

where pG
Ak

is the position of the GNSS antenna phase center in the global reference frame
{G} at time tk.

3.1.4. Nonlinear Optimization

Vehicle localization can be viewed as a state estimation problem, which can be trans-
formed into a maximum likelihood estimation (MLE) problem. MLE is composed of the



Sensors 2024, 24, 3079 6 of 14

joint probability distribution of vehicle states over a certain period. Under the assumption
that all measurements are independent, this problem is typically formulated as Equation (8):

χ∗ = argmax
χ

t=0

∏
n

∏
k∈S

p(zk
t |χ) (8)

where S represents measurements from the camera, IMU, or other sensors. Assuming that
sensor measurements follow a Gaussian distribution p(zk

t

∣∣∣χ) ∼ N
(

zk
t , Ωk

t

)
, the negative

log likelihood of Equation (8) can be expressed as Equation (9):

χ∗ = argmax
t=0
∏
n

∏
k∈S

exp(− 1
2∥zk

t − hk
t (χ)∥

2
Ωk

t
)

= argmin
X

t=0
∑
n

∑
k∈S

∥zk
t − hk

t (χ)∥
2
Ωk

t

(9)

The Mahalanobis norm is defined as ∥ r ∥2
Ω= rTΩ−1r, and the sensor model h(·) is defined

by Equations (1), (5) and (6). The state estimation is then transformed into an iteratively
optimized nonlinear least squares problem, where vertices represent the variables to be
optimized and edges denote error terms. A graph corresponding to any nonlinear least
squares problem can be constructed.

3.2. Initiation

To achieve an improved localization performance, initializing the system is essential.
A two-stage initialization method is proposed to fully exploit measurement data from the
vehicle’s startup to the commencement of motion. In the stationary phase, initialization
involves estimating gravity direction, gyroscope biases, accelerometer biases, and a rough
estimate of the absolute pose. As the vehicle begins to move, the parameters estimated
during the stationary phase are rapidly optimized, and scale is restored, thus completing
the initialization process.

3.2.1. Rough Estimation of Static Parameters

Initially, using stationary state data to estimate IMU biases, during this phase, the
vehicle’s initial velocity and position are both zero. The gravity acceleration measured in
the {B} frame is obtained from Equation (10):

Z0 =
m

∑
i=1

(âk)/∥
m

∑
i=1

(âk)∥2 (10)

where âk is the observation of the kth IMU accelerometer; m is the total number of IMU
observations obtained in the stationary state of the vehicle. If the parallax is less than
the threshold, then the vehicle is considered to be stationary. The projection of the x-axis
direction vector of the world frame in the IMU frame is obtained using Equation (11):

X0 = e − (eT · Z0) · Z0 (11)

The projection of the y-axis direction vector of the world frame in the IMU frame is
obtained using Equation (12):

Y0 = ⌊X0⌋× Z0 (12)

Therefore, the rotation matrix from the VIO frame {W} to the IMU frame {B} is obtained
using Equation (13):

RB
W = [X0 Y0 Z0] (13)
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The biases of the accelerometer and gyroscope are calculated using Equation (14):

ba =
1
m

i=1
∑
m
(ai)− RB

w · gW

bg = 1
m

i=1
∑
m
(ωi)

(14)

Based on double-vector attitude determination [24], a rough estimate of RG
W is obtained,

completing the static initialization phase.

3.2.2. Dynamic Optimization

When there is stable feature tracking and sufficient disparity (exceeding 20 pixels)
between the latest image and all the previously stored images in the sliding window, the
method proposed in [5] is employed. Initially, a visual reconstruction is conducted, followed
by visual–inertial alignment. The first camera frame, denoted as {C0}, is set as the reference.
Subsequently, the rough estimate parameters obtained from Equations (10), (13), and (14)
are utilized as initial values for optimization. The optimization process begins with the
refinement of gyroscope biases, followed by the initialization of the velocity, gravity vector,
and scale factor. In this process, accelerometer biases are simultaneously considered,
defining the system state as Equation (15):

χI =
[
vB0

B0
, vB1

B1
, . . . vBn

Bn
, gc0 , s, ba

]
(15)

where vBk
Bk

represents the velocity of {B} at the time of capturing the kth image, gC0 is the
gravity vector in the reference frame, and s scales the normalized reconstruction to metric
units. By solving the system described in Equation (16), the velocity of {B} within the
window, the gravity vector in the visual reference frame {C0}, and the scale parameter
are obtained.

min
XI

∑
k∈B

∥ẑBk
Bk+1

− HBk
Bk+1

χI∥2 (16)

After further adjustment of the gravity vector, gC0 is rotated to align with the z-axis
in the {W} frame, resulting in the calculation of RW

C0
. All variables are adjusted to the {W}

frame to complete the initialization.

3.3. VIO Local Estimator

For local pose estimation, an existing visual–inertial odometry (VIO) algorithm is
employed. There are many excellent open-source VIO algorithms available, and this paper
utilizes the algorithm from [5]. In the sliding window, the algorithm estimates the poses
of several IMU frames along with the depth of visual features. The state is defined as
Equation (17):

χW = [x0, x1, · · · xn, λ0, λ1, · · · λm]

xk =
[
pW

Bk
, vW

Bk
, qW

Bk
, ba, bg

]
, k ∈ [0, n],

(17)

where the kth IMU state xk is composed of the position pW
Bk

, velocity vW
Bk

, orientation qW
Bk

,
gyroscope bias bg, and accelerometer bias ba, representing the position of the IMU center
relative to the local reference frame {W}. The orientation is represented using quaternion.

The first IMU pose serves as the reference frame. When a feature is first observed
in the camera frame, it is parameterized using inverse depth λ. At this point, the state
estimation can be represented as Equation (18):

min
XW

{
∥ rP − HPχ ∥2 + ∑

k∈B
∥rB(ẑ

Bk
Bk+1

, χ)∥2
P

Bk
Bk+1

+ ∑
(W,j)∈C

ρ(∥ rC(ẑ
cj
W , χ) ∥2

P
cj
W

)

}
(18)
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where rB(ẑ
Bk
Bk+1

, χ) and rC(ẑ
cj
W , χ) represent the inertial and visual residuals, respectively.

The prior {rP, HP} contains information about the marginalized state history. The term ρ(·)
denotes a robust kernel function [25], which effectively suppresses the influence of outliers.
For a detailed explanation, refer to [5]. The VIO local estimator achieves precise real-time
6-DoF local pose estimation.

3.4. GNSS/VIO Global Estimator
3.4.1. Pose Graph Structure

The global pose estimation problem can be represented using the pose graph in
Figure 3. Each VIO node represents the estimated local six-degree-of-freedom pose. Given
the high accuracy of visual–inertial odometry in the short term, we introduce the relative
pose between these two nodes as a constraint to the pose graph. In instances where a
node is associated with GNSS measurements, GNSS constraints are also included as global
constraints in the pose graph. This approach proves effective in mitigating the impact of
cumulative errors, considering the non-accumulative nature of GNSS measurements.
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3.4.2. Adaptive Fusion Mechanism

Based on nonlinear optimization theory, the global state is defined as Equation (19):

χG = [x0, x1, · · · xn]

xk =
[
pG

Bk
, qG

Bk

]
, k ∈ [0, n],

(19)

where pG
Bk

and qG
Bk

are the position and orientation in global reference frame {G}, respec-
tively.

Due to the intricacies of autonomous driving scenarios, there are instances where the
local visual–inertial odometry (VIO) system may encounter tracking failures, leading to a
restart, and sometimes GNSS signals may be limited. Therefore, an adaptive mechanism is
employed. When the local VIO system encounters a failure, reliance is placed on GNSS
signals. Similarly, when GNSS signals are restricted, local VIO measurements are utilized.
Upon recovery of the local VIO system, visual–inertial odometry (VIO) factors are reintro-
duced into the pose graph, and when GNSS signals recover, global factors are reintroduced
into the pose graph. Therefore, the adaptive fusion optimization problem for GNSS and
VIO factors can be represented as Equation (20):

χ∗ = argmin
χG

∑
k∈B

Φ∥zW
Bk

− hW
Bk
(χ)∥2

ΩW
Bk

+

Ψ· ∑
k∈A

ρ

(
∥zG

Ak
− hG

Ak
(χ)∥2

ΩG
Ak

)
(20)

where Φ is the VIO adaptive coefficient, with a value of 1 when VI is normal and a value of
0 otherwise. Similarly, Ψ is the GNSS adaptive coefficient, with a value of 1 in the normal
state and a value of 0 otherwise.

The detection of local visual–inertial odometry (VIO) failure is executed by measuring
the relative translation or rotation between two consecutive frames. If the change between
these frames exceeds a predefined threshold, then VIO failure is considered.

At this point, let Φ = 0. If VIO is normal, then let Φ = 1.
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The anomaly detection of GNSS primarily relies on the position state and covariance
matrix of its measurement information. The detection of abnormal states involves two
steps. Firstly, the positioning state of GNSS must satisfy Equation (21); otherwise, GNSS is
directly considered to be in an abnormal state.

status > 0

σRMS =

√
σ2

λ+σ2
ϕ+σ2

h
3 ≤ σRMS

(21)

where status is the positioning state, with 0 indicating an invalid position. σRMS is the co-
variance of the positioning results. σRMS is the positioning covariance threshold. σλ, σφ, σh
are the covariances of the longitude, latitude, and altitude measurement.

Secondly, utilizing the chi-squared detection method, GNSS state determination is car-
ried out. The covariance of longitude, latitude, and elevation measurements is employed to
calculate the information matrix of GNSS residuals. The covariance matrix and information
matrix for the kth frame of GNSS measurements are given by Equation (22):

PAk = diag

(√
σ2

λ+σ2
ϕ

2 ,

√
σ2

λ+σ2
ϕ

2 , σ2
h

)
,

ΣAk = P−1
Ak

(22)

When GNSS measurements follow a normal distribution, the corresponding GNSS
residuals rGk follow a Gaussian distribution with a mean of zero and a variance of PAk .
Supposing that there are p frames of GNSS measurement data in the optimized sliding
window, the length of the data window is p, and the dimension of the chi-squared test is 3,
then all GNSS data in this data window follow a chi-squared distribution with 3p degrees
of freedom. The abnormal detection function can be designed as Equation (23):

Ek = ∑
k∈A

rAk P−1
Ak

rT
Ak

(23)

Choosing a 95% confidence level and based on 3p degrees of freedom, the threshold
can be obtained from the table. When Ek is less than the threshold, the GNSS is considered
in a normal state. At this point, let Ψ = 1; otherwise, let Ψ = 0.

Local VI factors can come from any local state estimator. Considering two consecutive
measurement frames, the visual–inertial factor is defined as Equation (24):

zW
Bk

− hW
Bk
(χ) = zW

Bk
− hW

Bk−1
(xk−1, xk)

=

αqW
Bk−1

(
pW

Bk
− pW

Bk−1

)
− αqG

Bk−1

(
pG

Bk
− pG

Bk−1

)
β(qW

Bk−1

−1qW
Bk
)⊖ (qG

Bk−1

−1qG
Bk
)

 (24)

where ⊖ represents quaternion subtraction and α, β are the weighting factors for translation
and rotation, respectively.

By setting the first GNSS measurement as the origin, we can obtain GNSS measure-
ments in the global ENU (East North Up) coordinate system. At this point, where the global
reference frame {G} and local reference frame {W} origins coincide, the GNSS factor can be
defined as Equation (25):

zG
Ak

− hG
Ak
(χ) = zG

Ak
− hG

Ak
(xk)

= p̂G
Ak

− (pG
Bk

+ RG
Bk

LB
A)

(25)

At this stage, the system can discern whether various factors are anomalous. Ulti-
mately, optimization and solving for the global pose are conducted using Ceres Solver [26].
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4. Experiments and Results

The proposed positioning method is implemented within the Robot Operating System
(ROS) framework. To assess the effectiveness of the proposed system, experiments were
conducted in the simulation environment Carla [27] and on the publicly available UrbanNav
dataset [28]. All the result analyses were conducted using the EVO [29].

4.1. Simulation
4.1.1. Step

The simulation environment was in Town 5 within Carla, an open-source simulator
designed for autonomous driving research, supporting flexible sensor configurations and
environmental conditions. An RGB camera from Carla was employed with an image size of
800 × 600, a field of view (FOV) set to 90, and an image frequency of 20 Hz. A virtual IMU
with a frequency of 100 Hz was utilized, with standard deviations associated with the white
noise of the accelerometer and the gyroscope set to 0.01 m/s2 and 0.001 rad/s, respectively.
The standard deviation of the gyroscope bias random walk was set to 1.0 × 10−5 rad/s.
Additionally, a virtual GNSS sensor outputted longitude, latitude, and altitude information
at 10 Hz, with the error set to 1 m. All sensors were rigidly mounted on the vehicle. The
vehicle was set to autonomous mode, transitioning from a stationary position to motion.

4.1.2. Results

In order to assess the practicality of the proposed initialization algorithm and adaptive
mechanism, a comprehensive comparison was performed against VINS_FUSION. The
initial step involved setting up an ideal environment within the Carla simulation frame-
work to commence the initialization of the local visual–inertial odometry (VIO) system.
Subsequently, the average scale error and initialization time were computed and compared
with VINS-FUSION (without GNSS). Additionally, the feasibility and trajectory accuracy
of the proposed adaptive algorithm were validated by comparing it to VINS-FUSION
(with GNSS).

Figure 4 illustrates the trajectory results for different methods in the Carla simulation.
Our proposed initialization approach shows a high degree of precision comparable to
VINS_FUSION. In scenarios where VIO failures are absent, our adaptive method exhibits a
trajectory highly similar to VINS-FUSION. Additionally, there is a noticeable discrepancy
between the global absolute trajectory and the local relative trajectory, primarily attributed
to the four-degree-of-freedom non-observability in local pose estimation (i.e., x, y, z, and
yaw). Cumulative drift leads to an imperfect overlap of trajectories when traversing the
same path twice locally, while the global pose trajectory demonstrates good consistency.

Table 1 presents the root-mean-square error (RMSE) of absolute pose error (APE)
for each trajectory, along with statistics on representative initialization parameters. The
average parameters are computed by averaging the results from five trials. The results
demonstrate that our two-stage initialization approach performs better than VINS-FUSION
(without GNSS) in terms of scale estimation precision and RMSE reduction, achieved within
a shorter initialization duration. Furthermore, our adaptive algorithm yields an RMSE of
0.578 m, indicating an enhanced localization accuracy when compared to VINS-FUSION
(with GNSS).

Table 1. The root-mean-square error (RMSE) of the absolute pose error (APE) for each trajectory and
result of representative initialization parameters.

RMSE (m) Average Initialization
Time (ms)

Average Scale Error
(%)

relative 2.272 83.423 1.14%
vins_fusion 2.462 93.541 1.32%

absolute 0.578 NA NA
vins_fusion_global 0.645 NA NA
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4.2. Public Datasets
4.2.1. Introduction of Datasets

The reliability of the proposed system was validated on the challenging UrbanNav
dataset, specifically leveraging the UrbanNav-HK-Data20190314. The data collection
platform comprises an INS/IMU (Xsens-Mti10, sourced by Xsens Technologies, Enschede,
The Netherlands), multiple GNSS receivers (u-blox M8T), a 3D lidar sensor, and several
monocular cameras. The ground truth is provided by the Novatel SPAN-CPT, an advanced
RTK GNSS/INS integrated navigation system.

4.2.2. Results

The efficacy of our adaptive algorithm was verified on the complex UrbanNav-HK-
Data20190314 dataset, known for its dynamic obstacles in urban alleyways. A comparative
analysis was performed against the advanced visual–inertial navigation system VINS-
FUSION (with GNSS) to evaluate the algorithm’s performance. Additionally, to broaden
the scope of our method, we extended the comparison to VINS-MONO. The trajectory
outcomes are illustrated in Figure 5. In order to assess the overall accuracy of the localization
trajectory, we present a comparison of the absolute pose error (APE) with VINS-FUSION in
Figure 6.

Figure 5a depicts the comparison between our proposed method and VINS-FUSION
(with GNSS). Under stable visual–inertial odometry (VIO) conditions, both methods exhibit
similar levels of accuracy. However, the absolute position error (APE) analysis in Figure 6
reveals that our proposed algorithm achieves a lower APE compared to VINS-FUSION,
indicating a superior performance. Figure 5b illustrates the trajectory outcomes of our
proposed algorithm extended to VINS-MONO. Throughout the algorithm’s operation, two
VIO system failures occurred due to rapid maneuvers and texture-deficient environments.
In such instances, our proposed algorithm demonstrated a better trajectory alignment with
ground truth, thereby offering higher precision.
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Figure 5. The trajectories in the UrbanNav-HK-Data20190314. (a) shows the result trajectories
obtained from our proposed algorithm compared to VINS-FUSION (with GNSS), absolute is the
trajectory obtained from the proposed adaptive algorithm, and vins_fusion_global is the trajectory
obtained from the VINS-FUSION; (b) shows the result trajectories obtained when our method and
VINS-FUSION were extended to VINS-MONO. adaptive_vins_mono is the trajectory obtained from
the proposed adaptive algorithm, and vins_mono_global is the trajectory obtained from VINS-
FUSION. The red box indicates visual–inertial odometry (VIO) failure.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 6. Different system trajectories’ APE compared to ground truth. The x-axis, “Distances”, rep-
resents the distance from the starting point in meters. 

Figure 5a depicts the comparison between our proposed method and VINS-FUSION 
(with GNSS). Under stable visual–inertial odometry (VIO) conditions, both methods ex-
hibit similar levels of accuracy. However, the absolute position error (APE) analysis in 
Figure 6 reveals that our proposed algorithm achieves a lower APE compared to VINS-
FUSION, indicating a superior performance. Figure 5b illustrates the trajectory outcomes 
of our proposed algorithm extended to VINS-MONO. Throughout the algorithm’s oper-
ation, two VIO system failures occurred due to rapid maneuvers and texture-deficient en-
vironments. In such instances, our proposed algorithm demonstrated a better trajectory 
alignment with ground truth, thereby offering higher precision. 

In order to further evaluate the accuracy of localization trajectories, a quantitative 
analysis was conducted on the trajectory, with the results presented in Table 2. It indicates 
that the overall length of paths estimated using our proposed algorithm is more accurate 
compared to VINS-FUSION. Additionally, in cases where visual–inertial odometry (VIO) 
experiences failure, the RMSE of the APE for our proposed algorithm is 1.902 m, which is 
5% lower than that of VINS-FUSION. This signifies a higher level of accuracy with our 
proposed algorithm. 

Table 2. Dataset and trajectory quantitative analysis results. 

 Time Duration (s) Length (m) VI Collapse Times GNSS Available Rate 1 (%) RMSE (m) 
truth_traj 279.91 1209.45 NA NA NA 
absolute 279.88 1217.13 0 81.40 1.902  

vins_fusion_global 279.88 1217.79 0 100 2.014  
adaptive_vins_mono 279.88 1218.31 2 81.40 2.997  

vins_mono_global 279.88 1234.82 2 100 3.111  
1 GNSS Available Rate refers to the ratio of valid GNSS signals after chi-square testing to the total 
received signals. A rate of 100% indicates direct usage of received GNSS signals without anomaly 
detection. 

5. Conclusions 
This paper introduces a relative and absolute positioning system for ground vehicles. 

The entire system, starting from initialization, employs a two-stage initialization method 
to fully utilize measurement data from inertial sensors, cameras, and asynchronous GNSS. 

Figure 6. Different system trajectories’ APE compared to ground truth. The x-axis, “Distances”,
represents the distance from the starting point in meters.

In order to further evaluate the accuracy of localization trajectories, a quantitative
analysis was conducted on the trajectory, with the results presented in Table 2. It indicates
that the overall length of paths estimated using our proposed algorithm is more accurate
compared to VINS-FUSION. Additionally, in cases where visual–inertial odometry (VIO)
experiences failure, the RMSE of the APE for our proposed algorithm is 1.902 m, which
is 5% lower than that of VINS-FUSION. This signifies a higher level of accuracy with our
proposed algorithm.
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Table 2. Dataset and trajectory quantitative analysis results.

Time Duration (s) Length (m) VI Collapse Times GNSS Available Rate 1 (%) RMSE (m)

truth_traj 279.91 1209.45 NA NA NA
absolute 279.88 1217.13 0 81.40 1.902

vins_fusion_global 279.88 1217.79 0 100 2.014
adaptive_vins_mono 279.88 1218.31 2 81.40 2.997
vins_mono_global 279.88 1234.82 2 100 3.111

1 GNSS Available Rate refers to the ratio of valid GNSS signals after chi-square testing to the total received signals.
A rate of 100% indicates direct usage of received GNSS signals without anomaly detection.

5. Conclusions

This paper introduces a relative and absolute positioning system for ground vehicles.
The entire system, starting from initialization, employs a two-stage initialization method to
fully utilize measurement data from inertial sensors, cameras, and asynchronous GNSS.
During vehicle stationary periods, it roughly estimates the initialization parameters of
visual–inertial odometry (VIO) and the transformation matrix between the VIO coordinate
system and ENU. When the vehicle is in motion, it further optimizes the relevant initializa-
tion parameters. Additionally, an adaptive fusion mechanism is utilized to ensure smooth
system operation even when a single sensor signal is unavailable. Finally, experiments are
conducted in both the Carla simulation environment and a dataset from complex real-world
scenarios. The proposed system demonstrates robustness and accuracy. Since there is no
hard synchronization in time between GNSS and other sensors, and the time offset between
sensors will change with time, it is necessary to incorporate time-offset estimation into
future work.
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